X-ray and Raman study of CH3NH3PbI3 perovskite nanocrystals

Organic-inorganic hybrid perovskite nanocrystals have gained considerable attention for optoelectronics applications due to their unique properties like high light absorption coefficient, band gap tunability, and larger diffusion length. In this work, the ligand-assisted re-precipitation method (LARP) was employed to synthesize CH3NH3PbI3 nanocrystals (NCs). The optical and structural properties of nanocrystals depend on their size. X-ray diffraction (XRD) and small-angle X-ray scattering (SAXS) techniques are used to determine the crystal structure, particle size distribution, and surface to volume ratio of CH3NH3PbI3 nanocrystals. The organic-inorganic interactions of CH3NH3PbI3 nanocrystals are studied by Raman spectra at room temperature. This study will provide the basis to interpret the morphological properties of perovskite nanocrystals for their full exploitation in different optoelectronics applications