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Every year, 
roughly 

around one-
third of the horticultural 
commodities worldwide 
are lost in post-harvest 
stages due to various 
abiotic stresses like 
temperature, humidity 
and water, and biotic 
stresses like pathogens, 
insects and pests. This 
calls for the need for 
continuous monitoring of 
the health of stored fruits 
and vegetables for early 
detection of spoilage of 
these perishable and semi-perishable items. For all practical purposes, regular manual physical inspection of the storage area is not a feasible 
solution. Vegetable ageing, spoilage and infection are associated with the emission of volatile organic compounds (VOCs), often with a foul 
odour. GC-MS based chemical analysis shows that vegetable effused VOCs during storage vary significantly, and the concentration of VOCs 
increases with more degree of spoilage. Regular chemical analysis is not a feasible solution because of the high cost and lead time of such a 
process. A probable alternative solution is rapid, low-cost, in-situ and online testing employing electronic nose (e-Nose). This study attempts 
a novel method for early detection of spoilage of stored potato and onion employing an e-Nose, named e-POT, designed and developed for 
the purpose. The study shows encouraging results and may further be exploited for making it suitable for commercial applications. 

Keywords: Electronic Nose (e-Nose), Volatile Organic Compound (VOC), Metal Oxide Semiconductor (MOS), Principal Component 
Analysis (PCA), Probabilistic Neural Network (PNN), Partial Least Square (PLS) 

INTRODUCTION 
India is predominantly an agrarian economy, and the 

contribution of the agricultural sector towards GDP1,2 in 2020-21 

is 20.20% and has an increasing trend as compared to 18.40% 
and 17.60% in 2019-20 and 2018-19 respectively. India is the 
second-largest producer of fruits and vegetable worldwide3 and 
has the potential to become a self-sufficient food producer as well 
as a major food exporter. About 30-40% of these fruits and 
vegetables simply go to waste, creating a huge annual 
loss. However, the increasing demand due to population growth 
and many other factors had forced India to rank 101 in Global 
Hunger Index (GHI) with a score of 27.5, which is regarded as 
serious. One of the major reasons behind this is the enormous 
postharvest loss of agricultural commodities due to various 
issues. The main factors affecting this loss are insufficient and 
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improper storage infrastructure, growth of microorganisms in 
favourable hot and humid Indian conditions, insect and pest 
attacks, etc. Instead of focusing only on agriculture productivity 
enhancement, a holistic approach to target minimizing 
postharvest losses would definitely yield higher returns. This 
would also help India in poverty alleviation and improvement in 
general health, nourishment and food security for its people.4 

The biggest contributors to waste are the lack of adequate 
high-quality storage and cold storage facilities, and the most 
susceptible food categories are the perishable and semi-
perishable fruits and vegetables. India is having a serious 
shortage of warehouses for food grains also, but we limit our 
discussion here to fruits and vegetables only. Recently, an 
increase in cold storage facilities has been observed in the 
country through a couple of financial assistance schemes by the 
Government. The number of cold storages is still inadequate, 
with a shortfall of 126 lakh tonnes compared to the requirement 
as per the projection of the National Centre for Cold Chain 
Development (NCCD).5 This creates a hindrance of tapping the 
potential of increasing the production of fruits and vegetables. 
Another problem associated with the infrastructure is the uneven 
or skewed distribution of cold storage across the country. The 
majority of these facilities are located in Uttar Pradesh, Gujarat, 
Punjab, Telangana, Rajasthan, Haryana and Orisha. However, 
states like Maharashtra and Karnataka, with a large amount of 
exportable produce, do not have adequate cold storage capacity. 
Bihar, Chhattisgarh and West Bengal are the lowest in order in 
terms of cold storage as per horticulture produce5. Depending on 
the storage requirement, the temperature is maintained at 8-10 ◦C 
or 15 ◦C.  In some cases; vegetables are also stored at room 
temperature for a shorter period. The optimum relative humidity 
(RH) required for the storage of potato is 90-95%, whereas 65-
75% is for onion. Unsuitable storage conditions coupled with 
microorganism infection destroy the nutritional values of the 
crops and make them unsuitable for human consumption. Hence 
proper monitoring and control of temperature and RH in the 
storage chamber is also of utmost importance. 

Ageing and decomposition or spoilage is a natural 
phenomenon and occurs in the case of all fruits and vegetables in 
their life cycles. A proper storage system may only enhance the 
life of the stored vegetables and can only delay the time of 
spoilage or, in other words, enhance the shelf life. Emission of 
VOCs take place in plants throughout their lifetime, and fruits 
and vegetables continue to release VOCs in a greater capacity 
even during postharvest storage due to various biotic and abiotic 
stresses. Many of these VOCs have been identified as biomarkers 
for different biotic and abiotic stress conditions of many fruits 
and vegetables. Detection of these VOCs, qualitatively and 
quantitatively, may be indicative of the health of the stored 
commodities and may lead to early corrective intervention, 
thereby saving huge economic loss.  

The environment in a controlled storage chamber also poses a 
negative impact on the stored vegetables in the form of abiotic 
stresses like low temperature, high RH, low oxygen and high CO2 
concentration. A few symptoms of chilling injury are browning 
on the surface and internal sides, pits on the surface, increase in 

softness, unwanted flavour generation, etc. High RH in the 
chamber causes the stored crops to absorb water resulting in loss 
of flavour, sweetness, texture, juiciness, etc. Respiration of stored 
crops decreases O2 and increases CO2 concentration inside the 
container. A low level of O2 induces injury to crops. A high level 
of CO2 enhances shelf life but increases susceptibility to diseases. 
The mechanical damage that occurred during postharvest 
handling, transportation and storage account for early ripening 
and cell membrane degradation of crops under storage.6 

Biotic stress on the stored crops is the damage done by 
bacteria, fungi, insects and other living organisms. They result in 
a change in colour and deterioration of compounds and also lead 
to the emission of certain VOCs. These microbial VOCs can be 
classified under alcohols, ketones, benzenoids, sulphides, 
alkenes, pyrazines, and terpenes. Bacteria and fungi can infect 
crops and may account for a great loss in storage. Bacteria infect 
mostly the internal sites, whereas fungi infect externally as well 
as internally depending upon crop type and fungal strains. 
Chances of insect and pest infestation in stored vegetables are 
very less, but in rare cases, traces of larvae or eggs can be found. 
On the other hand, abiotic agent-induced VOCs are linked to 
aromatic alcohols and acetate groups. A comprehensive list of 
VOCs due to biotic and abiotic stress on stored vegetables can be 
found in the Subway plot by S. Tiwari et al.6 All these VOCs can 
very well act as biomarkers for the detection of the spoilage 
causing agents and monitoring the health of the horticultural 
commodities during storage. 

Although a correlation between spoilage of vegetables due to 
biotic-abiotic stresses with emanated VOC had already been 
established in earlier studies, tangible methods for online in-situ 
detection of VOCs are yet to be developed. The prevailing 
conventional method is a laboratory-based analysis of headspace 
samples employing sophisticated analytical instruments, as 
described in the following paragraph. 

Flame Ionization Detection (FID)7 is a universal detector for 
organic compounds, operates by ionizing within a burning 
hydrogen flame in two stages, allowing for the measurement of 
hydrocarbon concentrations in VOCs. This method enables 
detection in the range ~ 0.05 ppm for most VOCs and ~ 2 ppm 
for benzene. The method can be used for hot and wet samples. It 
only responds to carbon atoms, and the sample cannot be re-used. 
The detection limit of Infrared (IR) Absorption Spectroscopy8 
varies between 0.3 to 9.2 ppm for non-methane VOCs. The 
method requires minimal sample preparation with no sample 
destruction but requires expensive optical components. Photo 
Ionization Detectors (PID)9 are capable of detecting less than 0.1 
ppm for most VOCs. They are compact, accurate, affordable, and 
reliable real-time VOC monitoring devices with non-destructive 
sample analysis. Disadvantages are they cannot detect methane 
and are affected by humidity. Gas Chromatography-Mass 
Spectrometry (GC-MS)10 ionizes VOCs in the presence of a 
magnetic field and ion beam while passing through a gas mobile 
phase, allowing multiple VOC components with an ultra-low 
limit of detection (0.5 ppb). Proton Transfer Reaction Mass 
Spectrometry (PTR-MS)11 involves chemical ionization and drift 
tube technologies used for real-time measurements in the 
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laboratory. The method can detect ultra-trace level detection in 
the range of 10 -100 ppt. This method is insensitive to water 
molecules, but different isomers of the same compound cannot 
be separated. Fourier Transform Infrared (FTIR) Spectroscopy12 
measures the amount of light absorbed by a sample at each 
wavelength allows the component detection in VOCs at the level 
of 2 ppb. This method cannot detect compounds outside of the 
library of spectra accurately, and H2O and CO2 spectra can 
interfere with measurements. 

Conventional laboratory techniques can provide an in-depth 
analysis of compound VOC samples but are not appropriate for 
online and in-situ monitoring of VOCs due to their bulky size, 
heavy weight, special carrier gases requirement and high 
maintenance cost.  

Electronic nose (e-Nose)13 has been gaining popularity and 
wide acceptance in different fields, agriculture and the food 
industry in particular. Quality assaying of food products and 
beverages is one of the major application domains where e-Nose 
has been tried for rapid sensory evaluation of quality. Application 
domains include tea,14,15 coffee,16 dairy products,17 meat,18 
wine,19 oil,20 vinegar,21 cocoa beans,22 jasmine and concrete,23 
etc. Disease detection and health monitoring is another 
application domain in which researchers tried e-Nose for 
detection of asthma,24 viral infections,25 cancer,26 tuberculosis,27 
cystic fibrosis28 and astronaut health in space.29   

Compared to human sensory evaluation of food quality, e-
Nose evaluation is fast, accurate and repetitive and is free from 
human biases, subjectivity and error. E-Noses are not as accurate 
as Analytical Measurement Instruments, e.g., GC-MS and cannot 
measure the concentration of the constituent chemical 
compounds present in the sample. However, once e-Nose is 
trained with a good number of labelled data and a suitable 
machine learning model, it can predict the quality of the sample 
under test in different predefined classes with reasonable 
accuracy. The working principle of e-Nose is very different from 
other sensor-based measurement instruments as the odour 
sensors presently available are selective to all the VOCs 
belonging to a particular class or group of chemical compounds. 
The same sensor also shows cross sensitivities to a certain 
amount of VOCs belonging to other groups. Hence, it is literally 
impossible to accurately quantify the concentrations of the 
individual constituent VOCs in a sample. To overcome this 
limitation, an e-Nose is constituted with a number of gas sensors 
sensitive to different groups of VOCs to form a sensor array. For 
each training sample, the sensor array senses and creates a unique 
“odour print” and stores it into the memory of the device. After 
achieving sufficient numbers of training data covering all the 
quality classes, when an unknown sample is given, the device 
tries to find out the closest match of the obtained “odour print” 
from the training classes employing an artificial intelligence 
technique. 

Owing to the concerns mentioned above, the objective of this 
study has been focused on developing a simple, cost-effective 
and field-deployable e-Nose device for early identification and 
quantification of the spoilage level of stored vegetables (potato 
and onion) through the capture of VOCs generated by these 

commodities under abiotic and biotic stresses in a storage 
environment. The selection of an appropriate set of gas sensors 
to form the e-Nose sensor array and to develop suitable AI-ML 
models are also important scopes of the study.  

The study is undertaken in two phases. In the first phase, we 
have trials of the developed e-POT device in the 500-litre cold 
storage chamber stored with potato and onion, separately, one by 
one. The objective of this study is to check the efficacy of the e-
Nose system, the selected sensors and the odour handling system 
in capturing and detecting VOCs. The sensor data thus captured 
is also analyzed to verify whether that would be able to 
differentiate between fresh and stale commodities with a distinct 
borderline between them for each commodity. In the second 
phase, the study is conducted in the 19000-litre capacity cold 
storage chamber with potato and onion. We have taken two 
analysis approaches here; first, we applied various classification 
algorithms on the captured VOC data to find out whether these 
models can segregate fresh and stale samples accurately. 
Secondly, we have applied a prediction algorithm to roughly 
estimate the VOC concentration, thereby predicting the degree of 
staleness of the stored commodity in three discrete classes. 

MATERIALS AND METHODS 
SENSOR SELECTION FOR DEVELOPMENT OF E-NOSE 

Selection of proper sensors for the application is an extremely 
important activity, which is carried out in two stages, first by 
exposing a few synthetic chemicals related to spoilage of potato 
and onion, and then by validating the shortlisted sensors through 
the exposure of VOCs from real potato and onion samples, both 
fresh and spoilt states. We have limited our scope to Metal oxide 
semiconductor (MOS) gas sensors only as this is the only 
commercially available accurate and reliable sensors with 
repetitive results. As the e-POT device developed under this 
project supports eight sensors, a total number of eight sensors 
suitable for potato and onion spoilage detection are required to 
be found. An existing C-DAC developed portable e-Nose that 
operates in batch mode had been employed for sensor selection. 

 

 
Figure 1. Circuit Schematic of a MOS sensor. 
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Figure 1 shows the circuit schematic of a typical MOS sensor. 
The sensor response of such a circuit can be defined as: 

𝑉𝑉𝑅𝑅𝑅𝑅 =  𝑉𝑉𝐶𝐶 �
𝑅𝑅𝐿𝐿

𝑅𝑅𝑆𝑆 + 𝑅𝑅𝐿𝐿
� 

where, 
VRL:  Sensor response in voltage 
VC: Circuit voltage 
VH: Heater voltage 
RL: Load resistance 
RS: Sensor resistance 
 

The sensitivity of a MOS sensor is a normalized entity, which 
is defined as the difference in response of sensor in target gas and 
in reference gas (usually air) divided by the response in reference 
gas. 

In order to find out potato specific sensors, first, the sensors in 
groups are exposed to Butyl Hexanoate, a chemical that may be 
found in abundance when the potato is infected with Erwinia 
carotowora. To check the sensitivities of the sensors, 30 ml of 6 
ppm vapour is exposed to the sensor array, and the responses are 
recorded. The sensitivities of the major sensors under this test are 
shown in Figure 2. The priority ranking of sensors for potato 
spoilage determination, as is clear from Figure 2, are ordered as 
TGS 825, TGS 2602, TGS 2620, TGS 2611, TGS 816, TGS 823, 
TGS 2600, TGS 2610, TGS 832, TGS 813, TGS 821 and TGS 
830. 

To find sensors responsive to onion spoilage, the sensors in 
groups are exposed to Phenol and Hexylmethylamine, major 
chemicals effused on infection of the onion by Erwinia 
carotowora. To check the sensitivities of the sensors, 30 ml of 6 
ppm vapour is exposed to the sensor array one by one, and the 
responses are recorded. The sensitivities of the sensors on 
exposure to Phenol and Hexylmethylamine are shown in Figure 
3 and Figure 4, respectively. 

Combining the responses of these two chemicals, the priority 
ranking of sensors for onion spoilage detection are ordered as 
TGS 816, TGS 826, TGS 813, TGS 2610, TGS 2611, TGS 2602, 
TGS 825, TGS 832, TGS 821, TGS 2600, TGS 830, TGS 823 
and TGS 2620. 

 

   
Figure 2. Sensitivity of the sensors exposed to Butyl Hexanoate. 

 
Figure 3. Sensitivity of the sensors exposed to Phenol. 

 
Figure 4. Sensitivity of the sensors exposed to Hexylmethylamine. 

 
These two lists give a first-hand impression of sensors suitable 

for potato and onion, respectively. However, this has been 
observed from the figures that the first eight-nine sensors in the 
ranks differ very little in terms of sensitivities. Secondly, the 
bacteria and the chemicals considered in the above study are not 
the sole microorganisms or the chemicals, and there may be 
enormous numbers of chemicals that originated from potato and 
onion during spoilage because of several biotic and abiotic stress 
on them. Therefore, it is extremely necessary to validate these 
shortlisted sensors by exposing them to real potato and onion 
samples, both fresh and spoilt. This sensor validation study is 
performed in the same portable e-Nose device with 20 gm 
samples taken in each case. The peak responses for fresh and 
spoilt vegetables with differences are shown for potato and onion 
in Table 1 and Table 2, respectively. Figure 5 and Figure 6 show 
the same in the form of bar charts. 

The sensor selection procedure is summarized as (i) First; the 
sensors are shortlisted on the basis of their sensitivity to 
chemicals emanated from potato and onion when they are 
infected with the most common microorganism called Erwinia 
carotowora. (ii) Then, they are exposed to VOCs from fresh and 
rotten potatoes and onions to see the differences in sensor 
responses. (iii) The top-ranked five sensors for both potato and 
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Table 1: Sensor responses for Fresh and Spoilt potatoes 

Sensor 
Name 

Sensor Response (in Volt) Difference 
(in Volt) Fresh Potato Spoilt Potato 

TGS-823 0.14 3.72 3.58 

TGS-825 0.09 3.38 3.29 

TGS-2611 0.25 2.42 2.17 

TGS-816 0.39 1.75 1.36 

TGS-832 0.68 1.86 1.19 

TGS-2600 0.15 0.78 0.63 

TGS-813 0.31 0.90 0.59 

TGS-2610 0.42 0.97 0.55 

TGS-821 0.75 1.23 0.48 

TGS-830 0.30 0.68 0.38 

TGS-822 0.16 0.48 0.32 

TGS-2620 0.16 0.36 0.20 

TGS-826 0.89 1.08 0.19 

TGS-2602 2.29 0.69 -1.60 

 
Table 2: Sensor responses for Fresh and Spoilt onions 

Sensor 
Name 

Sensor Response (in Volt) Difference 
(in Volt) Fresh Onion Spoilt Onion 

TGS-832 1.55 6.04 4.50 

TGS-813 0.50 4.89 4.38 

TGS-2611 0.33 3.21 2.89 

TGS-821 0.69 3.15 2.46 

TGS-826 1.33 2.81 1.48 

TGS-822 0.13 0.91 0.78 

TGS-2610 0.50 1.07 0.57 

TGS 825 0.10 0.67 0.56 

TGS-2600 0.18 0.72 0.54 

TGS-816 0.32 0.81 0.49 

TGS-2620 0.17 0.58 0.40 

TGS-823 0.32 0.47 0.15 

TGS-830 0.24 0.27 0.03 

TGS-2602 1.70 1.60 -0.10 

 
onion are further shortlisted. (iv) These two lists give us the final 
set of eight sensors as two of them are found common both in 
potato and onion. 

From Table 1, the best responsive five sensors for potatoes are 
taken as TGS-823, TGS-825, TGS-2611, TGS-816 and TGS-
832. Similarly, Table 2 provides us with the best responsive five 
sensors for onion as TGS-832, TGS-813, TGS-2611, TGS-821 
and TGS-826. The two sensors, TGS-832 and TGS-2611, are 

found common for both potato and onion. Combining the above 
findings, the final selection of eight MOS sensors are shown in 
Table 3. 
 

 
Figure 5. Bar chart showing peak sensor responses for fresh and 
stale potato. 

 

Figure 6. Bar chart showing peak sensor responses for fresh 
and stale onion. 

 
Table 3: Commodity wise selected list of sensors 

Sensor Commodity 

TGS-823 Potato 

TGS-825 Potato 

TGS-2611 Potato, Onion 

TGS-816 Potato 

TGS-832 Potato, Onion 

TGS-813 Onion 

TGS-821 Onion 

TGS-826 Onion 
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Table 4: Specifications of the selected sensors 
Sensor VOC Types Brief Specification 
TGS-
823 

Organic Solvent 
Vapours 

VH: 5.0±0.2V 
VC: Max. 24V 
RL: Variable 
RS: 1kΩ ~ 10kΩ 

TGS-
825 

Hydrogen Sulfide VH: 5.0±0.2V 
VC: Max. 24V 
RL: Variable, 0.45kΩ min. 
RS: 3kΩ ~ 30kΩ 

TGS-
2611 

Methane VH: 5.0±0.2V AC/DC  
VC: 5.0±0.2V DC 
RL: Variable, 0.45kΩ min. 
RS: 0.68~6.8kΩ 

TGS-
816 

Combustible Gases VH: 5.0±0.2V AC/DC  
VC: Max. 24V 
RL: Variable 
RS: 5k ~ 15k 

TGS-
832 

Chlorofluorocarbons 
(CFC's) 

VH: 5.0±0.2V AC/DC  
VC: Max. 24V 
RL: Variable, 0.45kΩ min. 
RS: 4kΩ ~ 40kΩ 

TGS-
813 

Combustible Gases VH: 5.0±0.2V AC/DC  
VC: Max. 24V 
RL: Variable, 0.45kΩ min. 
RS: 5kΩ ~ 15kΩ 

TGS-
821 

Hydrogen Gas VH: 5.0±0.2V AC/DC  
VC: Max. 24V DC 
RL: Variable, 0.45kΩ min. 
RS: 1kΩ ~ 10kΩ 

TGS-
826 

Ammonia VH: 5.0±0.2V AC/DC  
VC: Max. 24V DC 
RL: Variable 
RS: 20~100kΩ 

where, 
VH: Heater voltage           VC: Circuit voltage 
RL: Load resistance          RS: Sensor resistance 

 
The e-POT sensor array contains the eight sensors as depicted in 

Table 3, and all these sensor values are considered during the 
analysis of the health condition of both the cases of potato and onion. 
Table 4 summarizes the brief specifications of the selected eight 
sensors. 

In order to check the performance of the selected sensors in 
differentiating fresh and rotten potatoes and onions, a 
measurement system analysis (MSA) is carried out to check the 
repeatability of the sensors. We made three measurements for 
each of the samples and a histogram of the sensor responses are 
shown in Figure 7 and Figure 8 for potato and onion respectively. 
Both the plots show that the sensor responses are repetitive with 
standard deviations for all the sensors are in the order of 0.1 or 
less. 

FABRICATION OF E-NOSE FOR THE APPLICATION 
Machine olfaction or e-nose schemes are to some extent 

similar to the human olfactory system. We need a Sampler or an 
Odour Handling and Delivery Unit to capture the volatile odour 
molecules and pass them to an array of sensors; individual 
sensors in the array work similar to the human odour receptors in 
sensing the odour volatiles. The signal conditioning and data pre-

processing module reduce the dimension of the dataset for 
analysis similar to secondary neurons or glomerulus in the human 
case. Finally, soft computing or pattern recognition engine 
mimics the role of the human brain, i.e., to perceive the pattern 
of the odorants.  

 

 

Figure 7. Histogram to show repeatability of the selected sensors in 
detecting fresh and stale potato 

Figure 8. Histogram to show repeatability of the selected sensors in 
detecting fresh and stale onion 

 
The majority of the commercially available electronic noses 

require manual intervention to place the sample into the sample 
chamber, and the operation is mainly carried out in batch mode. 
However, this application of checking the health of stored 
vegetables demands online monitoring without any sort of human 
involvement. This drives us to design and develop an e-Nose 
specific to this application. The circuitry and software program 
of the developed machine olfaction device, named e-POT, is 
described in this section. Eight metal oxide semiconductor 
sensors (MOS), namely, TGS-816, TGS-2611, TGS-821, TG-
82S, TGS-813, TGS-826, TGS-823 and TGS-832, are utilized to 
build a sensor array. MOS sensors are chosen because of their 
performance, commercial availability and long-term stability. 
When MOS sensors are exposed to VOCs, the resistances of the 
sensors change depending upon the amount of VOCs, and these 
changes in resistance need to be captured as sensor responses. By 
making a simple resistive divider circuit, this resistance change 
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is captured in terms of change in voltage. The next stage is the 
signal conditioning stage, built on industry-standard LMC6001 
Instrumentation Amplifiers for amplification, attenuation and/or 
buffering of sensor signals. LMC6001 is an electrometer 
amplifier with an input current as low as 25 fA and is ideally 
suited for high impedance sensors. The other advantage of this 
OPAMP is that it can be operated from a single supply, thus 
making the Power Supply requirement more straightforward. 
This high-end amplifier is used here to make the system more 
generic to cater diverse range of sensors. It also has a higher 
signal-to-noise rejection ratio. For filtering of the sensor signal, a 
simple RC low pass filter is used. Attenuation of signals to make 
them compatible with the microcontroller I/O pins is done 
through a resistive divider followed by an active buffer stage. 
Analog-to-Digital Conversion (ADC) is achieved by using 
external ADC, ADS1115. It is a low power 16-bit delta-sigma 
ADC and connected to the processor through an I2C interface. 
An input multiplexer along with sample-and-hold circuits selects 
the four analogue channels sequentially. Two such ADCs are 
added to the same I2C line to increase the number of analogue 
channels to eight. Individual ADCs are selected through the 
address lines. 

A 32-bit ARM processor-based board is used as the heart and 
brain of the device. The sensor signals are captured through the 
I2C interface and are processed and stored on this board. The 
software program is written in Java and C on the Linux operating 
platform. A 7-inch touch screen display device is interfaced with 
the board as User Interface. Captured sensor data is stored date-
wise in a low-footprint open-source database named Derby. 
Other components used in the device are micropumps, valves, 
pressure sensors, temperature and humidity sensors, and fans to 
construct the device's odour handling and delivery component. 
The processor input-output lines employing relay circuits are 
controlled through these devices. A power adapter with 12-volt 
and 5-volt outputs supplies power to the device. Figure 9 portrays 
the block diagram of the circuit. 

 

 

Figure 9. Block Diagram of the developed Machine Olfaction 
Device, e-POT. 

 
The odour delivery requirement and hence the mechanism is 

unique in this application. In most e-Nose applications, there is 
no requirement for continuous operation. During testing of a 
sample, it is generally placed in a sample chamber close to the 

sensor array so that the odour volatiles can easily be sniffed and 
exposed to the sensors. But the requirement here is continuous 24 
× 7 operations and to sniff odour volatiles from the cold storage 
silo for analysis at certain time intervals.  

The working principle of the MOS sensor is stated as follows. 
During measurement, the non-polar volatile molecules are 
adsorbed at the surface of the semiconductor, where they are 
oxidized or reduced with oxygen, causing a modification of the 
resistance or conductivity of the device. This occurs only at a 
high temperature (300 – 450 °C) and is regarded as the working 
temperature of MOS sensors.30 This is the reason for employing 
an internal heater element inside the MOS sensor. The sniffed 
and captured odour molecules from the cold storage chambers are 
cold. If delivered directly to the sensors, the sensors would give 
erratic responses as these cold molecules reduce the temperature 
of the sensor surface, thereby changing the characteristics of the 
resistance values. To neutralize this effect, it is required to bring 
back the captured odour VOCs close to 30 – 40 °C temperature. 
Since the VOCs are heated up to ambient temperature, the 
characteristics of the VOCs are expected not to dissociate in this 
case. 

 
Figure 10. Schematic Diagram of the Odour Handling and Delivery 
Unit of e-POT device. 

A specialized arrangement is made to meet all of these 
requirements and the general conditions of e-nose sampling. The 
L-shaped cylindrical chamber, termed as holding chamber, is the 
VOCs pathway between the storage silo and the sensor chamber. 
The volume of this chamber is 250 cc. The holding chamber is 
mounted between the silo wall and sensor chamber. The VOCs 
are sniffed through a 1-inch small hole made at the wall of the 
silo. A micro suction pump (P1) is used to sniff VOCs from the 
silo through a funnel and place VOCs inside the holding chamber 
until the pressure inside the chamber reaches 500 mm of Hg. The 
building of pressure is monitored using a pressure sensor. 

The holding chamber is heated to 30 – 40 °C for 2 minutes to 
raise the temperature of the collected VOCs. When the VOCs are 
exposed to the sensors by opening a valve, the processor 
hardware-software captures and stores sensor data. After that, the 
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sensors are purged so that they can go back to their base values. 
The micro-pump (P2) and the purging fan are utilized for this 
purpose. The pump sucks fresh air from the ambient 
environment, puts it on the sensor heads, and the fan takes the air 
out of the sensor chamber, thereby cleaning the sensor heads. 
This entire cycle repeats at an interval of 30 minutes or as 
configured by the user. A schematic diagram of this odour 
handling and delivery unit is shown in Figure 10. The photograph 
of the developed e-POT device is shown in Figure 11. 

 
 

Figure 11. Photograph of the developed e-POT device. 

EXPERIMENTAL SET-UP AND SAMPLE COLLECTION 
A cold storage unit of approximately 19000-litre capacity and 

with temperature and humidity control facilities has been set up 
at CIAE, Bhopal, for this study. Additionally, a 500-litre storage 
chamber is utilized at C-DAC, Kolkata, for the study. 
Arrangements are made in both units to fit the e-POT device for 
the health study of stored potatoes and onions. Experiments had 
been conducted at both of these facilities.  

During the study, sample collection is done by fitting the e-
POT suction port to the VOC sampling port of the cold chamber 
simply through a nut and bolt arrangement. Using the touch 
screen of e-POT, the device is configured for the type of the 
stored commodity by navigating a user-friendly GUI, and the 
device is asked to ‘run’. The e-POT device then starts capturing 
VOC samples with database storing and analysis of eight sensor 
data at an interval of every 30 mins. This sampling interval can 
be adjusted depending upon the commodity type and use case 
through the initial e-POT configuration. The operations inside e-
POT for each of these sampling are done in four steps (i) sniffing 
of VOCs from the chamber for 60 sec until the pressure inside 
the holding chamber reaches 500 mg of Hg, (ii) heating the 
trapped VOCs for 120 sec, (iii) exposing the VOCs to sensor 
array and capturing sensor data for 20 sec (200 samples per 
sensor at a sampling rate of 100 ms) and finally (iv) purging of 
the sensors for 120 sec so that they go back to their base values. 
The total time taken by e-POT from the start of sniffing to sensor 
purging in every cycle is 320 sec in total. e-POT then remains 
idle for 30 min, and this process is repeated. The eight sensors 
selected and fabricated in this potato and onion health study are 
depicted in Table 5. 

Table 5: Sensors used in e-POT for potato and onion health study. 

Sensor 
Number S1 S2 S3 S4 S5 S6 S7 S8 

Sensor 
Name 

TGS 
816 

TGS 
2611 

TGS 
821 

TGS 
825 

TGS 
813 

TGS 
826 

TGS 
823 

TGS 
832 

 

The sensor readings of stored potato samples in a single 
sampling cycle are illustrated in Figure 12. The plots of all other 
samples and commodities are similar to that of Figure 12 but with 
different slopes and different saturation points based on health 
status and commodity types. Out of the eight sensors of e-POT, 
the records of six sensors are taken for analysis discarding sensor 
numbers S3 and S5, as, during experimentation, the sensitivity of 
S3 is found to be very low and S5 giving a jittery response. 

 

 
Figure 12. Sensor Readings of stored potato samples in one cycle. 

METHODS UNDERTAKEN IN THE STUDY 
As stated in the “Introduction Section”, this study is conducted 

in two phases, in a 500-litre storage container at C-DAC, Kolkata, 
in the first phase and in a 19000-litre experimental cold storage 
chamber at CIAE, Bhopal, in the second phase. The details of the 
experiment and data analysis methodologies are described in this 
section.  

Study to check the efficacy of the e-POT device in 
differentiating ‘fresh’ and ‘stale’ commodities from 
VOC signatures: 

The aim of this study is to find out the effectiveness of the 
developed e-POT system in differentiating VOCs effused from 
fresh and stale commodities and to find out commodity wise 
distinct threshold level, termed as “decay point” indicating the 
start of spoilage or presence of small quantities of spoilt 
vegetables along with fresh ones. This study establishes not only 
the efficacy of the e-Nose but also the effectiveness of selected 
sensors and the specially designed odour capturing, handling and 
delivery unit for stored vegetable health determination 
applications. Two such experiments are carried out, one with 
potato samples for about four and half days and another one with 
onion samples for over seven days. In both cases, the e-POT is 
made to run continuously in 24x7 mode, and sensor data are 
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captured at an interval of 60 minutes for analysis. As stated 
earlier, two sensors, S3 and S5, are discarded from analysis for 
obvious reasons (as stated earlier) so that we have 6-dimensional 
data obtained from 6 sensors for analysis.  

First, the result of analysis for our experiment with potatoes is 
described. For “decay point” determination, we need to reduce 
this 6-dimensional dataset to a single dimension and coin this uni-
dimensional data as “odour index” for potato. Finally, the “odour 
index” is plotted in a graph with respect to time. In order to 
reduce the dimensionality of the dataset, the correlations among 
the different sensors are calculated, as shown in Figure 13. It is 
observed that the different sensor readings are highly correlated, 
hence reduction of dimension to one would be able to retain a 
major portion of information. 

 

Figure 13. Correlation among the sensor data. 

The data is then normalized and Principal Component 
Analysis (PCA) is conducted. Figure 14 depicts that more than 
85% of information is explained by Principal Component 1. 
Hence, Principal Component 1 is termed as “odour index” and is 
considered for plotting and analysis. 

 

 
Figure 14. Ratio of Variance explained by Principal Components 
of Sensor data. 

Ideally, once the storage chamber is filled with fresh potato 
samples, the sensor readings should start to increase until it gets 
saturated to a stable value, which may be marked as “threshold 
level”. If a small portion of the potato starts to rot or a small 
quantity of stale potato is added to the chamber, the sensor values 
should shoot up this threshold level as is found from GC-MS 
analysis in which we found that VOC concentration becomes 
very high in spoilt and infected potatoes compared to fresh ones. 
The point at which the odour index starts increasing above the 

“threshold”, can be marked as the “decay point” and the storage 
supervisor may be alarmed. Figure 15 shows the expected ideal 
plot of odour index with respect to time if the storage unit is left 
undisturbed. 

 

Figure 15. Expected ideal plot of odour index with respect to time. 

 
This study started with 5 kg of fresh potato in the 500-litre cold 

storage chamber, and observation is made for about two and half 
days to notice that VOC signals really settle to the saturation 
level. Once this saturation is observed, 200 g of stale potato is 
added into the storage chamber. After waiting for a day, 200 g of 
stale potato is added again to observe the results. When the 
computed odour index is plotted against time, the graph as shown 
in Figure 16 is obtained. The plot shows saturation of odour 
index, i.e., the odour index reaching to threshold level well within 
24 hours. When the first-time stale potato is added, an increase 
of odour index value well above this threshold level is observed 
and then attains to another new saturation value within 24 hours. 
On addition of stale potato the second time, the odour index 
surpasses the second saturation level and attains a new saturation 
level. This plot clearly corroborates with the increase of VOC 
concentration as the quantity of spoilt sample or level of spoilage 
increases. The sudden dips in the plot are due to the opening of 
lids during the addition of stale samples into the chamber. As the 
lid of the 500-litre storage is at the top side, the opening of the lid 
causes the majority of the generated VOCs to escape out, thereby 
reducing the concentration of VOC inside the chamber. The first 
saturation level can be marked as the ‘decay point’ for potatoes,  

 
Figure 16. Odour Index plot of potato for approximately 100 hours. 
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and a few other discrete levels may be identified to predict the 
degree of spoilage and/or quantity of stale potatoes inside the 
storage chamber.    

The experiment with onion is done just in the reverse way, i.e., 
the experiment is started with 5 kg of fresh samples added with 
200 g of stale onions. After approximately five and half days, 
when the VOC values of this mix saturate to a stable value, the 
stale onions are removed, keeping only fresh ones inside the 
chamber. The objective is to check whether the VOC level comes 
down to some lower level as is expected as per GC-MS detection 
of VOC levels. The 200×6 dataset at each instance of time is 
reduced to a single value by determining the dominant or largest 
Eigenvalue of the matrix using the Vector Iteration method. This 
value is named as “Normalized Odour Index”. The normalized 
odour index is plotted with respect to time as shown in Figure 17. 
The plot clearly shows the return of the sensor values to a 
somewhat lower level and saturates to the level of ‘decay point’ 
of onion. Again, the abnormal dip in the plot is due to the opening 
of the topside lid during the removal of stale onions and the 
escape of VOCs. 

 
Figure 17. Normalized Odour Index plot of onions for 7 days. 

 
Study towards ‘Classification’ and ‘Prediction’ 

The second phase of the study is conducted with e-POT fitted 
to the 19000-litre cold storage chamber at CIAE, Bhopal, on 
potato and onion samples. The first aim of this study is to identify 
the presence of traces of spoilt or infected vegetables in the 
chamber employing different classification algorithms, and to 
find out the best-suited algorithm for this use case. Another object 
of this study is to map the sensor data with the VOC 
concentration of potato and onion samples infected by certain 
microorganisms as obtained from GC-MS analysis and to predict 
the level of staleness of the stored commodity. In both of these 
studies, 90 datasets (VOC values) of potato samples and 270 
datasets of onion samples are recorded. From each of these 
datasets, the average of nine consecutive rows (170th to 179th 
row) of each dataset, where the sensor readings are stable, are 
taken into account for analysis.  

 
Classification Study 

Classification models refer to algorithms used for categorizing 
unknown samples into different groups based on the training of a 

labelled dataset. We have trained the device using Probabilistic 
Neural Network (PNN) and Partial Least Square (PLS) 
classification algorithms with the sensor data of e-POT to 
categorize potato and onion samples. The models are tested in 10 
cross-fold validation. 

 
(a) Probabilistic Neural Network (PNN) Classification 

Probabilistic Neural Network (PNN) classifier31,32 uses kernel 
discriminant analysis in which the operations are organized into 
a multi-layered feedforward network with four different layers. It 
guarantees to converge to an optimal classifier when the dataset 
is considerably large and is insensitive to outliers. The algorithm 
for PNN classifier is given in Figure 18. 

 
 

 
Figure 18. Algorithm of PNN Classifier. 

 
(b) Partial Least Square (PLS) Classification 

Partial Least Square (PLS)33 is an optimal regression algorithm 
based on covariance. We have applied the thresholding technique 
on the predicted output of PLS regression to obtain binary 
classification34 of unknown samples into “fresh” and “stale” 
classes. PLS applies dimension reduction of the samples (similar 
to PCA) before applying a linear regression algorithm on the 
transformed data. In an initial study, it was observed that the 
dataset contains a significant percentage of outliers, and hence, 
PLS is chosen for classification. Figure 19 depicts the algorithm 
for classification using PLS. 

 

Figure 19. Algorithm for PLS Classifier. 

 
Prediction Study 

The GC-MS results for the calculation of the concentration of 
major VOCs in the fresh and infected commodities are given in 
Table 6 and Table 7.  

Regression model is applied to establish a relationship 
between the independent variables, i.e., the sensor values and the 
dependent variables, i.e., the measure of VOCs emitted by the 
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Table 6: Major VOCs of potato inoculated with Erwinia 
carotovora. 

Name of VOCs Concentration in 
fresh potatoes 

(ppm) 

Concentration in 
infected potatoes 

(ppm) 

Hexanoic acid, 
butyl ester 

6500 20320 

1-Butanol  1600 37800 

 

Table 7: Major VOCs of onion inoculated with Erwinia 
carotovora. 

Name of VOCs Concentration in 
fresh onions (ppm) 

Concentration in 
infected onions 

(ppm) 

 3-Bromo Furan 300 2300 

Ethyne, fluoro-  0 63500 

 
vegetables when fresh and inoculated by the microorganism 
Erwinia carotovora of the training dataset. For ease of 
computation, the relationship between the independent variables 
and the target(s) is assumed to be linear. An approximate 
prediction of the concentration of VOCs of unknown samples are 
done, and based on these predictions, the degree of spoilage of 
the commodities are estimated. However, the precision of this 
model cannot be evaluated due to the unavailability of GC-MS 
results for each intermediate stage of infection and spoilage, but 
it can accurately categorize the test samples into “fully spoilt”, 
“partially spoilt” and “fresh” categories. 

RESULTS AND ANALYSIS 
Result of “Clustering” 

Figure 20 and Figure 21 show the PCA plots of fresh and state 
potatoes and fresh and stale onions, respectively. The plots 
clearly establish very good clustering abilities of the sensors in 
the array. 

 

 
Figure 20. PCA plot of fresh and stale potato samples. 

 
Figure 21. PCA plot of fresh and stale onion samples. 

 
Result of “Classification Study” 

 

 
Figure 22. Error Analysis of PNN classifier for potato samples. 

 
Figure 23. Error Analysis of PLS classifier for potato samples. 
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Figure 24. Error Analysis of PNN classifier for onion samples. 

 
Figure 25. Error Analysis of PLS classifier for onion samples. 

 
Figure 22 and Figure 23 show the absolute error of 

classification of potato as “fresh” and “stale” by executing PNN 
and PLS classifiers, respectively, over various cross-validation 
ratios, i.e., the ratio of the number of training samples to that of 
test samples. Figure 24 and Figure 25 represent the same for 
onion samples. 

The comparison for results of binary classification of fresh and 
stale vegetables are shown in Table 8. This is clear that the PLS 
classifier is more accurate as compared to the PNN algorithm for 
our use case.  

 
Table 8: Accuracy of Classification models. 

Classification 
Algorithm 

Vegetable Accuracy (%) 

Probabilistic Neural 
Network (PNN) 

Potato 90.92 

Onion 93.06 

Partial Least Square 
(PLS) 

Potato 99.45 

Onion 97.46 

Result of “Prediction Study” 
 

 
Figure 26. Predicted Concentration of Hexanoic acid, butyl ester in 
potato samples inoculated with Erwinia carotovora and three 
discrete spoilage levels. 

 
Figure 27. Predicted Concentration of 1-Butanol in potato samples 
inoculated with Erwinia carotovora and three discrete spoilage 
levels. 

 
Figure 28. Predicted Concentration of 3-Bromo Furan in onion 
samples inoculated with Erwinia carotovora and three discrete 
spoilage levels. 
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Figure 29. Predicted Concentration of Ethyne, fluoro- in onion 
samples inoculated with Erwinia carotovora and three discrete 
spoilage levels. 

 

Figure 26 and Figure 27 show the predicted concentrations of 
major VOCs emitted by potato samples when inoculated with 
Erwinia carotovora at different stages of infection. Figure 28 and 
Figure 29 show the same for onion samples. The model is 
validated with known samples and can accurately predict the 
degree of infection. However, the precision in concentration of 
VOCs predicted cannot be measured due to the lack of GC-MS 
results for each intermediate stage of infection.  

CONCLUSION 
The present work on continuous, online and in-situ freshness 

detection of stored vegetables through VOC sensing employing 
electronic nose is the first of its kind in India and proves to have 
huge potential. The performance of the developed e-POT device 
is found to be very stable and repetitive and has applicability in 
other continuous VOC monitoring applications. The study shows 
that after storage, fresh potato VOC starts to increase and reaches 
a saturation value. When the VOC value shoots up and crosses 
this saturation level by some noticeable margin, it indicates the 
presence of spoilage traces inside the storage chamber. Study 
with onion shows that if we can remove the stale commodities 
from the storage chamber, the VOC level, otherwise at a higher 
level, comes down again to the saturation level indicating the 
presence of only fresh onions inside the chamber. 

The classification accuracy obtained for fresh and stale 
samples are quite high, 99.45% and 97.46% for potato and onion, 
respectively. Our analysis predicts the concentration of certain 
chemicals and thereby spoilage stages (three discrete stages in 
this study) from VOC sensor data. The correctness of chemical 
concentration prediction cannot be validated as simultaneous 
GC-MS of headspace data cannot be carried out for all 
intermediate stages. However, the prediction of three discrete 
states of spoilage for both potato and onion are accurate. 

As a future scope, this work may be extended to other fruits 
and vegetables to annunciate alarms at the start of decay so that 
timely corrective actions can be taken. Correlation of spoilage 
percentage or degree of staleness with GC-MS determined VOC 

levels at different stages is another scope of future study. The 
addition of temperature and RH sensors in e-POT may help 
monitor these two very important parameters inside the chamber 
that would be helpful in taking corrective measures. As spin-off 
technology, this work can be customized and extended for 
household and hotel/restaurant refrigeration applications to 
monitor the health of stored food and raw food materials. 
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