

Journal of Materials NanoScience J. Mater. NanoSci., 2022, 9(2), 91-100 91

2022
9(2), 91-100

Journal of
MATERIALS NANOSCIENCE

Development of an automatic gas sampling cum injection unit and a
graphical user interface of a feature extraction toolbox based on PYTHON
for sensor array data analysis

Debaayus Swain#,1, Kunal Gupta#,1, A. Sree Rama Murthy#,2,3,*, V. Jayaraman2,3

1Birla Institute of Technology and Science, Pilani, 333031 India. 2Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 India.
3Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India

Submitted on: 29-Oct-2021 Accepted and Published on: 15-Feb-2022 Article

An automatic gas sampling cum injection unit (AGSIU) equipped with a timer-controlled sampling pump with the bifurcated flow for carrier
and sample with 3-way solenoid valves (SOVs) is designed and fabricated to minimize the errors due to manual samplings and its performance
is evaluated. Different features like response time, recovery time, response (or sensitivity), response and recovery slopes maxima, and
integral area for single or multiple sensors are processed using their respective time series data. To avoid the laborious manual methods, a
software toolbox for the analysis and visualization of time-varying sensor signal data of an array of semiconducting metal oxide sensors
(SMOs) is developed and its use is demonstrated. The proposed application has been built completely with open-source software using
PYTHON and related platforms with a robust Graphical User Interface (GUI). The application consists of an efficient feature extraction
algorithm to extract features from the user input of the point of injection (poi) to visualize the response data and the variation in the features
of the data matrix.

Keywords: Gas sampling, Sensor array, Feature extraction, Multivariate analysis, Python, PySimpleGUI

INTRODUCTION
Gas sensors are becoming an integral part of any industrial

safety systems or environmental pollution control agencies to
ensure either the healthiness of the working personnel or
safeguard the green earth at large. They are essential in
monitoring the levels and presence of various gases which may
be volatile or toxic and must stay under either their Threshold
Limit Value (TLV!) or lower explosive limits (LEL$) whichever

is applicable. Instead of a single sensor, array-based systems are
being studied and developed to handle cross selectivity, cross-
sensitivity and wide dynamic range that enhances the usage of
semiconducting metal oxides (SMOs).1–6 The initial
training/calibration of the sensor (and sensor array) is of prime
importance for qualitative and quantitative analysis. The sensor
(array) gets trained from concurrent data obtained from repetitive
sample injections. Typically, in gas sensor studies, the sample
gas will be injected either into the static sensor chamber or into
the dynamic carrier manually by gas-tight syringes. The latter is
a typical procedure adopted in gas chromatographic studies. The

*Corresponding Author: A. Sree Rama Murthy, Novel Chemical Sensors
Section, Materials Chemistry Division, MC&MFCG, Indira Gandhi
Centre for Atomic Research, Kalpakkam – 603 102.
Tel: +91-44-27480500-24172
 Email: asrm07@igcar.gov.in
#Contributed equally to this work.

 URN:NBN:sciencein.jmns.2022.v9.283
ISSN: 2394-0867

 © ScienceIn Publishing
 http://.pubs.thesciencein.org/jmns

ABSTRACT

!Threshold Limit Value: The concentration in air to which it is believed
that most workers can be exposed daily without an adverse effect (i.e.,
effectively, the threshold between safe and dangerous concentrations).
The values were established (and are revised annually) by the ACGIH
and are time-weighted concentrations (TWA) for a 7- or 8-h workday
and 40-h workweek, and thus are related to chronic effects.
$Lower Explosive Limit: The minimum concentration of a gas, vapour,
mist or dust in air at a given pressure and temperature that will propagate
a flame when exposed to an efficient ignition source.

mailto:asrm07@igcar.gov.in

D. Swain et. al.

Journal of Materials NanoScience J. Mater. NanoSci., 2022, 9(2), 91-100 92

sensor signal for the same concentration of an analyte may vary
because of parallax error (while reading the graduated syringe),
diffusion rates or dilution that depends on the time delay between
the sample suction from the gas sampler and injection into the
sensor chamber (differs from person to person).7 Burlachenko et
al. presented an elaborated view on the status and prospects of
sample handling for electronic nose systems (EN).8 Literature on
dedicated automatic gas samplers for sensor arrays is limited.
Some earlier works on automated gas injections show limitations
for dynamic gas sensing applications.9 A dedicated gas sampling-
cum-injection module is of great use for highly reproducible
injections either for calibration or for field testing of a sensor
(array) with remote sampling or for round-the-clock automated
periodic sampling and analysis of working ambiance, etc.10 The
fore part of the current work describes the design, fabrication and
performance of an automatic gas sampling cum injection unit.
After the sampling and injection of gaseous analytes into the
sensor (array) chamber, the responses will be collected and
analysis will be performed. A typical n-type response was shown
in figure 1. Apart from the common response feature (△R/Rb),^
other features derived from the signal such as response time (tres),
recovery time (trec), maximum variations in response and
recovery slopes (dRres/dt)max and (dRrec/dt)max and integral area
under the curve (IA(t)) provide valuable information which have
not been exploited so far.

For handling a large volume of data representing the above
features, multivariate analysis is adopted as against the univariate
analysis.4,11 With the increase in the number of sensors in an array
and for large-scale sample injections, manual estimation of these
hidden features and subsequent processing of the data becomes
tedious in addition to the ingress of human errors. Hence, the
objective of this work is to evolve a feature extraction algorithm
to deduce the aforementioned features of single or multiple
sensors based on their respective responses and to develop
pattern recognition systems.

 The most important part of this application for feature
extraction is the choice of programming language and PYTHON
is selected for its easy syntax and the libraries support for data
visualization, data extraction.12 Pandas library of python is used
extensively to manipulate and work with the response data as
well as data matrices.13

Featured data matrices consisting of response, response time,
recovery time, maximum variations in response and recovery
slopes and integral area under the curve for the user-defined time
interval for different sensors need to be created for further
analysis.

Among these, response time is the time required by the signal
to reach 90% of the full-scale output (Rs90) when the sensor is
exposed to a full-scale concentration of the gas whereas the
recovery time is defined as the time required by the signal to
reach its normal state from the state where the output is 90% of
the full-scale output (Rb90). Recovery and response slopes are

defined as the respective minimum and maximum values of the
gradient of the signal. The integral area represents the area under
the response vs. time graph.

Developing a graphical user interface using the libraries on the
Command Line Interface (CLI) is necessary for reducing the
amount of setup work to get a pipeline up and running was felt
necessary and useful for even a non-programmer. The proposed
application takes inspiration from an existing MATLAB toolbox,
DAV3E,14 which aims to perform feature extraction cum
multivariate analysis from a temperature cycled operation of
sensor data. One of the recent toolboxes, MVPANI15 is a GUI-
based toolkit that aims to provide multivariate pattern analysis
for neuroimaging. There are other toolboxes viz., PyChem16 and
PyMVPA17 which are Python-based multivariate analysis
statistical toolboxes developed for the field of life sciences.
Based on the extensive literature review, the authors did not find
any available toolbox which provides the proposed functionality
in a single interface and this prompted the authors to create a
desktop application using PySimpleGUI, a GUI development
Python package that transforms conventional GUI development
frameworks like Tkinter and Qt into an easier coding interface.
PySimpleGUI achieves a simpler syntax by hiding the boilerplate
implementations and letting the developer work with high-level
elements and develop their application in less time and with less
code. The proposed application is capable of displaying user
input response data and data matrices in a tabular format. It can
also display visualizations and plots within the application. All
the plots have been created using a popular Python plotting
library called Matplotlib.

Figure 1 Typical n-type signal of a SMO sensor with different
features indicated

MATERIALS AND METHODS

DESIGN AND FABRICATION OF AUTOMATIC GAS SAMPLING CUM
INJECTION UNIT (AGSIU)

An automatic gas sampling cum injection unit was designed
and fabricated as shown in the following schematic (figure 2).
The carrier will be connected to the carrier port and it flows
through the exhaust of a 3/2 way stainless steel solenoid valve
(SOV) with kalrez seals (M/s Connexion Developments Ltd.,
UK) in a normally closed configuration to the sensor (array). The

^Normalized differential resistance, (△R/Rb); △R = (Rb-Rs), where Rb
and Rs are the resistances of baseline and minima of the signal at time tb
and ts respectively.

D. Swain et. al.

Journal of Materials NanoScience J. Mater. NanoSci., 2022, 9(2), 91-100 93

Figure 2 Schematic of automatic gas sampling cum injection unit:
1- KNF one way pump, 2 -Sampler volume, 3- 3/2 way solenoid
valves

 sample port is connected to the inlet of the pump (M/s KNF,
#NMP830, Germany) and the outlet is connected to a sampler of
known volume and to another 3/2 way solenoid valve in normally
closed configuration. The pump and the solenoid valves are
being controlled with digital timers (M/s Selec, India) which
electrical line drawing is shown in figure 3. The cyclic timer T1
(#XT546) is for dwell time and pump ‘on’ time that was

configured to OFF first and ON next mode. The timer T2 (#600-
DT) is for solenoid valves ‘on’ duration and was configured as
interval after break mode. The timer T3 (#XT546) is for total
process and set as a reset timer in cyclic mode similar to T1. The
details of terminal connections and configuration modes of the
timers can be found in the operating instruction sheets of the
respective models.18

DEVELOPMENT OF A DESKTOP APPLICATION
Backend
The most vital part of this application is the feature extraction

algorithm. The backend part of this application is divided into
three parts – loading the data from a csv (comma-separated

1 Ratio = Rs/Rb, where Rb and Rs are the resistances of baseline and minima
of the signal at time tb and ts respectively.

values) file, applying the feature extraction algorithm and lastly
creating the data matrices from the extracted features which could
be used for further analysis. For the first part we use the Pandas
library of Python to pre-process the file and load it into the
program in a way by which the feature extraction algorithm could
be applied. This library is mainly built for data analysis and
makes pre-processing much easier.

For the core of the backend, i.e., the feature extraction
algorithm, the basic definitions of all the six features mentioned
in section 1 were considered. Additionally, another redundant
feature, ratio of resistances1 is also computed as it is handy at
times for visualizing the sensor’s performance.

The first step of calculation of ‘response’ requires a
normalised baseline of the sensor signal before the point of
injection (poi) and is estimated by considering an average of 30
data points towards the left side from the poi. The absolute
difference between the normalized baseline and the actual
resistance of the signal is divided by the normalized baseline
resistance. Finally, the maximum value of this baseline
normalised difference was computed in percentage as ‘response’
of that signal. Response slope and recovery slope are maximum
and minimum values of the gradient of the signal respectively and
obtained from calculating the difference of consecutive

resistance values divided by the time gap between them.
For response time and recovery time calculation, the tip of the

signal (Rs), defined as a point where the output of the signal
reaches its minima is found out. Then, the data corresponding to
a decrease in resistance upon introduction of an analyte is
considered for the current application development which
requires the index of the least resistance value of the signal. The
minimum resistance (tip) was computed and its index was stored.
After that, 90% of the difference of baseline resistance and the
minimum resistance (△R)90 was computed. The Rs90, Rb90 were
obtained by subtraction and addition of (△R)90 from Rb
respectively. The time corresponding to Rs90, Rb90 were calculated
from the interpolation of their nearest neighborhood data

Figure 3 Electrical line diagram with the functionality of timers.T1 is for dwell time and to set pump ‘on’ time; T2 is for solenoid valves
(SOV1 and SOV2) ‘on’ duration and T3 is for total process and reset timer.

D. Swain et. al.

Journal of Materials NanoScience J. Mater. NanoSci., 2022, 9(2), 91-100 94

timestamps respectively. The response time, the difference
between the times corresponds to Rs90 and the poi; the recovery
time, the time difference between the tip of the signal and that
corresponds to Rb90 were computed.

For the integral area of the signal between the defined time gap
was computed using trapezoidal formulation. Finally, the
redundant ratio feature, (1-response) was calculated.

The last part of the backend was storing all these features into
data matrices and for this, the Pandas library of Python was used.
Two types of matrices were generated based on the choice of the
user; (i) all features of the user-selected sensor or (ii) a particular
selected feature of all the sensors.

Frontend
The development of a simple and straightforward method of

feature extraction algorithm is preferred for sensor array data.
This requires the knowledge of setting up a virtual environment
and installing Python libraries on a command line, which can be
overwhelming for non-programmers and can put a huge obstacle
before the research community. Driven by the need, the authors
developed a GUI based desktop application with a self-
explanatory and intuitive layout which would aid the sensor data
analysis at various programming competency levels.

The framework chosen for developing the GUI application
was PySimpleGUI, a lightweight and low-code Python package
which focuses on the development of high level elements of the
GUI. PySimpleGUI aims at wrapping traditional frameworks in
a simpler code interface which is intuitive for the developer
leading to rapid development of the application. The authors
chose the tkinter port of the package due to its wide support and
a large number of demo scripts available within the package
repository.

The structure of the application is set up in such a way that the
user gets two options for the kind of data on which they wish to
work. The current release of the application allows the user to
either provide raw response data or a pre-processed feature
matrix. The data provided can be in the csv format which is then
pre-processed using the Pandas library. The pre-processing
involves removal of unnecessary rows and other methods to get
the data ready for feature extraction, i.e., the backend. The
application provides the user the option for response data
visualization and extraction of features from the provided sensor
array data. If a user provides a feature matrix, the application
processes the feature matrix for various types of visualization.

The strength of the application is extreme generalization and a
highly intuitive layout for the user which has been demonstrated
by the various dashboards available for visualization of the
corresponding data. The user has been given the option to
customize themes, fonts, sizes thereby allowing them to control
every single element of the plot they wish to graph. The
application also provides various options for saving the data
matrices generated and the plots/figures in different formats. This
allows the user to control the resolution, size and formats of the
plots, thereby getting them handy for publication.

RESULTS AND DISCUSSION

PROCESS FLOW OF AGSIU
The process flow for the AGSIU is shown in figure 4. Once

the run switch is ‘ON’, the cyclic timer T1 (configured to OFF
first and ON next mode) will begin with dwell time followed by
pump ‘on’ time.

Figure 4 Schematic of process flow of Automatic Gas Sampling
cum Injection unit

Figure 5 Typical time series data of an SMO showing sample
injections in defined time intervals by AGSIU

The timer T2, configured for an interval after break mode, will
take action at the end of pump ‘on’ time by opening the solenoid
valves for a given duration. After that, the timer T3 returns to
dwell time, and the cycle repeats.

During the dwell time, the carrier gas will flow through the
sensor without entering into the sampler volume. After the dwell
time, the pump will be triggered by the timer T1 for ‘on’ duration.
The pump will suck the sample gas and fill the sampler volume
by continuous venting. After the completion of pump ‘on’
duration, the timer T2 opens the solenoid valves so that the carrier
gas is channeled through the sampler volume and to the sensor
for a set duration. At the end of the timer, T2 solenoid valves will
get closed and sampler volume is isolated by diversification of
carrier flow to the initial path and the reset timer T3 restarts the
cycle. A typical time-series data from an SMO sensor connected
to the AGSIU with sampling and injection cycle repeated for
every 10 minutes towards acetone vapours is shown in figure 5.

D. Swain et. al.

Journal of Materials NanoScience J. Mater. NanoSci., 2022, 9(2), 91-100 95

DEVELOPMENT OF BACKEND AND FRONTEND OF THE APPLICATION
Backend
To start, a csv file obtained from the user was used in the code

as a dataframe ‘df’ and all the operations were performed on it.
Different features of the sensors’ signals were calculated as
below:
i) Response

To calculate the normalized differential resistance, first the
baseline resistance, a 30-point average to the left side of the point
of injection (poi) was considered as below:

def base_line(poi,ser1):

 baseline=0

 for i in range(poi-30,poi):

 baseline+=ser1[i]

 baseline/=30

 return baseline

After the baseline calculation, the response was calculated as
below:

def find_response(sensor,poi, df,next):

 ser1=df.iloc[:,sensor]

 response=0

 baseline=base_line(poi,ser1)

 sens=[]

 for i in range(poi,poi+next):

 sens.append(abs((ser1[i]-baseline)/baseline))

 response = max(sens)

 return response

Four parameters, viz., the sensor index, the poi, the data frame
and the index for the end of a particular signal (to distinguish
different signals) were considered in this calculation. After
finding the absolute value of the ratio between the resistances, the
maximum value is obtained.
ii) Response and Recovery Slopes

As response and recovery slopes are maximum and minimum
values of the gradient of the signal, the gradient function, ‘grad’
was executed using the following code:

def grad(x,poi,next,gap):

 gradient=[]

 for i in range(poi+1,poi+next):

 gradient.append((x[i]-x[i-1])/gap)

 return gradient

The input parameters considered for grad calculation are the
resistance series (x), poi, index of the end of the signal (next) and
the time interval between two consecutive recordings (gap). After
the calculation of gradient, the given series was passed to the
response and recovery slope functions to find the minimum and
maximum of it as below:

def recovery_slope(sensor,poi,df,next,gap):

 ser1=df.iloc[poi-1:poi+next-1,sensor]

 gradient = grad(ser1,poi,next,gap)

 recslope = max(gradient)

 return recslope

def response_slope(sensor,poi,df,next,gap):

 ser1=df.iloc[poi-1:poi+next-1,sensor]

 gradient = grad(ser1,poi,next,gap)

 resslope = min(gradient)

 return resslope

iii) Response and recovery times
The first step for calculating the response and recovery times

is to find the tip of the signal, which is defined as the point where
the output of the signal reaches its maximum peak/nadir point. In
the current case as n-type response corresponds to a decrease in
resistance hence, the index of the least resistance point of the
signal (tipp) was determined from tip function.

def tip(ser,poi,next):

 tipp=ser[poi]

 index=poi

 for i in range(poi,poi+next):

 tipp=min(ser[i],tipp)

 if tipp == ser[i]:

 index = i

 return index

To calculate response time and recovery time, two parameters
viz., delR and R90 were considered next to the tip calculation.
The 90% value of the difference between baseline resistance and
the minimum resistance (tip) is delR. R90 is defined as the
difference of delR from the baseline resistance in case of
response time and as the sum of delR and tip value for the
recovery time calculations. The suitable interpolation resulted in
the accurate calculation of response and recovery times as per the
code presented in section S2 of the supplementary material.
iv) Integral area

The integral area is the area traversed by the signal in the user-
defined interval of time from the poi that was computed using the
trapezoidal rule. The area under the signal (CurveAr) is
subtracted from the area of the trapezoid formed by connecting
the poi and the user-defined value (LineAr) is subtracted to obtain
the actual area of interest.

def integral_area(sensor,poi,df,points,gap):

 ser1 = df.iloc[poi:poi+points+1,sensor]

 LineAr = 0.5*(ser1[poi+points]+ser1[poi])*(points*gap)

 CurveAr = 0

for i in range(poi+1,poi+points+1):

D. Swain et. al.

Journal of Materials NanoScience J. Mater. NanoSci., 2022, 9(2), 91-100 96

 CurveAr += 0.5 * (ser1[i]-ser1[i-1])*gap

 area = LineAr - CurveAr

 return area

v) Ratio of resistances
A redundant feature, the ratio of a particular resistance to that

of baseline is also considered for feature matrix generation.
vi) Creation of Data Matrices

All the features calculated above have to be integrated into a
data matrix for analysis and visualization purposes. For multiple
sensor data visualization, we need two types of data matrices.
One will be a data matrix (type I) composed of all the features of
different responses of a given sensor and the second one is a data
matrix (type II) of particular feature entries of all the sensors of
different responses. The corresponding codes are presented in
section S1 of supplementary material. In the end, the user has
provided an option of saving the data matrices of type I and type
II in csv formats.
Frontend
The application has its attribute in ease of use and access with
varying levels of comfort of programming. The interface is quite
intuitive and self-explanatory. The authors have followed a tab-
based layout for better dissemination of information. The home
page (figure 6) provides the user two ways of moving forward
with their data analysis, i.e. uploading a pre-extracted data matrix
for multivariate analysis of feature matrix or the full pipeline for
analysis of response data that extracts features and visualizes
them from the raw response data uploaded by the user.

Figure 6 Screenshot of the landing page of the application with
each tab explaining their respective functions

The Multivariate Analysis of Feature Matrix (figure S1) tab
allows the user to upload a pre-extracted data matrix based on the
provided description. Uploading a data matrix here allows the
user to visualize the features as plots, allows the user to add
columns based on their needs, and visualize those as well. A
typical uploaded data view is shown in figure S2.

Uploading a data matrix takes the user to the screen which
displays the uploaded data matrix with 2 user inputs:
1. Row number: This option is to allow the user to skip the first
few rows in case there are additional comments or information
rows before the real data matrix. This option is predominantly
useful for response data. Since the headers displayed here are the
true column headers, the user is expected to enter X.
2. Delimiter: The delimiter (aka separator) is a character
separating the values in the table (like: , |, (space)). In the above

Figure 7 Screenshot of the feature matrix display tab with formatted data matrix

D. Swain et. al.

Journal of Materials NanoScience J. Mater. NanoSci., 2022, 9(2), 91-100 97

example, the user is expected to enter comma (,) as the delimiter
in the input box provided, without any other extra text.

Pressing ‘Submit’ takes the user to the following page with the
Explanation tab (figure S3) giving a short summary of the type
of matrix and the features of the signals which can be visualized.

The Feature matrix display (figure 7) tab shows the user the
formatted data matrix based on the user input (delimiter and skip
rows) from the last page with an option for index confirmation.

The other two tabs are specific to the types of data matrices.
The application expects the user to know the type of data matrix
they have uploaded. In this example, a Type I matrix was
uploaded, therefore the only parameter we have to enter is the
name of that sensor (figure 8 (a)).

Figure 8 (a) Screenshot of type I data matrix selection with sensor
S1

If the user uploads a Type II matrix, the application expects
the user to input the corresponding feature (figure 8(b)).

Figure 8(b) Screenshot of type II data matrix selection with response
feature

The Data Matrix Dashboard backend is common for both the

input options that give the user insight into the graphical
representation of the data.

Full pipeline for analysis of response data tab allows the user
for complete feature extraction of the time series data of multiple
sensors. Figure 9 shows an example of the format of the response
data expected from the user.

Uploading response data takes one to the above screen which
displays the uploaded data matrix with 2 user inputs of formatting
(figure S4) similar to that of the Multivariate Analysis of Feature
Matrix tab and submission will forward to the next screen of
inputs for visual inspection (figure S5) with three entry options
viz., index column, timestamp column and column number of 1st
sensor’s data. The submission of which results in a response
curve dashboard.

Figure 10 is the typical response curve based on the response
data. The user has an option to customize the dashboard. The user

Figure 9 Screenshot of typical multiple sensors time series data
uploaded by the user

can press the Save Plot button which takes them to the plot saving
dashboard. A plethora of formats and more control over the
quality of the plot were provided while saving. Pressing browse
allows the user to choose a folder exactly like how the user was
given the option to choose their csv file. The plot saving formats
available are TIFF, PNG, JPEG, PDF and SVG (figure S6). This
allows the user to customize quite a few aspects of the plot.

1. Theme: The matplotlib library offers various themes
which the user can experiment with. A few examples include the
ggplot theme which is a copy of the theme used for visualizations
in the R package.

2. Width and Height: These parameters can be controlled
and will be visible only when the user saves the plot. These
changes don’t reflect in the preview tab due to limitations on the
changeable size of the canvas

3. Line width: This parameter controls the thickness of the
lines in the response curve line plot.

4. Size of x/y-tick labels: These parameters control the
font size of the ticks visible under the x and the y axes.

5. Number of x/y ticks: This parameter controls the maximum
number of tick labels visible under the x or y-axis. Due to the
number of entries, the default has been kept as 4, but the user can
change it according to their preferences.

6. Font size of the legend: This parameter controls the font
size of the legend which appears on the right side of the plot to
avoid overlapping with the plot.

The “Choose data” tab of the plotting dashboard (figure 11)
allows the user to customize the data-related aspects of the plot.
The user can choose to plot a single column, or multiple columns
based on their choice with an option for choosing the X-axis. The
updates or changes of the parameters by the user can be visualised
by pressing the “Preview Plot” button. The zoomed plotting tab
is provided to view a particular section of the plot (figure S7).

The Feature Extraction Dashboard button of Choose data
tab requests the user to enter the details of the points of injections
(pois) and time interval/gap between successive data points,
which is necessary for feature extraction of any type of matrix
that the user wishes to extract (figure S8). It follows the user to
compute matrices of choice.

D. Swain et. al.

Journal of Materials NanoScience J. Mater. NanoSci., 2022, 9(2), 91-100 98

Figure 7 Screenshot providing the options for selection of X- axis
and single or a group or all the sensors for feature extraction

Figure 8 (a) Screenshot of computation of a type I data matrix with
all the features of a particular sensor

Figure 12 (a) corresponds to the tab that allows the user to
select a particular sensor for Type I matrix computation and then
proceeds to extract all the features of multiple signals of a chosen
sensor as per the algorithms presented in the backend. The Type
II matrix computation in figure 12(b) allows the user to choose a
particular feature wherein the application then proceeds to extract
the chosen feature for all the sensors.

Figure 12(b) Screenshot of computation of a type II data matrix of a
chosen feature of all the sensors

Once, the user has completed entering the details necessary for
feature extraction, they led to the data matrix dashboard based on
the chosen type. This dashboard provides options to append the

Figure 10 Typical response curve dashboard to visualize the responses from all the sensors

D. Swain et. al.

Journal of Materials NanoScience J. Mater. NanoSci., 2022, 9(2), 91-100 99

data matrix with choices of indices and concentration data
(optional) to proceed for visualization with an option for saving
the modified data matrix (figures S9 to S13).

Finally, the authors have provided an option for the user to
save the data matrix in various formats (figure S14) which allow
the user to continue their analysis using the secondary MVA
pipeline instead of repeating the whole process again.

The ‘Next’ tab of the data matrix dashboard in figure S15
proceeds to visualization. The ‘Reset’ button provides an option
to review the inputs and regenerate the modified data matrices by
taking them back to the feature extraction dashboard.

Feature Plotting Dashboard provides different options to view
the current data matrix (figure 13) and plotting. The bottom Data
matrix dashboard button takes the user back to the data matrix
dashboard for any modifications to be incorporated.

Figure 9 Screenshot of plotting dashboard with modified type I data
matrix

Most of the parameters in the feature plotting dashboard are
borrowed from the response curve dashboard with the exceptions
of size and transparency value of the markers in the scatter plot.
It is equipped with basic plot parameters (figure S16), type I and
type II plot parameters corresponding to the initial choice of user
(figures 14 (a) and (b)) and the plot preview tabs (figures 15(a)
and (b)).

Figure 15(a) shows the resulting plot of Response(%) vs.
Concentration. Similarly, every single feature can be tweaked
according to the user's choice. Whereas, figure 15(b) displays the
scatter plot of Response(%) (Chosen feature during computation)
of four sensors vs. Concentration. The plot saving option shares
common with the plotting dashboard described in earlier
paragraphs. The design flow sheets explaining the decision paths
multivariate analysis and full pipeline for analysis are presented
in figures S17 and S18 of the supplementary material
respectively.

Figure 10 (a) Screenshot of Type I plot parameters tab to choose
features of choice for visualization

Figure 14(b) Screenshot of Type II plot parameters tab to choose
features of choice for visualization

Figure 11 (a) Typical preview plot of Type I data matrix

Figure 15(b) Typical preview plot of Type II data matrix

CONCLUSIONS
Development and demonstration of a general-purpose

software for the analysis of multisensory time series data using a
custom-designed automatic gas sampling cum injection system is
presented. The AGSIU has flexible time settings for the user,
depending on the sensor’s sensing and recovery aspects. The
digital timers used in the instrumentation can be configured in
different modes allowing the user to set a specific injection
methodology. It presents further scope to equip the AGSIU with
a pressure transducer to monitor the gas pressure inside the
sample reservoir, an alarming lamp in case of any power
fluctuations, and also with a rotameter to minimize the flow-
related noise during sampling. A desktop application software
built on open-source platforms with robust algorithms makes the
application a very good tool for feature extraction from

D. Swain et. al.

Journal of Materials NanoScience J. Mater. NanoSci., 2022, 9(2), 91-100 100

multisensory time series data for gas sensor data analysis
intended for the researchers in this field. Built-in with
sophisticated libraries of Python, the application saves a good
amount of time in computing different features from multiple
sensors’ responses and is provided with ‘ML algorithm
application dashboard’ for further development of better
analytical solutions. With pattern recognition systems
incorporated, this feature extraction application certainly
augment the electronic nose/tongue development. The
application has scope to expand further to p-type responses also.

ACKNOWLEDGMENTS
Authors acknowledge Dr. K. I. Gnanasekar, Head, Novel

Chemical Sensors Section for his valuable suggestions and
support during the development of this application. We thank Dr.
Rajesh Ganesan, Head, Materials Chemistry Division and Dr. N.
Sivaraman, Director, Materials Chemistry and Metal Fuel Cycle
Group, Indira Gandhi Centre for Atomic Research, Kalpakkam
for their constant encouragement.

SUPPLEMENTARY INFORMATION
Supplementary information contains the python codes for

feature extraction and data saving in required formats. Further, it
also includes selective screenshots of the application. The details
of the supplementary information were cited at appropriate places
in the manuscript.

REFERENCES AND NOTES
1. J. Albert, Keith, S. Lewis, Nathan, L. Schauer, Caroline, et al. Cross-

reactive chemical sensor arrays. Chem. Rev. 2000, 100, 2595–2626.
2. N. Tayebi, V. Kollia, P.S. Singh. Metal-Oxide Sensor Array for Selective

Gas Detection in Mixtures. arXiv Prepr. 2021, 12990.
3. G.S. Kim, Y. Park, J. Shin, Y.G. Song, C.Y. Kang. Metal oxide nanorods-

based sensor array for selective detection of biomarker gases. Sensors
2021, 21 (5), 1–9.

4. A. Sree Rama Murthy, D. Pathak, G. Sharma, et al. Application of
principal component analysis to gas sensing characteristics of
Cr0.8Fe0.2NbO4 thick film array. Anal. Chim. Acta 2015, 892, 175–182.

5. A. Sree Rama Murthy, K.I. Gnanasekar, V. Jayaraman, A.M. Umarji.
Application of principal component analysis to the conductometric Cr1-

xFexNbO4 (x = 0, 0.5, 1.0) thick films gas sensors. ISPTS 2015 - 2nd Int.
Symp. Phys. Technol. Sensors Dive Deep Into Sensors, Proc. 2015, 70–
73.

6. J. Lee, Y. Jung, S.H. Sung, et al. High-performance gas sensor array for
indoor air quality monitoring: The role of Au nanoparticles on WO3,
SnO2, and NiO-based gas sensors. J. Mater. Chem. A 2021, 9 (2), 1159–
1167.

7. P.D. Virutkar, A.P. Mahajan, B.H. Meshram, S.B. Kondawar.
Conductive polymer nanocomposite enzyme immobilized biosensor for
pesticide detection. J. Mater. Nanosci. 2019, 6 (1), 7–12.

8. J. Burlachenko, I. Kruglenko, B. Snopok, K. Persaud. Sample handling
for electronic nose technology: State of the art and future trends. TrAC -
Trends Anal. Chem. 2016, 82, 222–236.

9. A. Supriyanto, R. Anggriani, S.W. Suciyati, et al. A Control System on
the Syringe Pump Based on Arduino for Electrospinning Application. J.
Phys. Sci. 2021, 32 (1), 1–12.

10. S.B. Kondawar, A.M. More, H.J. Sharma, S.P. Dongre. Ag-
SnO2/Polyaniline composite nanofibers for low operating temperature
hydrogen gas sensor. J. Mater. Nanosci. 2017, 4 (1), 13–18.

11. B. Zhang, P.X. Gao. Metal oxide nanoarrays for chemical sensing: A
review of fabrication methods, sensing modes, and their inter-
correlations. Front. Mater. 2019, 6.

12. K. Bhosle, B. Ahirwadkar. Deep learning Convolutional Neural Network
(CNN) for Cotton, Mulberry and Sugarcane Classification using
Hyperspectral Remote Sensing Data. J. Integr. Sci. Technol. 2021, 9 (2),
70–74.

13. S.B. Siledar, S. Tamane. Quadratic difference expansion based
Reversible Watermarking for relational database. J. Integr. Sci. Technol.
2021, 9 (2), 107–112.

14. M. Bastuck, T. Baur, A. Schütze. DAV3E – a toolbox for multivariate
sensor data evaluation (submitted). Sensors 2018, 489–506.

15. Y. Peng, X. Zhang, Y. Li, et al. MVPANI: A Toolkit With Friendly
Graphical User Interface for Multivariate Pattern Analysis of
Neuroimaging Data. Front. Neurosci. 2020, 14.

16. R.M. Jarvis, D. Broadhurst, H. Johnson, N.M. O’Boyle, R. Goodacre.
PYCHEM: A multivariate analysis package for python. Bioinformatics
2006, 22 (20), 2565–2566.

17. M. Hanke, Y.O. Halchenko, P.B. Sederberg, et al. PyMVPA: A python
toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics
2009, 7 (1), 37–53.

18. R. Kumar, M.P. Chaudhary, M.A. Shah, K. Mahajan. A mathematical
elucidation of separation membrane operations and technology of
chemical and physical processes: An advanced review. J. Integr. Sci.
Technol. 2020, 8 (2), 57–69.

	Introduction
	Materials and Methods
	Design and fabrication of Automatic gas sampling cum injection unit (AGSIU)
	Development of a desktop application
	Results and Discussion
	Process flow of AGSIU
	Development of Backend and Frontend of the application
	Conclusions
	Acknowledgments
	Supplementary Information
	References and notes

