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Computational Details 
Protein Preparation 
First, the protein structure was refined using the protein preparation workflow in the Schrödinger software. The bond 
order of the residues was adjusted. The missing loops of the protein were filled using the "Fill loops" option of the 
"Protein Preparation wizard". Pre-co-crystallized water molecules beyond 5 Å of the active site were removed, and 
hydrogen atoms were added to the structures. Protein structures were first optimized using molecular mechanics 
calculations with the OPLS-2005 force field1. Minimization was performed until the average root mean square deviation 
(RMSD) of the nonhydrogen atoms reached 0.3 Å. Additional states for the inhibitors within the proteins were generated 
(using "Generate Het States”), and the most appropriate states for all ligands were selected. Refinement of the side 
chains was performed using the "Prime side chain refinement" option. 
QM/MM Calculations 
Mixed QM/MM calculations provide better results than pure MM calculations2–6. However, treating the entire protein 
using quantum mechanics is computationally expensive and time-consuming. Hence, we applied QM to the active site 
and MM to the remainder of the protein. QSite was used for QM/MM calculations. The ligand and active site residues 
were treated using density functional theory (DFT), and the rest of the protein was treated using the OPLS-2005 force 
field. The B3LYP/LACVP* basis set was used to treat the active site residues. LACVP* employs the 6-31G* basis set 
for nontransition elements in the active site. For QM treatment, the ligand AZD7545, 12 water molecules trapped inside 
the protein cavity, and residues Leu194, Gln197, Hie198, Leu201, Phe202, Leu57, Gln61, Phe62, Asp64, Phe65, Thr74, 
Ser75, Phe78, and Leu79 were selected by the side chain selection method. Non-bonded cut-offs were employed, and 
continuum solvation with the Poisson Boltzmann Solver model was used, along with a constant dielectric electrostatic 
treatment with a dielectric constant of 1.0. Force-field checks were skipped, and without applying any MM or QM 
constraints, a single-point calculation was performed on the protein. 
Glide Docking 
Glide calculations were performed on the QM/MM-treated protein to estimate the ligand-binding energies7–9. To soften 
the potential of the nonpolar parts of the receptor, the van der Waals radii of the receptor atoms were scaled by 1.00 
with a partial atomic charge of 0.25. A grid box of size 56×56×56 Å3 with coordinates X = -5.52, Y = 41.09, and Z = 
8.53 Å was generated at the centroid of the ligand. Ligands were docked into the active site using Glide-XP (Glide 
"extra precision"). Glide generates internal conformations and passes them through a series of filters. The first filter 
places the ligand center at various grid positions of 1 Å and rotates it around three Euler angles. At this stage, crude 
score values and geometrical filters weeded out unlikely binding modes. The next filter stage involves a grid-based force 
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field evaluation and refinement of docking solutions, including torsional and rigid body movements of the ligands. The 
OPLS-2005 force field was used for this purpose. A small number of surviving docking solutions can then be subjected 
to the Monte Carlo procedure to minimize the energy score. The final energy evaluation was performed using a Glide 
Score (GScore), and a single best pose was generated as the output for a specific ligand.  

SiteRotBBuryPMetalHbondLipoCoulbvdWaGscore ++++++×+×= , 
where vdW = van der Waals energy, Coul = Coulomb energy, Lipo = lipophilic contact term, Hbond = hydrogen-bonding 
term, Metal = metal-binding term, BuryP = penalty for buried polar groups, RotB = penalty for freezing rotatable bonds, 
and Site = polar interaction at the active site. The coefficients of vdW and Coul were a = 0.065 and b = 0.130, 
respectively. 
The best docked structure for each ligand was chosen using the model energy score (Emodel), which combines the Glide 
score, non-bonded interaction energy, and excess internal energy of the generated ligand conformation. 
The Gibbs energy of binding between the receptor and ligand was predicted using the Prime MM/GBSA application in 
Schrödinger. MM/GBSA combines the OPLS molecular mechanics energy (EMM), the surface-generalized Born 
solvation model for polar solvation (GSB), and a nonpolar solvation term (GNP). The GNP term comprises the nonpolar 
solvent-accessible surface area and van der Waals interactions. The total Gibbs energy of binding was calculated as 
follows: 
ΔGbinding = Gcomplex - (Gprotein + Gligand) (1) 
G = EMM + GSB + GNP 
ADME Properties 
The QikProp program10 was used to determine the absorption, distribution, metabolism, and excretion (ADME) 
properties of the analogs. It predicts both physically significant descriptors and pharmaceutically relevant properties of 
drugs. 
The program was processed in normal mode, and forty-four properties were predicted for different states of doxifluridine 
and its metabolites. These properties consisted of principal descriptors and physicochemical properties with a detailed 
analysis of the predicted octanol/water partition coefficient (logPo/w), octanol/gas partition coefficient (logPoct), 
water/gas partition coefficient (logPw), polarizability in cubic Ångstrom (Polrz), % human absorption in the intestines 
(QP%), brain/blood partition coefficient (logBB), IC50 value for the blockage of HERG K+ channels (logHERG), skin 
permeability (logKp), prediction of binding to human serum albumin (logKhsa), apparent Caco-2 cell permeability in 
mm/s (Caco), and apparent MDCK cell permeability in mm/s (MDCK). Caco-2 cells are a model of the gut-blood 
barrier. MDCK cells are considered good mimics of the blood-brain barrier. It also evaluates the acceptability of the 
analogs based on Lipinski’s rule of five11,12, which is essential for rational drug design. Poor absorption or permeation 
is more likely when a ligand violates Lipinski’s rule of five, that is, it has more than five hydrogen donors, the molecular 
weight is over 500, the logP is over 5, and the sum of N and O is over 10. 
Molecular Dynamics Calculations 
The OPLS3 force field13 was used for the simulation. The NPT ensemble was used at a temperature of 300 K and a 
pressure of 1 bar. Long-range electrostatic interactions were computed using the particle mesh Ewald approach14, the 
long-range electrostatic interactions were computed.9.0 Å was set as the cutoff radius for the Coulomb interactions. The 
Martyna–Tuckerman–Klein chain coupling technique15 and a relaxation duration of 2.0 ps were combined with the 
barostat approach for pressure management. The Nosé–Hoover chain coupling technique16 thermostat with a relaxation 
duration of 1.0 ps, was used to control the temperature. Using an r-RESPA integrator, which updated the long-range 
forces every three steps and the short-range forces at every step, the nonbonded forces were computed. A 2 fs time step 
was employed. For an additional investigation, the trajectories were stored at intervals of 2 fs. The simulation interaction 
diagram tool of the Desmond MD package was used to investigate the interactions between ligands and proteins. The 
stability of the MD simulations was tracked by analyzing the Root Mean Square Deviation (RMSD) of the ligand and 
protein atom locations over time. The systems were relaxed in accordance with Desmond's default methodology before 
MD computations. Prime MM-GBSA computations were used to determine the binding energies of the ligand-receptor 
complexes in all 1000 structures sampled during the simulation. 
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Table S1: Stereoisomers of doxifluridine, 5-fluorouridine and 5-fluorouracil 
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5-Fluorouridine stereoisomers 
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Table S2: ADME properties of doxifluridine states 

Title QPpolrz QPlogPC16 QPlogPoct QPlogPw QPlogPo/w QPlogS 
D1 20.03 6.82 16.17 14.67 -0.84 -1.70 
D2 20.67 6.94 16.77 14.72 -0.82 -1.81 
D3 21.08 6.97 17.00 14.84 -0.84 -1.93 
D4 21.37 6.97 16.70 14.82 -0.78 -1.98 
D5 20.82 6.87 16.62 14.69 -0.73 -1.84 
D6 20.99 7.04 17.28 14.65 -0.64 -1.78 
D7 19.92 6.72 16.03 14.67 -0.87 -1.73 
D8 21.13 6.88 16.70 14.75 -0.77 -1.95 
D9 20.35 6.82 16.02 14.70 -0.85 -1.79 
D10 21.17 7.01 17.11 14.86 -0.88 -1.95 
D11 19.88 6.72 16.75 14.59 -0.94 -1.72 
D12 20.46 6.82 17.72 14.66 -0.87 -1.81 
D13 20.58 6.98 16.45 14.72 -0.83 -1.77 
D14 20.55 6.96 16.35 14.82 -1.04 -1.85 
D15 21.11 6.89 17.68 14.78 -0.89 -1.98 
D16 21.31 7.05 16.64 14.83 -0.86 -1.95 
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Table S3: Descriptors for doxifluridine states 
Titl
e 

HER
G 

Caco 
logB
B 

MDC
K 

logK
p 

logKhs
a 

QP
% 

PSA 
glo
b 

D1 -2.86 
154.8
7 

-0.92 115.02 -4.71 -0.75 
61.2
5 

112.3
4 

0.9
3 

D2 -2.99 
129.6
5 

-1.01 95.94 -4.87 -0.74 
59.9
3 

117.9
0 

0.9
2 

D3 -3.33 
116.1
8 

-1.12 84.27 -4.94 -0.76 
58.9
7 

121.4
4 

0.9
0 

D4 -3.39 
128.6
1 

-1.10 94.98 -4.85 -0.75 
60.1
4 

119.4
5 

0.9
0 

D5 -3.12 
171.9
9 

-0.93 129.88 -4.61 -0.75 
62.7
0 

115.1
3 

0.9
1 

D6 -2.85 
190.4
6 

-0.84 145.16 -4.52 -0.71 
63.9
8 

121.4
6 

0.9
3 

D7 -3.01 
154.2
4 

-0.95 114.51 -4.71 -0.77 
61.0
5 

111.8
7 

0.9
2 

D8 -3.34 
143.7
2 

-1.05 107.06 -4.77 -0.76 
61.0
6 

117.8
3 

0.9
0 

D9 -3.03 
137.8
6 

-1.00 102.82 -4.82 -0.76 
60.2
7 

117.0
4 

0.9
2 

D10 -3.33 98.29 -1.19 71.03 -5.10 -0.76 
57.4
3 

123.8
0 

0.9
0 

D11 -2.82 
121.5
1 

-1.02 88.21 -5.00 -0.75 
58.7
7 

116.7
4 

0.9
2 

D12 -3.02 
125.4
3 

-1.04 91.49 -4.94 -0.75 
59.4
0 

116.4
8 

0.9
1 

D13 -2.90 
127.3
2 

-1.00 93.87 -4.89 -0.73 
59.7
5 

122.5
8 

0.9
3 

D14 -3.07 69.83 -1.28 48.61 -5.45 -0.75 
53.8
4 

127.2
6 

0.9
1 

D15 -3.35 99.76 -1.20 72.32 -5.13 -0.76 
57.4
9 

120.9
4 

0.8
9 

D16 -3.25 97.59 -1.18 70.60 -5.12 -0.74 
57.5
1 

124.3
0 

0.9
0 

 
Table S4: ADME properties of 5-fluorouracil 

Polrz logPC16 logPoct logPw logPo/w LogS Rule of five dipole CNS 
10.65 3.93 9.06 8.39 -0.89 -1.05 0 5.02 -1.00 

 
Table S5: Important Descriptors for 5-fluorouracil 

HERG Caco logBB MDCK logKp logKhsa QP% PSA glob 
-2.66 190.00 -0.67 145.41 -4.67 -0.74 62.52 87.35 0.95 

 
Table S6: ADME properties of 5-fluorouridine states 

Title polrz logPC16 logPoct logPw logPo/w logS 
U1 19.07 7.28 18.83 18.01 -1.84 -1.68 
U2 18.80 7.23 18.92 17.95 -1.83 -1.65 
U3 18.80 7.29 18.84 17.95 -1.82 -1.63 
U4 18.75 7.17 18.85 17.97 -1.85 -1.66 
U5 19.27 7.37 19.60 18.02 -1.84 -1.69 
U6 18.84 7.22 18.65 17.99 -1.85 -1.66 
U7 18.76 7.24 18.04 17.90 -1.79 -1.63 
U8 18.17 6.94 19.45 17.75 -1.71 -1.59 
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U9 18.10 7.07 17.80 17.89 -1.86 -1.59 
U10 19.45 7.33 19.62 18.03 -1.89 -1.74 
U11 19.07 7.21 18.72 18.01 -1.90 -1.71 
U12 18.86 7.17 19.46 17.94 -1.85 -1.67 
U13 18.16 7.08 18.01 17.92 -1.85 -1.60 
U14 18.11 7.06 17.93 17.91 -1.85 -1.60 
U15 19.25 7.30 18.06 18.08 -1.88 -1.72 
U16 18.67 7.08 19.39 17.85 -1.75 -1.64 

 
Table S7: Descriptors for 5-fluorouridine states 
Title HERG Caco logBB MDCK logKp logKhsa QP% PSA glob 
U1 -3.08 40.95 -1.51 27.56 -5.74 -0.85 45.03 142.24 0.92 
U2 -2.96 44.55 -1.45 30.22 -5.67 -0.84 45.76 139.97 0.92 
U3 -2.87 43.56 -1.43 29.50 -5.69 -0.82 45.61 146.67 0.93 
U4 -3.09 44.97 -1.48 30.40 -5.66 -0.86 45.73 138.09 0.91 
U5 -3.02 38.05 -1.52 25.47 -5.80 -0.84 44.49 145.84 0.92 
U6 -3.07 42.66 -1.49 28.72 -5.70 -0.85 45.30 140.03 0.92 
U7 -2.84 50.50 -1.38 34.49 -5.57 -0.82 46.97 141.02 0.93 
U8 -2.88 85.99 -1.19 61.23 -5.10 -0.83 51.57 132.93 0.93 
U9 -2.86 48.04 -1.40 32.62 -5.62 -0.84 46.16 138.24 0.93 
U10 -3.18 32.70 -1.63 21.60 -5.96 -0.86 43.02 142.81 0.91 
U11 -3.19 34.95 -1.61 23.09 -5.90 -0.87 43.43 143.28 0.91 
U12 -3.05 43.00 -1.49 29.03 -5.72 -0.86 45.36 141.16 0.91 
U13 -2.93 50.24 -1.39 34.22 -5.56 -0.84 46.58 136.28 0.92 
U14 -2.91 50.81 -1.39 34.64 -5.55 -0.84 46.67 140.84 0.93 
U15 -3.24 35.54 -1.60 23.54 -5.85 -0.87 43.69 141.60 0.91 
U16 -2.99 65.26 -1.32 45.68 -5.34 -0.84 49.20 139.57 0.92 

Molecular Dynamics 

(a) 
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(d) 
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 (e) 

 

(f) 

Figure S1. Results of MD simulations. (a) Protein-ligand RMSD (b) Protein RMSF (c) Ligand RMSF (d) Protein-ligand 
contacts (e) Ligand torsion profile (f) Ligand properties 
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