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Recent advancements in the asymmetric [1,3]-proton shift reaction for the preparation of amino compounds possessing a 
tetrafluoroethylene moiety have been reported. We critically discuss the observed stereochemical outcomes with respect to the 
trifluoromethyl and perfluoroalkyl groups traditionally employed in this reaction. The methodological significance of these results is 
highlighted as well as noting a potential inaccuracy in the reported enantioselectivities due to the self-disproportionation of enantiomers 
(SDE) phenomenon.  
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INTRODUCTION 
The increasing prevalence of fluorine-containing, small-

molecule pharmaceuticals is a well-justified phenomenon that 
capitalizes on the distinctive steric, electrostatic, and chemical 
properties of fluorine [1]. Despite well-founded health and 
environmental concerns [2], the integration of fluorine into 
bioactive molecules has shown no signs of abating [3]. Fluorine-
containing drugs literally save lives and contribute significantly 
to the standards of well-being in Western countries [4]. 
Nevertheless, projecting future trends, it is plausible to anticipate 
that well-established substituents in drug design, such as the 
trifluoromethyl 1 and pentafluoroethyl 2 groups (Figure 1) that 
degrade into persistent TFA and pentafluoropropionic acid, 
respectively [5], will likely face increased regulatory scrutiny [6]. 
On the other hand, fluorinated substituents such as 
tetrafluoroethylene 3–5 [7], which may biodegrade to fluoride 
and thus align with evolving environmental legislation, are likely 
to encounter more favorable regulatory prospects. 
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Figure 1. Common fluorine-containing moieties: trifluoromethyl 1, 
pentafluoroethyl 2, tetrafluoroethyl 3, acyclic tetrafluoroethylene 4, 
and cyclic tetrafluoroethylene 5 groups. 

The properties and bioactivity of tetrafluoroethylene-
containing compounds are generally not well known, apart from 
reports on the applications of tetrafluoroethylene moieties of 
types 6 and 7 (Figure 2) in the design of liquid crystals and 
fluorescent materials [8]. Additionally, compounds 8 and 9 have 
been reported to exhibit insecticidal and herbicidal activities, 
respectively [9]. 
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Figure 2. Tetrafluoroethylene-containing compounds 6–9 
possessing useful properties. 
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Synthetic approaches for preparing compounds with a 
tetrafluoroethylene moiety are quite scarce, limited primarily to 
the elaboration of the double bond in substrates of type 10 or the 
addition of Li–CF2CF2– species to C=O or C=N bonds (Scheme 
1). 

Sharpless dihydroxylation of the double bond in substrate 10, 
conducted under standard conditions, affords diol 11 with 
excellent enantioselectivity, albeit only in moderate yields [10]. 
Similarly, the enantioselective conjugate addition of aryl boronic 
acid to the C=C bond in 10 in the presence of a rhodium/BINAP 
catalyst provided compound 12 with high enantioselectivity, but 
again albeit only in 57% yield [11]. It should be noted that low-
to-moderate chemical yields coupled with high-to-excellent 
enantioselectivities can often be an indication of erroneously 
recorded stereochemical outcomes owing to workers’ oversight 
of the self-disproportionation of enantiomers (SDE) phenomenon 
[12]. Thus, unless SDE tests [13] are conducted, as required by 
some journals [14], the true enantioselectivity of these reactions 
remains unconfirmed and other researchers attempting to 
replicate such results should be aware of this fact. 
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Scheme 1. Examples of asymmetric synthesis of tetrafluoroethylene 
compounds. 

Diastereoselective addition reactions of Li–CF2CF2– species 
to the C=O and C=N bonds of chiral derivatives 13 are conducted 
under very restrictive and operationally inconvenient conditions, 
and only yield addition products 14 in moderate yields (61–76%) 
and variable diastereoselectivity [15]. 

Considering the high potential interest in tetrafluoroethylene-
containing derivatives and the rather limited synthetic access to 
these compounds, it was exciting to see the report from Tsutomu 
Konno's laboratory on the asymmetric synthesis of 
tetrafluoroethylenated amines via the [1,3]-proton shift reaction 
[16]. In this brief review, we highlight the practical significance 
and methodological advances of the reported results while at the 

same time noting potential inaccuracies in the reported 
enantioselectivities due to the SDE phenomenon. 

[1,3]-PROTON SHIFT REACTION 
The [1,3]-proton shift reaction refers to azomethine–

azomethine isomerization via base-catalyzed [1,3]-proton 
transfer, as seen in the transformation of 16 to 17 (Scheme 2) 
[17]. This isomerization is a crucial step in the overall biomimetic 
reductive amination [18] of various carbonyl compounds 15 to 
amines 18 and amino acids [19]. 
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Scheme 2. Azomethine–azomethine isomerization via base-
catalyzed [1,3]-proton transfer as a key step in biomimetic reductive 
amination. 

Of particular interest is the asymmetric version of this reaction, 
which can be conducted using a chiral base [20] and is thus 
enantioselectively catalyzed or a chiral amine to form the 
requisite Schiff base 16 [21] and thus utilizes a stoichiometric 
amount of chiral auxiliary starting from ketone 15. Base-
catalyzed azomethine–azomethine isomerization [22] is a 
reversible process; therefore, it is only of synthetic value when 
the equilibrium between 16 and 17 is strongly shifted towards 17, 
for example when 17 is present in greater than 95% yield, 
ultimately leading to the amine 18. Consequently, all of the 
parameters, such as the reaction conditions [23] and the nature of 
the substituents [24], play a critical role in the overall synthetic 
success. In this regard, the recent reports from Konno's laboratory 
on the use of tetrafluoroethylene-containing substrates represents 
a significant methodological advancement and a convenient 
access route to the corresponding amino compounds possessing 
valuable properties and potential bioactivity [16]. 

ASYMMETRIC SYNTHESIS OF TETRAFLUOROETHYLENATED 
AMINES VIA [1,3]-PROTON SHIFT 

The starting tetrafluoroethylenated ketones 19 (Scheme 3) 
were prepared in a single step using commercially available 
3,3,4,4-tetrafluoro-1-butene (20). These were then converted to 
organometallic species 21 followed by a reaction with acyl 
chloride to afford the target ketones 19 [25]. 
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Scheme 3. Synthesis of tetrafluoroethylenated ketones 19. 
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The reaction of ketones 19 with enantiomerically pure 1-
phenylethylamine (Scheme 4) were conducted under mild 
conditions at ambient temperature in diethyl ether using TiCl4 as 
a dehydrating agent [26]. The procedure yielded the 
corresponding imines 22 in moderate to excellent isolated yields 
(60–96%). 

The [1,3]-proton shift reaction of tetrafluoroethylenated 
imines 22 revealed unexpected results. Azomethine–azomethine 
isomerizations conducted in the presence of a strong base, such 
as DBU, gave rise to three major products 23–25. Product (S)-23 
was the intended and expected compound, while 
dehydrofluorinated derivative 24 could be anticipated based on 
literature results [17, 20, 21, 23, 24]. However, the double 
dehydrofluorinated compound 25 was an entirely unexpected. 

It was demonstrated that the reaction solvent and amount of 
DBU can profoundly affect the relative ratio of products 23–25. 
Analysis of the reaction outcomes under various conditions led 
to the conclusion that imine 23 is the first reaction product, giving 
rise to intermediate triene 24 via the reaction anionic intermediate 
26. This intermediate then undergoes base-catalyzed cyclization 
to produce 25 via the reaction anionic intermediate 27. Cyclic 
product 25 is likely the final and only product if the reaction is 
allowed to proceed to completion. The step-by-step sequence of 
the corresponding reactions and plausible mechanistic details are 
illustrated in Scheme 5. 

 

 
Scheme 5. Mechanism of dehydrofluorinated product, 25formation. 

 
The [1,3]-proton shift products 23 (Scheme 6) were treated 

with 2N HCl aqueous solution in diethyl ether for 2 hours, 
followed by neutralization with 2N NaOH aqueous solution to 
yield the corresponding free amines 28. Subsequent treatment of 

amines 28 with CbzCl and pyridine in 
dichloromethane afforded the 
corresponding protected derivatives 29, 
which were isolated with high 
enantiomeric purity and in reasonable 
yields.  

SDE is a ubiquitous and general 
phenomenon that has been observed 
and reported for practically all types of 
chiral compounds under all known 
physicochemical phase transitions, 
including achiral gas chromatography 
[27]. Typical laboratory purification 

methods such as achiral column chromatography [28] and 
sublimation [29] are particularly prone to the SDE phenomenon. 

 

 

Scheme 6. Preparation of the protected target amines 29 from Schiff 
bases 23. 

 
Moreover, it has been well established that fluorine is one of 

the most forceful SDE-phoric groups as a large magnitude of the 
SDE is often observed for fluorinated compounds when a 
fluorine atom(s) is(are) located in close proximity to the 
stereogenic center [30]. Therefore, it should be considered an 
unfortunate oversight by the authors [16] that they did not 
perform the required SDE tests [14] relative to their applied 
purification methods to confirm and validate the reported 
stereochemical outcome of this novel and fascinating [1,3]-
proton shift reaction. 

CONCLUSIONS 
As reported by Konno's group, the [1,3]-proton shift reaction 

can be successfully extended to the asymmetric synthesis of 
amines containing a tetrafluoroethylene moiety. However, the 
corresponding DBU-catalyzed azomethine–azomethine 
isomerization of tetrafluoroethylene-containing imines is 
complicated by sequential dehydrofluorination, which leads to 
the formation of unsaturated byproducts. But by and large the 
target tetrafluoroethylene imines could be isolated with high 
enantiomeric purity in moderate yields. However, the true 
enantioselectivity of these reactions remains unconfirmed in the 
absence of SDE tests because of the potential for the SDE 
phenomenon to be in effect during routine purification steps and 
other workers attempting to replicate the reported results should 
be aware of this oversight. Nevertheless, the overall procedure 
provides a simple access to a previously unknown compound 
with potentially interesting biological activity. 

 
Scheme 4. [1,3]-Proton shift reaction of imines 22 with the resulting relative amounts of the 
products 23–25. 
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