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An automatic gas sampling cum injection unit (AGSIU) equipped with a timer-controlled sampling pump with the bifurcated flow for carrier 
and sample with 3-way solenoid valves (SOVs) is designed and fabricated to minimize the errors due to manual samplings and its performance 
is evaluated.  Different features like response time, recovery time, response (or sensitivity), response and recovery slopes maxima, and 
integral area for single or multiple sensors are processed using their respective time series data. To avoid the laborious manual methods, a 
software toolbox for the analysis and visualization of time-varying sensor signal data of an array of semiconducting metal oxide sensors 
(SMOs) is developed and its use is demonstrated. The proposed application has been built completely with open-source software using 
PYTHON and related platforms with a robust Graphical User Interface (GUI). The application consists of an efficient feature extraction 
algorithm to extract features from the user input of the point of injection (poi) to visualize the response data and the variation in the features 
of the data matrix.  

Keywords: Gas sampling, Sensor array, Feature extraction, Multivariate analysis, Python, PySimpleGUI  

INTRODUCTION 
Gas sensors are becoming an integral part of any industrial 

safety systems or environmental pollution control agencies to 
ensure either the healthiness of the working personnel or 
safeguard the green earth at large. They are essential in 
monitoring the levels and presence of various gases which may 
be volatile or toxic and must stay under either their Threshold 
Limit Value (TLV!) or lower explosive limits (LEL$) whichever 

is applicable. Instead of a single sensor, array-based systems are 
being studied and developed to handle cross selectivity, cross-
sensitivity and wide dynamic range that enhances the usage of 
semiconducting metal oxides (SMOs).1–6 The initial 
training/calibration of the sensor (and sensor array) is of prime 
importance for qualitative and quantitative analysis. The sensor 
(array) gets trained from concurrent data obtained from repetitive 
sample injections. Typically, in gas sensor studies, the  sample 
gas will be injected either into the static sensor chamber or into 
the dynamic carrier manually by gas-tight syringes. The latter is 
a typical procedure adopted in gas chromatographic studies. The 
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ABSTRACT 

!Threshold Limit Value: The concentration in air to which it is believed 
that most workers can be exposed daily without an adverse effect (i.e., 
effectively, the threshold between safe and dangerous concentrations). 
The values were established (and are revised annually) by the ACGIH 
and are time-weighted concentrations (TWA) for a 7- or 8-h workday 
and 40-h workweek, and thus are related to chronic effects. 
$Lower Explosive Limit: The minimum concentration of a gas, vapour, 
mist or dust in air at a given pressure and temperature that will propagate 
a flame when exposed to an efficient ignition source. 

mailto:asrm07@igcar.gov.in


D. Swain et. al. 
 

 
Journal of Materials NanoScience                        J. Mater. NanoSci., 2022, 9(2), 91-100                 92 

sensor signal for the same concentration of an analyte may vary 
because of parallax error (while reading the graduated syringe), 
diffusion rates or dilution that depends on the time delay between 
the sample suction from the gas sampler and injection into the 
sensor chamber (differs from person to person).7 Burlachenko et 
al. presented an elaborated view on the status and prospects of 
sample handling for electronic nose systems (EN).8 Literature on 
dedicated automatic gas samplers for sensor arrays is limited. 
Some earlier works on automated gas injections show limitations 
for dynamic gas sensing applications.9 A dedicated gas sampling-
cum-injection module is of great use for highly reproducible 
injections either for calibration or for field testing of a sensor 
(array) with remote sampling or for round-the-clock automated 
periodic sampling and analysis of working ambiance, etc.10 The 
fore part of the current work describes the design, fabrication and 
performance of an automatic gas sampling cum injection unit. 
After the sampling and injection of gaseous analytes into the 
sensor (array) chamber, the responses will be collected and 
analysis will be performed. A typical n-type response was shown 
in figure 1. Apart from the common response feature  (△R/Rb),^ 
other features derived from the signal such as response time (tres), 
recovery time (trec), maximum variations in response and 
recovery slopes (dRres/dt)max and (dRrec/dt)max and integral area 
under the curve (IA(t)) provide valuable information which have 
not been exploited so far. 

For handling a large volume of data representing the above 
features, multivariate analysis is adopted as against the univariate 
analysis.4,11 With the increase in the number of sensors in an array 
and for large-scale sample injections, manual estimation of these 
hidden features and subsequent processing of the data becomes 
tedious in addition to the ingress of human errors. Hence, the 
objective of this work is to evolve a feature extraction algorithm 
to deduce the aforementioned features of single or multiple 
sensors based on their respective responses and to develop 
pattern recognition systems. 

 The most important part of this application for feature 
extraction is the choice of programming language and PYTHON 
is selected for its easy syntax and the libraries support for data 
visualization, data extraction.12 Pandas library of python is used 
extensively to manipulate and work with the response data as 
well as data matrices.13 

Featured data matrices consisting of response, response time, 
recovery time, maximum variations in response and recovery 
slopes and integral area under the curve for the user-defined time 
interval for different sensors need to be created for further 
analysis. 

Among these, response time is the time required by the signal 
to reach 90% of the full-scale output (Rs90) when the sensor is 
exposed to a full-scale concentration of the gas whereas the 
recovery time is defined as the time required by the signal to 
reach its normal state from the state where the output is 90% of 
the full-scale output (Rb90). Recovery and response slopes are 

defined as the respective minimum and maximum values of the 
gradient of the signal. The integral area represents the area under 
the response vs. time graph.   

Developing a graphical user interface using the libraries on the 
Command Line Interface (CLI) is necessary for reducing the 
amount of setup work to get a pipeline up and running was felt 
necessary and useful for even a non-programmer. The proposed 
application takes inspiration from an existing MATLAB toolbox, 
DAV3E,14 which aims to perform feature extraction cum 
multivariate analysis from a temperature cycled operation of 
sensor data. One of the recent toolboxes, MVPANI15 is a GUI-
based toolkit that aims to provide multivariate pattern analysis 
for neuroimaging. There are other toolboxes viz., PyChem16 and 
PyMVPA17 which are Python-based multivariate analysis 
statistical toolboxes developed for the field of life sciences. 
Based on the extensive literature review, the authors did not find 
any available toolbox which provides the proposed functionality 
in a single interface and this prompted the authors to create a 
desktop application using PySimpleGUI, a GUI development 
Python package that transforms conventional GUI development 
frameworks like Tkinter and Qt into an easier coding interface. 
PySimpleGUI achieves a simpler syntax by hiding the boilerplate 
implementations and letting the developer work with high-level 
elements and develop their application in less time and with less 
code. The proposed application is capable of displaying user 
input response data and data matrices in a tabular format. It can 
also display visualizations and plots within the application. All 
the plots have been created using a popular Python plotting 
library called Matplotlib. 

 

Figure 1 Typical n-type signal of a SMO sensor with different 
features indicated 

MATERIALS AND METHODS 

DESIGN AND FABRICATION OF AUTOMATIC GAS SAMPLING CUM 
INJECTION UNIT (AGSIU) 

An automatic gas sampling cum injection unit was designed 
and fabricated as shown in the following schematic (figure 2). 
The carrier will be connected to the carrier port and it flows 
through the exhaust of a 3/2 way stainless steel solenoid valve 
(SOV) with kalrez seals (M/s Connexion Developments Ltd., 
UK) in a normally closed configuration to the sensor (array). The 

^Normalized differential resistance, (△R/Rb); △R = (Rb-Rs), where Rb 
and Rs are the resistances of baseline and minima of the signal at time tb 
and ts respectively. 
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Figure 2 Schematic of automatic gas sampling cum injection unit: 
1- KNF one way pump, 2 -Sampler volume, 3- 3/2 way solenoid 
valves 

 
 sample port is connected to the inlet of the pump (M/s KNF, 
#NMP830, Germany) and the outlet is connected to a sampler of 
known volume and to another 3/2 way solenoid valve in normally 
closed configuration.  The pump and the solenoid valves are 
being controlled with digital timers (M/s Selec, India) which 
electrical line drawing is shown in figure 3. The cyclic timer T1 
(#XT546) is for dwell time and pump ‘on’ time that was 

configured to OFF first and ON next mode. The timer T2 (#600-
DT) is for solenoid valves ‘on’ duration and was configured as 
interval after break mode. The timer T3 (#XT546) is for total 
process and set as a reset timer in cyclic mode similar to T1. The 
details of terminal connections and configuration modes of the 
timers can be found in the operating instruction sheets of the 
respective models.18 

DEVELOPMENT OF A DESKTOP APPLICATION 
Backend 
The most vital part of this application is the feature extraction 

algorithm. The backend part of this application is divided into 
three parts – loading the data from a csv (comma-separated 
                                                                 
1 Ratio = Rs/Rb, where Rb and Rs are the resistances of baseline and minima 
of the signal at time tb and ts respectively. 

values) file, applying the feature extraction algorithm and lastly 
creating the data matrices from the extracted features which could 
be used for further analysis. For the first part we use the Pandas 
library of Python to pre-process the file and load it into the 
program in a way by which the feature extraction algorithm could 
be applied. This library is mainly built for data analysis and 
makes pre-processing much easier.  

For the core of the backend, i.e., the feature extraction 
algorithm, the basic definitions of all the six features mentioned 
in section 1 were considered. Additionally, another redundant 
feature, ratio of resistances1 is also computed as it is handy at 
times for visualizing the sensor’s performance. 

The first step of calculation of ‘response’ requires a 
normalised baseline of the sensor signal before the point of 
injection (poi) and is estimated by considering an average of 30 
data points towards the left side from the poi. The absolute 
difference between the normalized baseline and the actual 
resistance of the signal is divided by the normalized baseline 
resistance. Finally, the maximum value of this baseline 
normalised difference was computed in percentage as ‘response’ 
of that signal.  Response slope and recovery slope are maximum 
and minimum values of the gradient of the signal respectively and 
obtained from calculating the difference of consecutive 

resistance values divided by the time gap between them. 
For response time and recovery time calculation, the tip of the 

signal (Rs), defined as a point where the output of the signal 
reaches its minima is found out. Then, the data corresponding to 
a decrease in resistance upon introduction of an analyte is 
considered for the current application development which 
requires the index of the least resistance value of the signal. The 
minimum resistance (tip) was computed and its index was stored. 
After that, 90% of the difference of baseline resistance and the 
minimum resistance (△R)90 was computed. The Rs90, Rb90 were 
obtained by subtraction and addition of (△R)90 from Rb 
respectively. The time corresponding to Rs90, Rb90 were calculated 
from the interpolation of their nearest neighborhood data 

 
Figure 3 Electrical line diagram with the functionality of timers.T1 is for dwell time and to set pump ‘on’ time; T2 is for solenoid valves 
(SOV1 and SOV2) ‘on’ duration and T3 is for total process and reset timer. 

 

 



D. Swain et. al. 
 

 
Journal of Materials NanoScience                        J. Mater. NanoSci., 2022, 9(2), 91-100                 94 

timestamps respectively. The response time, the difference 
between the times corresponds to Rs90 and the poi; the recovery 
time, the time difference between the tip of the signal and that 
corresponds to Rb90 were computed. 

For the integral area of the signal between the defined time gap 
was computed using trapezoidal formulation. Finally, the 
redundant ratio feature, (1-response) was calculated. 

The last part of the backend was storing all these features into 
data matrices and for this, the Pandas library of Python was used. 
Two types of matrices were generated based on the choice of the 
user; (i) all features of the user-selected sensor or (ii) a particular 
selected feature of all the sensors. 

Frontend 
The development of a simple and straightforward method of 

feature extraction algorithm is preferred for sensor array data. 
This requires the knowledge of setting up a virtual environment 
and installing Python libraries on a command line, which can be 
overwhelming for non-programmers and can put a huge obstacle 
before the research community.  Driven by the need, the authors 
developed a GUI based desktop application with a self-
explanatory and intuitive layout which would aid the sensor data 
analysis at various programming competency levels.  

The framework chosen for developing the GUI application 
was PySimpleGUI, a lightweight and low-code Python package 
which focuses on the development of high level elements of the 
GUI. PySimpleGUI aims at wrapping traditional frameworks in 
a simpler code interface which is intuitive for the developer 
leading to rapid development of the application. The authors 
chose the tkinter port of the package due to its wide support and 
a large number of demo scripts available within the package 
repository.  

The structure of the application is set up in such a way that the 
user gets two options for the kind of data on which they wish to 
work. The current release of the application allows the user to 
either provide raw response data or a pre-processed feature 
matrix. The data provided can be in the csv format which is then 
pre-processed using the Pandas library. The pre-processing 
involves removal of unnecessary rows and other methods to get 
the data ready for feature extraction, i.e., the backend. The 
application provides the user the option for response data 
visualization and extraction of features from the provided sensor 
array data. If a user provides a feature matrix, the application 
processes the feature matrix for various types of visualization.  

The strength of the application is extreme generalization and a 
highly intuitive layout for the user which has been demonstrated 
by the various dashboards available for visualization of the 
corresponding data. The user has been given the option to 
customize themes, fonts, sizes thereby allowing them to control 
every single element of the plot they wish to graph. The 
application also provides various options for saving the data 
matrices generated and the plots/figures in different formats. This 
allows the user to control the resolution, size and formats of the 
plots, thereby getting them handy for publication. 

 

RESULTS AND DISCUSSION 

PROCESS FLOW OF AGSIU 
The process flow for the AGSIU is shown in figure 4. Once 

the run switch is ‘ON’, the cyclic timer T1 (configured to OFF 
first and ON next mode) will begin with dwell time followed by 
pump ‘on’ time. 

 
Figure 4 Schematic of process flow of Automatic Gas Sampling 
cum Injection unit 

Figure 5 Typical time series data of an SMO showing sample 
injections in defined time intervals by AGSIU 

The timer T2, configured for an interval after break mode, will 
take action at the end of pump ‘on’ time by opening the solenoid 
valves for a given duration. After that, the timer T3 returns to 
dwell time, and the cycle repeats. 

During the dwell time, the carrier gas will flow through the 
sensor without entering into the sampler volume. After the dwell 
time, the pump will be triggered by the timer T1 for ‘on’ duration. 
The pump will suck the sample gas and fill the sampler volume 
by continuous venting. After the completion of pump ‘on’ 
duration, the timer T2 opens the solenoid valves so that the carrier 
gas is channeled through the sampler volume and to the sensor 
for a set duration. At the end of the timer, T2 solenoid valves will 
get closed and sampler volume is isolated by diversification of 
carrier flow to the initial path and the reset timer T3 restarts the 
cycle. A typical time-series data from an SMO sensor connected 
to the AGSIU with sampling and injection cycle repeated for 
every 10 minutes towards acetone vapours is shown in figure 5. 
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DEVELOPMENT OF BACKEND AND FRONTEND OF THE APPLICATION 
Backend 
To start, a csv file obtained from the user was used in the code 

as a dataframe ‘df’ and all the operations were performed on it. 
Different features of the sensors’ signals were calculated as 
below:  
i) Response 

To calculate the normalized differential resistance, first the 
baseline resistance, a 30-point average to the left side of the point 
of injection (poi) was considered as below: 

 
def base_line(poi,ser1): 

    baseline=0 

    for i in range(poi-30,poi): 

        baseline+=ser1[i] 

    baseline/=30 

    return baseline 

After the baseline calculation, the response was calculated as 
below: 

 
def find_response(sensor,poi, df,next): 

    ser1=df.iloc[:,sensor] 

    response=0 

    baseline=base_line(poi,ser1) 

    sens=[] 

      for i in range(poi,poi+next): 

        sens.append(abs((ser1[i]-baseline)/baseline)) 

    response = max(sens) 

    return response 

Four parameters, viz., the sensor index, the poi, the data frame 
and the index for the end of a particular signal (to distinguish 
different signals) were considered in this calculation. After 
finding the absolute value of the ratio between the resistances, the 
maximum value is obtained. 
ii) Response and Recovery Slopes 

As response and recovery slopes are maximum and minimum 
values of the gradient of the signal, the gradient function, ‘grad’ 
was executed using the following code: 

 
def grad(x,poi,next,gap): 

    gradient=[] 

    for i in range(poi+1,poi+next): 

        gradient.append((x[i]-x[i-1])/gap) 

    return gradient 

The input parameters considered for grad calculation are the 
resistance series (x), poi, index of the end of the signal (next) and 
the time interval between two consecutive recordings (gap). After 
the calculation of gradient, the given series was passed to the 
response and recovery slope functions to find the minimum and 
maximum of it as below: 

def recovery_slope(sensor,poi,df,next,gap): 

    ser1=df.iloc[poi-1:poi+next-1,sensor] 

    gradient = grad(ser1,poi,next,gap) 

    recslope = max(gradient) 

    return recslope 

 
def response_slope(sensor,poi,df,next,gap): 

    ser1=df.iloc[poi-1:poi+next-1,sensor] 

    gradient = grad(ser1,poi,next,gap) 

    resslope = min(gradient) 

    return resslope 

iii) Response and recovery times 
The first step for calculating the response and recovery times 

is to find the tip of the signal, which is defined as the point where 
the output of the signal reaches its maximum peak/nadir point. In 
the current case as n-type response corresponds to a decrease in 
resistance hence, the index of the least resistance point of the 
signal (tipp) was determined from tip function. 

 
def tip(ser,poi,next): 

    tipp=ser[poi] 

    index=poi 

    for i in range(poi,poi+next): 

        tipp=min(ser[i],tipp) 

        if tipp == ser[i]: 

            index = i             

    return index 

To calculate response time and recovery time, two parameters 
viz., delR and R90 were considered next to the tip calculation. 
The 90% value of the difference between baseline resistance and 
the minimum resistance (tip) is delR. R90 is defined as the 
difference of delR from the baseline resistance in case of 
response time and as the sum of delR and tip value for the 
recovery time calculations. The suitable interpolation resulted in 
the accurate calculation of response and recovery times as per the 
code presented in section S2 of the supplementary material. 
iv)  Integral area 

The integral area is the area traversed by the signal in the user-
defined interval of time from the poi that was computed using the 
trapezoidal rule. The area under the signal (CurveAr) is 
subtracted from the area of the trapezoid formed by connecting 
the poi and the user-defined value (LineAr) is subtracted to obtain 
the actual area of interest. 

 
def integral_area(sensor,poi,df,points,gap): 

    ser1 = df.iloc[poi:poi+points+1,sensor] 

    LineAr = 0.5*(ser1[poi+points]+ser1[poi])*(points*gap) 

   CurveAr = 0 

for i in range(poi+1,poi+points+1): 
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        CurveAr += 0.5 * (ser1[i]-ser1[i-1])*gap 

    area = LineAr - CurveAr 

    return area 

 

v) Ratio of resistances 
A redundant feature, the ratio of a particular resistance to that 

of baseline is also considered for feature matrix generation. 
vi)  Creation of Data Matrices 

All the features calculated above have to be integrated into a 
data matrix for analysis and visualization purposes. For multiple 
sensor data visualization, we need two types of data matrices. 
One will be a data matrix (type I) composed of all the features of 
different responses of a given sensor and the second one is a data 
matrix (type II) of particular feature entries of all the sensors of 
different responses. The corresponding codes are presented in 
section S1 of supplementary material. In the end, the user has 
provided an option of saving the data matrices of type I and type 
II in csv formats. 
Frontend 
The application has its attribute in ease of use and access with 
varying levels of comfort of programming. The interface is quite 
intuitive and self-explanatory. The authors have followed a tab-
based layout for better dissemination of information. The home 
page (figure 6) provides the user two ways of moving forward 
with their data analysis, i.e. uploading a pre-extracted data matrix 
for multivariate analysis of feature matrix or the full pipeline for 
analysis of response data that extracts features and visualizes 
them from the raw response data uploaded by the user. 

Figure 6 Screenshot of the landing page of the application with 
each tab explaining their respective functions 

The Multivariate Analysis of Feature Matrix (figure S1) tab 
allows the user to upload a pre-extracted data matrix based on the 
provided description. Uploading a data matrix here allows the 
user to visualize the features as plots, allows the user to add 
columns based on their needs, and visualize those as well. A 
typical uploaded data view is shown in figure S2. 

Uploading a data matrix takes the user to the screen which 
displays the uploaded data matrix with 2 user inputs: 
1. Row number: This option is to allow the user to skip the first 
few rows in case there are additional comments or information 
rows before the real data matrix. This option is predominantly 
useful for response data. Since the headers displayed here are the 
true column headers, the user is expected to enter X. 
2. Delimiter: The delimiter (aka separator) is a character 
separating the values in the table (like: , |,  (space)). In the above 

 
Figure 7 Screenshot of the feature matrix display tab with formatted data matrix 
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example, the user is expected to enter comma (,) as the delimiter 
in the input box provided, without any other extra text.  

Pressing ‘Submit’ takes the user to the following page with the 
Explanation tab (figure S3) giving a short summary of the type 
of matrix and the features of the signals which can be visualized. 

The Feature matrix display (figure 7) tab shows the user the 
formatted data matrix based on the user input (delimiter and skip 
rows) from the last page with an option for index confirmation. 

The other two tabs are specific to the types of data matrices. 
The application expects the user to know the type of data matrix 
they have uploaded. In this example, a Type I matrix was 
uploaded, therefore the only parameter we have to enter is the 
name of that sensor (figure 8 (a)). 

 
Figure 8 (a) Screenshot of type I data matrix selection with sensor 
S1 

If the user uploads a Type II matrix, the application expects 
the user to input the corresponding feature (figure 8(b)). 

 
Figure 8(b) Screenshot of type II data matrix selection with response 
feature 

 
The Data Matrix Dashboard backend is common for both the 

input options that give the user insight into the graphical 
representation of the data. 

Full pipeline for analysis of response data tab allows the user 
for complete feature extraction of the time series data of multiple 
sensors. Figure 9 shows an example of the format of the response 
data expected from the user. 

Uploading response data takes one to the above screen which 
displays the uploaded data matrix with 2 user inputs of formatting 
(figure S4) similar to that of the Multivariate Analysis of Feature 
Matrix tab and submission will forward to the next screen of 
inputs for visual inspection (figure S5) with three entry options 
viz., index column, timestamp column and column number of 1st 
sensor’s data. The submission of which results in a response 
curve dashboard. 

Figure 10 is the typical response curve based on the response 
data. The user has an option to customize the dashboard. The user 

Figure 9 Screenshot of typical multiple sensors time series data 
uploaded by the user 

 
can press the Save Plot button which takes them to the plot saving 
dashboard. A plethora of formats and more control over the 
quality of the plot were provided while saving. Pressing browse 
allows the user to choose a folder exactly like how the user was 
given the option to choose their csv file. The plot saving formats 
available are TIFF, PNG, JPEG, PDF and SVG (figure S6). This 
allows the user to customize quite a few aspects of the plot. 

1. Theme: The matplotlib library offers various themes 
which the user can experiment with. A few examples include the 
ggplot theme which is a copy of the theme used for visualizations 
in the R package. 

2. Width and Height: These parameters can be controlled 
and will be visible only when the user saves the plot. These 
changes don’t reflect in the preview tab due to limitations on the 
changeable size of the canvas 

3. Line width: This parameter controls the thickness of the 
lines in the response curve line plot. 

4. Size of x/y-tick labels: These parameters control the 
font size of the ticks visible under the x and the y axes. 

5. Number of x/y ticks: This parameter controls the maximum 
number of tick labels visible under the x or y-axis. Due to the 
number of entries, the default has been kept as 4, but the user can 
change it according to their preferences.  

6. Font size of the legend: This parameter controls the font 
size of the legend which appears on the right side of the plot to 
avoid overlapping with the plot. 

The “Choose data” tab of the plotting dashboard (figure 11) 
allows the user to customize the data-related aspects of the plot. 
The user can choose to plot a single column, or multiple columns 
based on their choice with an option for choosing the X-axis. The 
updates or changes of the parameters by the user can be visualised 
by pressing the “Preview Plot” button. The zoomed plotting tab 
is provided to view a particular section of the plot (figure S7). 

The Feature Extraction Dashboard button of Choose data 
tab requests the user to enter the details of the points of injections 
(pois) and time interval/gap between successive data points, 
which is necessary for feature extraction of any type of matrix 
that the user wishes to extract (figure S8). It follows the user to 
compute matrices of choice. 
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Figure 7 Screenshot providing the options for selection of X- axis 
and single or a group or all the sensors for feature extraction 

 

 
Figure 8 (a) Screenshot of computation of a type I data matrix with 
all the features of a particular sensor 

Figure 12 (a) corresponds to the tab that allows the user to 
select a particular sensor for Type I matrix computation and then 
proceeds to extract all the features of multiple signals of a chosen 
sensor as per the algorithms presented in the backend. The Type 
II matrix computation in figure 12(b) allows the user to choose a 
particular feature wherein the application then proceeds to extract 
the chosen feature for all the sensors. 
 

Figure 12(b) Screenshot of computation of a type II data matrix of a 
chosen feature of all the sensors 

Once, the user has completed entering the details necessary for 
feature extraction, they led to the data matrix dashboard based on 
the chosen type. This dashboard provides options to append the 

 
Figure 10 Typical response curve dashboard to visualize the responses from all the sensors  
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data matrix with choices of indices and concentration data 
(optional) to proceed for visualization with an option for saving 
the modified data matrix (figures S9 to S13). 

Finally, the authors have provided an option for the user to 
save the data matrix in various formats (figure S14) which allow 
the user to continue their analysis using the secondary MVA 
pipeline instead of repeating the whole process again. 

The ‘Next’ tab of the data matrix dashboard in figure S15 
proceeds to visualization. The ‘Reset’ button provides an option 
to review the inputs and regenerate the modified data matrices by 
taking them back to the feature extraction dashboard. 

Feature Plotting Dashboard provides different options to view 
the current data matrix (figure 13) and plotting. The bottom Data 
matrix dashboard button takes the user back to the data matrix 
dashboard for any modifications to be incorporated. 

 
Figure 9 Screenshot of plotting dashboard with modified type I data 
matrix 

Most of the parameters in the feature plotting dashboard are 
borrowed from the response curve dashboard with the exceptions 
of size and transparency value of the markers in the scatter plot. 
It is equipped with basic plot parameters (figure S16), type I and 
type II plot parameters corresponding to the initial choice of user 
(figures 14 (a) and (b)) and the plot preview tabs (figures 15(a) 
and (b)). 

Figure 15(a) shows the resulting plot of Response(%) vs. 
Concentration. Similarly, every single feature can be tweaked 
according to the user's choice. Whereas, figure 15(b) displays the 
scatter plot of Response(%) (Chosen feature during computation) 
of four sensors vs. Concentration. The plot saving option shares 
common with the plotting dashboard described in earlier 
paragraphs. The design flow sheets explaining the decision paths 
multivariate analysis and full pipeline for analysis are presented 
in figures S17 and S18 of the supplementary material 
respectively. 

 
Figure 10 (a) Screenshot of Type I plot parameters tab to choose 
features of choice for visualization 

 
Figure 14(b) Screenshot of Type II plot parameters tab to choose 
features of choice for visualization 

 
Figure 11 (a) Typical preview plot of Type I data matrix 

 

Figure 15(b) Typical preview plot of Type II data matrix 

CONCLUSIONS 
Development and demonstration of a general-purpose 

software for the analysis of multisensory time series data using a 
custom-designed automatic gas sampling cum injection system is 
presented. The AGSIU has flexible time settings for the user, 
depending on the sensor’s sensing and recovery aspects. The 
digital timers used in the instrumentation can be configured in 
different modes allowing the user to set a specific injection 
methodology. It presents further scope to equip the AGSIU with 
a pressure transducer to monitor the gas pressure inside the 
sample reservoir, an alarming lamp in case of any power 
fluctuations, and also with a rotameter to minimize the flow-
related noise during sampling. A desktop application software 
built on open-source platforms with robust algorithms makes the 
application a very good tool for feature extraction from 
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multisensory time series data for gas sensor data analysis 
intended for the researchers in this field. Built-in with 
sophisticated libraries of Python, the application saves a good 
amount of time in computing different features from multiple 
sensors’ responses and is provided with ‘ML algorithm 
application dashboard’ for further development of better 
analytical solutions. With pattern recognition systems 
incorporated, this feature extraction application certainly 
augment the electronic nose/tongue development. The 
application has scope to expand further to p-type responses also. 

ACKNOWLEDGMENTS 
Authors acknowledge Dr. K. I. Gnanasekar, Head, Novel 

Chemical Sensors Section for his valuable suggestions and 
support during the development of this application. We thank Dr. 
Rajesh Ganesan, Head, Materials Chemistry Division and Dr. N. 
Sivaraman, Director, Materials Chemistry and Metal Fuel Cycle 
Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 
for their constant encouragement.  

SUPPLEMENTARY INFORMATION 
Supplementary information contains the python codes for 

feature extraction and data saving in required formats. Further, it 
also includes selective screenshots of the application. The details 
of the supplementary information were cited at appropriate places 
in the manuscript. 

REFERENCES AND NOTES 
1.  J. Albert, Keith, S. Lewis, Nathan, L. Schauer, Caroline, et al. Cross-

reactive chemical sensor arrays. Chem. Rev. 2000, 100, 2595–2626. 
2.  N. Tayebi, V. Kollia, P.S. Singh. Metal-Oxide Sensor Array for Selective 

Gas Detection in Mixtures. arXiv Prepr. 2021, 12990. 
3.  G.S. Kim, Y. Park, J. Shin, Y.G. Song, C.Y. Kang. Metal oxide nanorods-

based sensor array for selective detection of biomarker gases. Sensors 
2021, 21 (5), 1–9. 

4.  A. Sree Rama Murthy, D. Pathak, G. Sharma, et al. Application of 
principal component analysis to gas sensing characteristics of 
Cr0.8Fe0.2NbO4 thick film array. Anal. Chim. Acta 2015, 892, 175–182. 

5.  A. Sree Rama Murthy, K.I. Gnanasekar, V. Jayaraman, A.M. Umarji. 
Application of principal component analysis to the conductometric Cr1-

xFexNbO4 (x = 0, 0.5, 1.0) thick films gas sensors. ISPTS 2015 - 2nd Int. 
Symp. Phys. Technol. Sensors Dive Deep Into Sensors, Proc. 2015, 70–
73. 

6.  J. Lee, Y. Jung, S.H. Sung, et al. High-performance gas sensor array for 
indoor air quality monitoring: The role of Au nanoparticles on WO3, 
SnO2, and NiO-based gas sensors. J. Mater. Chem. A 2021, 9 (2), 1159–
1167. 

7.  P.D. Virutkar, A.P. Mahajan, B.H. Meshram, S.B. Kondawar. 
Conductive polymer nanocomposite enzyme immobilized biosensor for 
pesticide detection. J. Mater. Nanosci. 2019, 6 (1), 7–12. 

8.  J. Burlachenko, I. Kruglenko, B. Snopok, K. Persaud. Sample handling 
for electronic nose technology: State of the art and future trends. TrAC - 
Trends Anal. Chem. 2016, 82, 222–236. 

9.  A. Supriyanto, R. Anggriani, S.W. Suciyati, et al. A Control System on 
the Syringe Pump Based on Arduino for Electrospinning Application. J. 
Phys. Sci. 2021, 32 (1), 1–12. 

10.  S.B. Kondawar, A.M. More, H.J. Sharma, S.P. Dongre. Ag-
SnO2/Polyaniline composite nanofibers for low operating temperature 
hydrogen gas sensor. J. Mater. Nanosci. 2017, 4 (1), 13–18. 

11.  B. Zhang, P.X. Gao. Metal oxide nanoarrays for chemical sensing: A 
review of fabrication methods, sensing modes, and their inter-
correlations. Front. Mater. 2019, 6. 

12.  K. Bhosle, B. Ahirwadkar. Deep learning Convolutional Neural Network 
(CNN) for Cotton, Mulberry and Sugarcane Classification using 
Hyperspectral Remote Sensing Data. J. Integr. Sci. Technol. 2021, 9 (2), 
70–74. 

13.  S.B. Siledar, S. Tamane. Quadratic difference expansion based 
Reversible Watermarking for relational database. J. Integr. Sci. Technol. 
2021, 9 (2), 107–112. 

14.  M. Bastuck, T. Baur, A. Schütze. DAV3E – a toolbox for multivariate 
sensor data evaluation (submitted). Sensors 2018, 489–506. 

15.  Y. Peng, X. Zhang, Y. Li, et al. MVPANI: A Toolkit With Friendly 
Graphical User Interface for Multivariate Pattern Analysis of 
Neuroimaging Data. Front. Neurosci. 2020, 14. 

16.  R.M. Jarvis, D. Broadhurst, H. Johnson, N.M. O’Boyle, R. Goodacre. 
PYCHEM: A multivariate analysis package for python. Bioinformatics 
2006, 22 (20), 2565–2566. 

17.  M. Hanke, Y.O. Halchenko, P.B. Sederberg, et al. PyMVPA: A python 
toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics 
2009, 7 (1), 37–53. 

18.  R. Kumar, M.P. Chaudhary, M.A. Shah, K. Mahajan. A mathematical 
elucidation of separation membrane operations and technology of 
chemical and physical processes: An advanced review. J. Integr. Sci. 
Technol. 2020, 8 (2), 57–69. 

 

 


	Introduction
	Materials and Methods
	Design and fabrication of Automatic gas sampling cum injection unit (AGSIU)
	Development of a desktop application
	Results and Discussion
	Process flow of AGSIU
	Development of Backend and Frontend of the application
	Conclusions
	Acknowledgments
	Supplementary Information
	References and notes

