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ABSTRACT 

 

The click chemistry reactions are 
the one leading conjugation 
protocols where two molecules 
can form the bonds in simple 
reaction conditions and at faster 
reaction rate. Understanding of the different methods and catalysts used for the click chemistry reactions provides the platforms for 
exploration of this reaction in construction of diversity of molecules. In this review, synthesis of triazolyl heterocycles via click chemistry with 
their in-depth molecular pathway mechanisms have been discussed. The regioselectivity of final products and role of catalysts involved have 
been present with a number of examples of heterocyclic molecules.  
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INTRODUCTION 
Chemistry, traditionally being the science of synthesis and 

structural variations of molecules, has gradually undertaken the 
more challenging task of biology-oriented synthesis.1,2 The 
generation of molecules/molecular assemblies possessing well 
defined biological functions remains an extremely challenging 
task; immediate refinements in conventional synthetic 
methodologies are necessary. New and more efficient chemical 
reactions and methodologies, which may override the laborious 
protection/deprotection and purification steps in conventional 
total synthesis, could revolutionize the next-generation chemical 
and biological research.3 

In 2009, 94% of the top grossing pharmaceuticals were 
nitrogen-containing molecules.4 As pharmaceutical agents 
containing nitrogen atoms in their structure become increasingly 
common, growing interest has been generated in the synthesis of 

molecules that incorporate nitrogen. Therefore, synthetic 
chemists aim to incorporate nitrogen-containing heterocycles in 
their target compounds in the most efficient way. In the last 
decade, triazoles (1,2,3 & 1,2,4), a nitrogen containing 
heterocycles (Figure 1) have received much attention, as their 
intriguing physical and biological properties, as well as their 
excellent stability, render them promising drug core structures.5 
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Figure 1. Structure of triazoles 

In 1960s, Huisgen and his co-workers6 prepared triazoles via 
1,3-dipolar cycloaddition reaction between acetylenes and azides 
which was brought back into focus by Sharpless and others7 when 
they established the concept of “click chemistry”. This approach 
(click chemistry) is very popular for the joining of two/more 
units, mimics the approach used by nature to produce substances. 
Click reaction has found atremendous number of novel 
applications8 after the discovery that it can be efficiently 
catalyzed by copper(I) (Scheme 1).9 Moreover, the “click 
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reaction” involve the simple reaction conditions, readily 
available reactant and reagents, no solvent require, or a benign or 
simple removable solvent.9 

 

 
Scheme 1: Copper catalysed formation of 1,2,3-triazolyl molecule 
from ‘click’ of azide and alkyne 
 

At first, the above definition did not true for classical Huisgen 
1,3-dipolar cycloaddition, but Meldal in 2002 the first discovery 
of copper(I) salts catalyzing the reaction and then by Sharpless7 
allowed it to develop from a reaction under harsh conditions that 
formation a mixture of 1,4- and 1,5- regioisomers to a 
regioselective reaction that can be completed in a very short 
reaction time at room temperature (Scheme 2). The above 
definition fit for the Cu alkyne-azide cycloaddition(CuAAC) 
reactions that it is almost synonymous of “click chemistry”. To 
developed new synthetic methods to construct chemically 
modified nucleoside, nucleotide, oligonucleoside and 
oligonucleotides (ODNs) for biological and nanotechnological 
applications and the researcher quickly accepted that CuAAC 
reaction is a great method to synthesized modified nucleoside, 
nucleotide, oligonucleoside and oligonucleotides. The features of 
the CuAAC reaction that are potentially useful in such 
applications are: 
• Azides and alkynes can be attached to nucleic acids without 

greatly disturbing their biophysical properties. 
• Azides and unactivated alkynes are almost entirely 

unreactive towards the functional groups normally 
encounteredin nature; they react only with each other. 

• The triazole unit is extremely stable, and is not toxic. 
• A broad range of biomolecules has been characterized to 

date, including peptides,10 proteins,11 polysaccharides,12 
and even entire viruses13 and cells.14 

 
A set of chemical reactions, known as bio-orthogonal 

reactions, that are orthogonal to most functional groups in 
biological systems has so far shown promising applications in 
biological research.15 Of these reactions, the Cu(I)-catalyzed 
version of the Huisen 1,3-dipolar cycloaddition reaction between 
azides and terminal alkynes for the construction of trizoles, 
referred to as a “click chemistry reaction”, was defined by nobel 
laureate KB Sharpless and associates in 2001. Click chemistry 
has recently emerged to become one of the most powerful tools 
in drug discovery,16–18 chemical biology, and proteomic 
applications.19 In recent years, the design and synthesis of 
pharmacologically relevant heterocyclic molecules by 
combinatorial techniques have proven to be a promising strategy 
in the search for new pharmaceutical lead structures. Click 
chemistry is one of the powerful reactions for making 
carbon−heteroatom−carbon bonds in aqueous environment with 
a wide variety of chemical and biological applications in various 
fields.20–22 

In this review we describe the fundamentals of the click 
chemistry, mechanisms of the click reactions and its uses across 
synthesis of diverse heterocycles and biological conjugations i.e. 
biorthogonal chemistry, focusing on synthetic strategies and 
briefly describing important biological applications. The 
presented review covers published material since 1893, until the 
beginning of 2016. 

CLICK CHEMISTRY 
1,3-dipolar cycloaddition reactions and Nucleophilic ring 

opening are the most widely studied click reactions to date. 
Preparation of potential drug candidates by these reactions 
utilizes building blocks such as acetylenes and olefins. These 

starting materials are readily 
available in Nature23 or can be 
accessed through “steam 
cracking” of alkanes in the 
petrochemical industry and 
can be functionalized by 
oxidative or addition 
reactions. Several well-known 
types of reactions have been 
classified as ‘click’ reactions 
(Fig. 2). These include, but are 
not limited to, cycloadditions 
of unsaturated species (Diels-
Alder cycloadditions and 1,3-
dipolar cycloadditions, Fig. 2 
Cand D), additions to 
unsaturated carbon-carbon 
bonds (epoxidations, sulfenyl 
halide additions, Fig. 2 A), 
non-aldol type carbonyl 
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Scheme 2. 1,3-Dipolar Cycloaddition between Azides and Alkynes 
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chemistry (Fig. 2 D), and nucleophilic substitution chemistry 
(ring-opening reactions of epoxides, aziridines etc., Fig. 2F). 
Sequential performance of two different types of ‘click’ 
reactions, for instance a Huisgen cycloaddition followed by a 
Diels-Alder cycloaddition, has been termed a ‘double click’ 
reaction.24–27 Philosophy of ‘click’ chemistry can be explained by 
the following statement: “all searches [for new drugs] must be 
restricted to molecules that are easy to make”. 
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Figure 2. ‘Click’ reactions 

 

1,3-DIPOLAR HUISGEN CYCLOADDITION[3+2] 
(TRIAZOLE) BACKGROUND 

A chemical reaction between a 1,3-dipole and a dipolarophile 
to form a five-membered ring is known as 1,3-dipolar 
cycloaddition reaction. Already in 1893, Michael discovered a 
synthesis of 1,2,3-triazoles(also v-triazole for vicinal)28 by 
reacting phenyl azide with acetylene dicarboxylic ester (Scheme 
3). Huisgen classified this type of reaction as [3+2] 1,3-dipollar 
cycloaddition i.e. the concerted addition of a 1,3-dipole to a 
multiple bond.6,29,30 The 1,3-dipole is characterized by the 
presence of an electrophilic atom, having an electron sextet and 
a formal positive charge, as well as a nucleophilic atom, having 
an electron octet and a formal negative charge, with one in the 1-
position and the other one in the 3-position (1c, Fig. 3). 

 

 

Scheme 3: Synthesis of 1,2,3-triazoles 

N N
R

N N N
R

N N N
R

N N N
R

N

1,3-dipole diradical

1a 1b 1c 1d

 

Figure 3. Selected contributing structures of an organic azide. 

Woodward and Hoffmann in 1969 classified the 1,3 dipolar 
cycloaddition as an example of pericyclic reactions, which is 
thermally allowed due to symmetrically and geometrically 
favorable [π4s +π2s] interactions. Nevertheless, rate of reaction 
and regioselectivity remained unexplained until Sustmann et 
al.31,32 and Houk et al.33–35 applied a frontier molecular orbital 
(FMO) model to the reaction.36,37 FMO model is based upon 
perturbation theory.38–41 Concisely, interaction between highest 
occupied molecular orbital (HOMO) of one reactant (1,3-
dipole/dipolarphile) and the lowest unoccupied molecular orbital 
(LUMO) of the other reactant (1,3-dipole/dipolarphile) with the 
reaction rate depending on the corresponding energy gap. 
Therefore, rate of reaction will increase if HOMO-raising 
electron-donating group (EDG) as well as a LUMO-lowering 
electron-withdrawing group (EWG). Moreover, EDGs and 
EWGs will polarize particularly the π system, which influences 
the regioselectivity because the interaction occurs in such a way 
that the orbitals with larger orbital coefficients overlap (Fig. 4). 
Hence, [3+2] cycloaddition reaction of phenyl azide and 
phenylacetylene yields the 1,4- and 1,5-disubstituted 1,2,3-
triazoles (regioisomers) in a 1 : 1 ratio,42 while electron-deficient 
and electron excessive alkynes favor the formation of the 1,4-
disubstitued triazole(dipole-HOMO control, A) and the 1,5-
disubstitued triazole (dipole-LUMO control, B), respectively.43–
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Figure 4: FMO interactions between azide and alkyne (R = Ph) 

Remarkably, [3+2] cycloaddition reactions between phenyl 
azidesand α-keto phosphorous ylides as alkyne equivalents 
followed by elimination of phosphine oxide yields 1,5-
disubstituted1,2,3-triazoles exclusively (Scheme 4).47 In 
cycloaddition reaction, the rate of reaction depends on the 
solvent, and the reaction is controlled by dipole-LUMO, azides  
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Scheme 4. 1,3-Dipolar cycloaddition with a-keto phosphorous 
ylides.  
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which have electron poor gives shorter reaction time. 
Importantly, in this reaction substituent have a free choice for the 
formation of 1,2,3-triazole as they do not control the 
regioselectivity. Moreover, ynamines were reported to allow the 
exclusive formation of 1,5-disubstituted 1,2,3-triazoles. 

In 1963, Huisgen48 throughly studied azide alkyne 
cycloaddition reaction and carried out this reaction using heat 
source. This reaction suffers a high activation barrier and 
consequently demands usually elevated temperature and 
pressure. During the course of his investigation he explored 
various substituted/unsubstituted alkynes for 1,3-dipolar 
cycloaddition and observed that a mixture of 1,4- and 1,5-
regioisomeric 1,2,3-triazole product was obtained when an 
alkyne is unsymmetrically substituted or terminal (Scheme 
5A).48–50 In true since Huisgen was the first who classified and 
defined51 and proposed mechanistic (Scheme 5B)52 of 1,3-dipolar 
cycloaddition. 

A) Regiochemistry of the 1,3-dipolar cycloaddtion 
 

B) Cycloaddition reaction mechanism 

a b c

d e
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Scheme 5: A) Regiochemistry of the 1,3-dipolar cycloaddition, B) 
Mechanism 

Sustman, in 1971 solved the mystery of formation of 1, 4 & 1, 
5-regioisomers.31,53 He proposed the difference between HOMO-
LUMO energy level of both azides and alkynes to be responsible 
for the lack of regioselectivity. The difference between HOMO-
LUMO energy levels of both azides and alkynes are very close in 
magnitude and hence both dipole-HOMO and dipole-LUMO 
interact simultaneously and subsequently give a mixture of 
regioisomers (Figure 2). 

 
Figure 5: Regioisomeric pathways for 1,3-dipolar cycloaddition 

Later, it was proposed that the interaction between 
unsymmetrical reagents in a 1,3-dipolar cycloaddition reaction 
can give two isomeric adducts depending on the relative position 
of the substituent in the cyclo adduct. Head-to-head interaction 
between azide and alkyne produces 1,5-regioisomer while head-
to-tail interaction produces 1,4-regioisomer (Figure 5).54,55 

Iso-oxazole is prepared from the alkyne and a nitrile oxide, this 
reaction is also 1,3-dipolar cycloaddition reaction. A very 
efficient and practical method has been developed by Fokin and 
his coworkers that allow to synthesis of 3,5-disubtituted iso-
oxazole in a one pot procedure without the formation of 
regioisomers (Figure 6). 
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Figure 6: Iso-oxazole formation in 1,3-dipolar cycloaddition 
manner 

TYPE OF TRIAZOLE (1,2,3 AND 1,2,4-TRIAZOLE) 
Presence of three nitrogen heteroatoms in five-membered ring 

systems defines as interesting class of compounds, the triazoles. 
These may be of two types, the 1,2,3-triazoles or υ-triazoles (I) 
and the 1,2,4- triazoles or δ-triazoles (II) (Figure 7). 
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Figure 7. Types of triazoles 

Copper-catalyzed azide–alkyne cycloaddition 
The Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) 

reactions discovered by Meldal et al. and Fokin, Sharpless et al., 
yields 1,2,3-triazoles most efficiently and with avery high 
regioselectivity for the 1,4-regioisomer.56–59 A collection of 
mechanistic key aspects based on computational60–62 and 
experimental studies63–65 is collected in Scheme 6. Firstly, a Cu(I) 
species undergoes p coordination of an alkyne (A), which greatly 
increases the CH-acidity of the terminal alkyne (pKa drops from 
B25 to B15) and allows the subsequent formation of a s-
coordinated Cu(I) acetylide with the activated alkyne (B) in 
aqueous media even without an additional amine base. DFT 
calculations suggest that a second Cu(I) remains p-coordinated at 
the a-carbon of the s-bound acetylide resembling the known m-
coordination mode of Cu(I) acetylides.66 In the next step, 
coordination of an azide at the p-coordinated Cu(I) center occurs 
(C). This is corroborated by the absence of the subsequent 
cycloaddition when using a preformed s-bound Cu(I) acetylide 
without additional Cu(I). In principle, coordination of the organic 
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azide can occur via both the substituted or the terminal nitrogen, 
but, in contrast to the p-accepting, terminal nitrogen, the p-
donating, substituted nitrogen is expected to increase the electron 
density on the metal center,67 which would facilitate the 
subsequent oxidative coupling (D). 

The observed selectivity for the 1,4-regioisomer may be 
explained by the preference for Cu(I) p coordination at the a-
carbon of the acetylide, which directs a nucleophilic attack of the 
b-carbon at the terminal, electrophilic nitrogen of the coordinated 
azide upon oxidative coupling.68 As a result of the latter, rate-
limiting step, a six-membered metal cycle is formed including a 
m-alkenylidene. According to computational methods, this 
intermediate is stabilized by a geminal bimetallic 
coordination,69,70 while a potential monometallic cupra-cycle, 
which was postulated earlier, would represent an unfavorably 
strained structure possessing excessive electron density. 
Recently, the transient formation of the bimetallic cupra-cycle 
was corroborated by a Cu63/Cu65 crossover experiment, which 
implies that the six-membered ring can isomerize. It should be 
noted that the formal oxidation states of the two Cu centers are 
not given as it remains unclear whether Cu(III)71 is intermediately 
formed or if both metal centers cooperate in the oxidation step. 

Furthermore, improved activity has been observed when using a 
bimetallic, mixed-valent Cu(II)/Cu(I) catalytic system.72 
Ultimately, ring contraction and Cu(I) extrusion via reductive 
elimination (E) affords the Cu(I)-bound triazolide in a highly 
exothermic process. In aqueous media, the Cu(I) triazolide then 
readily undergoes protonolysis (F) liberating the free triazole and 
allowing the Cu(I) to re-enter the catalytic cycle. 

In 2004, Fokin and his coworkers73 reported one pot synthesis 
of 1,4-disubstituted 1,2,3-triazole directly from alkyl and aryl 
halides, sodium azide and terminal alkyne by in situ generation 
of azide. This procedure is safe and efficient for the synthesis of 
triazoles which does not require isolation of azide intermediate 
(Scheme 7). 

 
Scheme 7: One pot synthesis of triazole 
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Scheme 6 Proposed mechanism of the CuAAC (top) and CuAXAC (bottom). ([Cu] denotes a copper fragment that varies in the number of 
ligands and in the formal oxidation state.) 
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MICROWAVE-ASSISTED COPPER-CATALYZED ONE POT 
SYNTHESIS OF TRIAZOLES  

In 2004, Erik Van der Eycken and his co-workers had reported 
a microwave assisted procedure for the synthesis of various 
1,2,3-triazole derivatives using copper (I) catalyst.74 This 
synthetic approach only yielded the 1,4-disubstituted triazole 
isomer but reduces the reaction time tremendously compared to 
the previous CuAAC approach utilizing conventional heating 
(Scheme 8). 

 
Scheme 8. Microwave assisted synthesis of triazoles 

RUTHENIUM CATALYZED SYNTHESIS OF 1,5-
DISUBSTITUTED TRIAZOLES (RUAAC) 

In 2005, Fokin and his co-worker introduced ruthenium 
cyclopentadienyl complexes for the synthesis of triazoles.  

 

 
Scheme 9: Ruthenium catalyzed reaction 

Ruthenium catalyzed reaction however, yielded 
complimentary regio 1,5-disubstituted isomers from azides and 
terminal alkynes and internal alkynes (Scheme 9).75 

This sister process, designated as RuAAC (ruthenium-
catalyzed azide–alkyne cycloaddition), is mechanistically quite 
distinct from its cuprous cousin, although the underlying 
activation of the alkyne component appears to be fundamentally 
similar: the nucleophilicity of its 𝜋𝜋-system is increased by the 
back donation from the ruthenium center. While the scope and 
functional group compatibility of RuAAC are excellent,76 the 
reaction is more sensitive to the solvents and the steric demands 
of the azide substituents than CuAAC (Figure 6). In 2008, Fokin 
reported the mechanistic detail of RuAAC reaction.  

Building on the known ability of the [Ru(Cp)Cl] (Cp = 
cyclopentadienyl) fragment to catalyze alkyne 
cyclotrimerization,77 its catalytic activity in the azide–alkyne 
cycloaddition was anticipated by Jia, Fokin et al.75 The strongly 
electron donating, anionic Cp ligand is required to facilitate the 
intermediate ruthenium oxidation.76 Although [Ru(Cp)Cl] only 
showed modest reactivity and regioselectivity, the use of the 
pentamethylcyclopentadienyl (Cp*) derivative greatly improved 
both the activity and, remarkably, the selectivity for the 
formation of 1,5-disubstituted 1,2,3-triazoles.78,79 Interestingly, 
while only a few examples for the conversion of internal alkynes 
have been reported for the CuAAC,80,81 both terminal and internal 
alkynes are in principle equally suited substrates for the 
RuAAC.82–85 Based on DFT calculations, a potential RuAAC 
mechanism was formulated by Lin, Jia, Fokin et al. and further 

detailed by Nolan et al.86 (Scheme 9, exemplarily 
shown for a terminal alkyne). Initially, a 
coordinatively unsaturated 16-electron species can 
be used directly or has to be generated by ligand 
dissociation. Subsequently, ligand substitution via 
an addition–elimination sequence (G, H) provides 
the catalytically active species featuring a p-
coordinated alkyne. Then, coordination of the azide 
via the substituted nitrogen (I) is energetically 
favored in this case and the resulting p donation 
may facilitate the subsequent oxidative coupling 
(J). Accordingly, nucleophilic attack of the alkyne 
at the terminal nitrogen of the azide proceeds with 
a small activation barrier and affords a six-
membered ruthenacycle. Based on the 
computations, this species involves a metala-
cyclopropene,87 which is in equilibrium with a 
vinyl complex. The latter is slightly more stable due 
to reduced strain but not prone to reductive 
elimination (K) and, therefore, represents a resting 
state. In the subsequent, rate-limiting step (K), the 
six-membered ruthenacycle contracts upon 
reductive elimination with the extruded Ru(II) 
remaining p-coordinated to the triazole. After 
isomerization to the N-bound complex (L), the 
triazole is liberated by substitution with an alkyne 
(M, N) and the catalytic cycle can start anew. He 
proposed that the displacement of the spectator 
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Figure 7: Proposed mechanism in the Catalytic Cycle of the RuAAC Reaction 
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ligands (Fig. 7, Step A) produces the activated complex 2, which 
is converted, via the oxidative coupling of an alkyne and an azide 
(Fig. 7, Step B), to the ruthenacycle 3. This step controls the 
regioselectivity of the overall process. The new C-N bond is 
formed between the more electronegative and less sterically-
demanding carbon of the alkyne and the terminal nitrogen of the 
azide. The metallacycle intermediate then undergoes reductive 
elimination (Fig. 7, Step C) releasing the aromatic triazole 
product and regenerating the catalyst (Fig. 7, Step D) or the 
activated complex.  

CONCLUSION 
In conclusion, the click chemistry reactions are robust and are 

capable of introducing diversity in the synthesis of heterocyclic 
molecules. The conjugation of two molecules can be achieved at 
room temperature or ambient reaction conditions using easily 
available reagents. The reactions proceed by radical or biradical 
entities supported by the transition metal catalysts. The copper 
catalyzed reactions more frequently used in click chemistry. The 
click chemistry has revolutionized the field of heterocyclic 
chemistry as well as application in biomolecules conjugations. 
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