Critical evaluation of pharmaceutical rational design of Nano-Delivery systems for Doxorubicin in Cancer therapy

Critical evaluation of pharmaceutical rational design of Nano-Delivery systems for Doxorubicin in Cancer therapy

Published in: Journal of Materials NanoScience

urn:nbn:sciencein.jmns.2019v6.95

Running title: Rationale of designing of nanoparticular delivery systems and impact of chemistry used with doxorubicin for anti-cancer therapy

  • Bhupender S. Chhikara University of Delhi
  • Brijesh Rathi University of Delhi
  • Keykavous Parang Chapman University

Keywords: Adriamycin, Cancer Drug, CPP, Drug Delivery System, Lipophilic Dox, TAT peptide

Abstract

Doxorubicin (Dox), an antineoplastic drug, has been extensively used for the treatment of different cancers. Dox is hydrophilic and therefore distributes to normal organs at a faster rate. Due to its required high doses, it poses severe toxicity, such as cardiotoxicity and nephrotoxicity. Diverse approaches, including nanoparticulate delivery systems, have been designed and evaluated to improve its delivery to the target site and reduce toxicity to normal organs; however, this has met little success. Here in this review, we have discussed various systems (metal nanoparticles, carbon nanotubes, fullerenes, liposomes, dendrimers, cyclic peptides, and other covalent/non-covalent systems) that have been used for Dox. We have critically evaluated their designing and outcome (in vitro and in vivo) with potential applications in the clinical setting.

Cite as: Chhikara, B., Rathi, B., & Parang, K. (2019). Critical evaluation of pharmaceutical rational design of Nano-Delivery systems for Doxorubicin in Cancer therapy. Journal of Materials NanoScience, 6(2), 47-66.

Retrieved full text from http://pubs.thesciencein.org/journal/index.php/jmns/article/view/95

Author: ScienceIn

International platform for Publishing of Quality research in Science, Medical and Technology