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ABSTRACT 
 

 

 

The increasing number of cyber-attacks on network systems has become a significant challenge for network security under real-time network 
scenarios. Deep learning models have proven to be effective in identifying network attacks. However, these models require a large amount of 
data for training, and their implementation can be computationally expensive when deployed on large-scale networks. To overcome these issues, 
this paper proposes a blockchain-based deep learning model that utilizes the advantages of blockchain to enhance the efficiency and security of 
network attack identification and mitigation. The proposed model uses a novel Proof-of-Wireless-Trust (PoWT) consensus algorithm to validate 
and secure the training data, and a customized Binary Cascaded Deep Learning Model (BCDLM) for training the model w.r.t. multiple attack 
signatures. The blockchain-based model is designed to detect and mitigate dynamic network attacks in real-time, thereby enhancing the security 
of network systems. The proposed model is evaluated using different network datasets.  

Keywords: Blockchain, Security, Cascaded Learning, CNN, Learning Model. 

INTRODUCTION 
Cyber-attacks have risen as a result of the quick development of 

technology and the growing reliance on network systems. Because 
attackers are becoming more skilled and creating new methods to 
take advantage of weaknesses in network systems, network attacks 
have grown to be a significant challenge for network security 
professionals. Effective ways to improve the security of network 
systems are required, as the detection and mitigation of network 
attacks have become more important than ever for real-time 
scenarios.1-3 

The ability to recognize network attacks using deep learning 
models has shown promising results due to use of Bayesian 
Inference (BI).4-6 These models can recognize patterns and 

anomalies in network traffic and can identify network attacks by 
using sophisticated algorithms and vast amounts of data. Deep 
learning models, however, can be computationally expensive to 
implement, and the effectiveness of the model depends on the 
calibre and volume of the training data samples.7-9 The security of 
the training data is also a concern because it is vulnerable to 
manipulation, which could produce false results. 

We suggest a deep learning model for blockchain-based dynamic 
network attack detection and mitigation in this paper. The 
suggested model makes use of blockchain's benefits to improve the 
effectiveness and security of network attack detection and 
mitigation. The model uses a deep learning algorithm to be trained 
and a consensus algorithm to guarantee the accuracy of the training 
data. The blockchain-based model offers a practical way to improve 
the security of network systems by detecting and mitigating 
dynamic network attacks in real-time scenarios. 

The remaining sections of the paper are structured as follows. A 
review of related work on blockchain and deep learning in network 
security is presented in Section 2 of this text. The proposed deep 
learning model for blockchain-based dynamic network attack 
detection and mitigation is presented in Section 3 of this text. A 
discussion of the findings is presented in Section 4 of this text, and 
conclusions and recommendations are presented in Section 5 as 
conclusive analysis of this text.   
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LITERATURE REVIEW OF EXISTING MODELS USED FOR 
IDENTIFICATION OF NETWORK ATTACKS 

In today's linked world, network attacks are becoming a bigger 
worry as the number of attacks rises yearly. Many academics have 
created machine learning algorithms to recognize and stop these 
attacks. We will discuss about the current machine learning 
algorithms for identifying network attacks in this section.27,28 

A lot of people use neural networks to detect network attacks. 
They can recognize trends in real-time communication after being 
taught on a collection of well-known attack patterns. The Multi-
Layer Perceptron is one of the neural network algorithms that is 
most frequently used (MLP). It has been demonstrated that the 
MLP is useful for spotting network attacks like DoS, port searches, 
and infiltration efforts. The drawbacks of neural networks include 
their high training data requirements and potential for over fitting 
scenarios which are tackled by Convolutional Neural Networks 
(CNN), Singular Value Decomposition (SVD) & Long Short-Term 
Memory Networks with Condition Generative Adversarial 
Networks (LSTM CGAN).29-32 

Another machine learning model used for identifying network 
attacks is decision trees.33-35 Decisions and potential outcomes are 
represented using decision trees, which resemble branches. They 
can recognize trends in real-time communication after being taught 
on a collection of well-known attack patterns.36-38 Decision trees are 
useful for spotting network attacks like port searches, denial-of-
service attacks, and infiltration efforts. They can be used to produce 
guidelines for identifying network attacks because they are 
reasonably simple to comprehend and analyze for different use 
cases via Federated Learning (FL).39 

Network attacks are recognized using machine learning models 
called Support Vector Machines (SVMs). Network attacks like 
DoS, port searches, and infiltration efforts can all be detected by 
SVMs. They are especially helpful for spotting attacks that are 
challenging for other machine learning algorithms to recognize. 
SVMs can be used to create algorithms for identifying network 
attacks because they are reasonably simple to train for different use 
cases. 

As a result, a variety of machine learning models, such as deep 
learning, neural networks, decision trees, support vector machines, 
random forests, and support vector machines, are used to identify 
network attacks. Each of these models has advantages and 
disadvantages, and the best model to use will rely on the particular 
requirements of the company. But it is evident that machine 
learning models are useful for spotting network assaults and are a 
key component of keeping networks secure. 

PROPOSED DESIGN OF AN EFFICIENT BLOCKCHAIN-BASED 
DEEP LEARNING MODEL FOR IDENTIFICATION & 
MITIGATION OF DYNAMIC NETWORK ATTACKS 

From the review of existing attack detection methods, it can be 
observed that deep learning models have proven to be effective in 
identifying network attacks. However, these models require a large 
amount of data for training, and their implementation can be 
computationally expensive when deployed on large-scale networks. 
To overcome these issues, this section proposes design of an 

efficient blockchain-based deep learning model that utilizes the 
advantages of blockchain to enhance the efficiency and security of 
network attack identification and mitigation even under larger 
network deployments. As per flow of the model in figure 1, it can 
be observed that the proposed model uses a novel Proof-of-
Wireless-Trust (PoWT) consensus algorithm to validate and secure 
the training data, and a customized Binary Cascaded Deep Learning 
Model (BCDLM) for training the model w.r.t. multiple attack 
signatures. The blockchain-based model is designed to detect and 
mitigate dynamic network attacks in real-time, thereby enhancing 
the security of network systems. 

As per the flow of proposed model, it can be observed that 
initially a Binary Cascaded Deep Learning Model is used to identify 
real-time attacks. This model initially performs clustering of data 
packets into ‘attack’, and ‘non-attack’ groups, which is done via 
estimation of a novel distance metric between temporal & spatial 
node performance under different scenarios.  

 

Figure 1 Design of the proposed Proof of Wireless Trust (PoWT)-
based secure blockchain with attack detection capabilities 
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These scenarios include ‘attack’, and ‘normal’ communications. 
This distance metric is evaluated via equation 1, where, 𝑃𝑃 
represents packet signature which is estimated via equation 2, while 
𝑠𝑠 represents the network scenario under which this distance metric 
is evaluated for different packet types. 

d(sa, sn) = �
∑ (P(sa)i − P(sn)i)2
Ns
i=1

Ns ∗ Var(si, sj)
… (1) 

Where, 𝑠𝑠𝑠𝑠 & 𝑠𝑠𝑠𝑠 represents normal & attack scenarios, while 𝑣𝑣𝑣𝑣𝑣𝑣 
represents variance between the signals, and is estimated via 
equation 3, and 𝑁𝑁𝑠𝑠 represents total number of sample 
communications for which these evaluations are performed under 
different attack types. The variance is estimated by calculating 
mean (represented by 𝑥̅𝑥) of input patterns. 

P(x) =
E(x) ∗ D(x)

THR(x) ∗ PDR(x) … (2) 

Where, 𝐸𝐸 & 𝐷𝐷 represents the energy & delay needed to perform 
communications, while 𝑇𝑇𝑇𝑇𝑇𝑇 & 𝑃𝑃𝑃𝑃𝑃𝑃 represents the throughput and 
Packet Delivery Ratio obtained during these communications. 

var(x, y) =
�
∑

�P(x) − P(x)�������
2

+

�P(y) − P(y)�������2
Ns
i=1

2 ∗ Ns
… (3) 

Based on this evaluation, a distance threshold is estimated via 
equation 4, 

dth = ��
d�sni, saj�
NN ∗ NA

NA

j=1

NN

i=1

… (4) 

Signatures with 𝑑𝑑(𝑠𝑠𝑎𝑎, 𝑠𝑠𝑠𝑠) > 𝑑𝑑𝑡𝑡ℎ are grouped into ‘attack’ 
category, while others are grouped into ‘non-attack’ category, and 
are processed via a Convolutional Neural Network (CNN) for 
identification of different attacks. The CNN Model is depicted in 
figure 2, and initially calculates convolutional features from packet 
signatures via equation 5, 

Conv(P) = � P(i − a) ∗ ReLU �
m
2 + a�… (5)

m
2

a=0

 

Where, 𝑚𝑚, 𝑎𝑎 represents different window sizes, and stride sizes, 
while 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (or Rectilinear Unit) is an activation function which is 
used to process negative feature sets via equation 6, 

ReLU(x) = Max(0, x) … (6) 

where x is the input to the rectilinear unit, and 𝑓𝑓(𝑥𝑥) is the set of 
outputs. The ReLU function returns 𝑥𝑥 if 𝑥𝑥 is greater than or equal 
to 0, and returns 0 if x is less than 0 which assists in removing 
negative feature sets. The ReLU function is used in CNNs because 
it is simple to compute and does not suffer from the vanishing 
gradients that can occur with other activation functions like the 

sigmoid functions. It has also been shown to improve the 
performance of deep neural networks on a variety of tasks. 

 

Figure. 2 Design of the customized CNN Model for identification of 
attacks 

The window size & stride size is varied between 1x16, 1x32, 
1x64, 1x128, 1x256, and 1x512 due to which the model evaluates 
high-density convolutional features. Total count of features can be 
estimated via equation 7 as follows, 

fout =
fin + 2 ∗ p − k

s + 1 … (7) 

Where, 𝑓𝑓𝑖𝑖𝑖𝑖, 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 represents input features & output features from 
different convolutional layers, while 𝑝𝑝, 𝑘𝑘 & 𝑠𝑠 represents their 
respective padding, kernel & stride sizes. Due to extraction of a 
large number of features, inherent redundancies are observed at 
output, which are removed by Max Pooling operations. The Max 
Pooling layer estimates a feature threshold via equation 8 as 
follows, 

fth = �
1
N
∗� xp
x∈N

�

1
p

… (8) 

Where, 𝑁𝑁 are total number of features, while 𝑝𝑝 is the probability 
variance of current feature, which is estimated via equation 9, 

p =
x(p) − x(p)������

Max(f) … (9) 

After evaluation of threshold, if the extracted feature value 𝑓𝑓 >
𝑓𝑓𝑡𝑡ℎ, then the feature is retained and passed to next layers, else it is 
discarded due to low variance levels. This process is repeated for 
multiple convolutional layers and a large set of features are 
extracted during this process. At the final layer, a Fully Connected 
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Neural Network (FCNN) is used, which uses SoftMax for 
classification of features into binary attack classes (𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜) via 
equation 10, 

cout = SoftMax�� fi ∗ wi

Nf

i=1

+ bi�… (10) 

Where, 𝑁𝑁𝑓𝑓 are the total aggregated features evaluated by the 
convolutional layers, and 𝑤𝑤, 𝑏𝑏 are tuneable weights & tuneable 
biases for these features. For 𝑁𝑁 attack classes, 𝑁𝑁 − 1 such CNNs 
are used, which assist in finding final attack types. Individual CNNs 
are trained for ‘non-attack’, and ‘single attack’ categories, and final 
classification is done via equation 11, 

cfinal = Non Attack, if converge 

else,�Ci

Na

i=1

 . . (11) 

Where, 𝑁𝑁𝑎𝑎 are total number of attacks for which the model is 
trained, 𝐶𝐶𝑖𝑖 represents the output attack class obtained via CNN 
process, while ⋁𝐶𝐶 are intersection of different attack classes. Once 
these attack classes are obtained for individual nodes, then nodes 
which are under attack are removed from the communication 
process. For all other nodes, different attacks are simulated for a 
dummy set of communications. For each of these attacks, the 
communication delays are estimated via equations 12 & 13 as 
follows, 

D(N) =
∑ tcompletei − tstarti
N(r)
i=1

N(r) … (12) 

D(A) =
∑ tcompletei − tstarti
A(r)
i=1

A(r) … (13) 

Where, 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  & 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 represents timestamps for completion 
& start of different communications, while 𝑁𝑁(𝑟𝑟) & 𝐴𝐴(𝑟𝑟) represents 
normal & attack communication requests. Similarly, the energy 
needed during these communications is estimated via equations 14 
& 15 as follows, 

E(N) =
∑ Estarti − Ecompletei
N(r)
i=1

N(r) … (14) 

E(A) =
∑ Estarti − Ecompletei
A(r)
i=1

A(r) … (15) 

Where, 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  & 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 represents residual energy of nodes 
during start and completion of different communications. This 
performance is further augmented via estimation of throughput & 
PDR levels during attack & normal scenarios. This is done via 
equations 16, 17, 18 & 19 as follows, 

T(N) = �
Rx(P)i

N(r) ∗ D(N)

N(r)

i=1

… (16) 

T(A) = �
Rx(P)i

A(r) ∗ D(A)

A(r)

i=1

… (17) 

Where, 𝑅𝑅𝑅𝑅(𝑃𝑃) represents total number of packets received 
during different communications. 

PDR(N) = �
Rx(P)i

N(r) ∗ Tx(P)i

N(r)

i=1

… (18) 

PDR(A) = �
Rx(P)i

Tx(P)i ∗ A(r)

A(r)

i=1

… (19) 

Where, 𝑇𝑇𝑇𝑇(𝑃𝑃) represents total number of packets transmitted 
during different communications. As per these evaluations, Proof-
of-Wireless Trust (PoWT) is calculated via equation 20 as follows, 

PoWT =

E(N)
E(A) + D(N)

D(A) + PDR(A)
PDR(N) + T(A)

T(N)
4 … (20) 

This metric is evaluated for each of the ‘non-attack’ nodes, and 
based on it a trust threshold is calculated via equation 21, 

Tth = �
PoWTi
N(NA)

N(NA)

i=1

… (21) 

Miner nodes with 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 > 𝑇𝑇𝑡𝑡ℎ are used for mining, while others 
are discarded from the mining process. Due to this selection, the 
model is able to identify high trust nodes, and use them for different 
mining operations. This selection assists in identification of attacks, 
and improves Quality of Service (QoS) levels for large-scale 
networks. Performance of this model is evaluated in the next 
section of this text, where it is compared in terms of different 
security & QoS levels with existing security models under different 
attacks. 

RESULT EVALUATION AND STATISTICAL COMPARISONS 
The proposed model employs a novel Proof-of-Wireless-Trust 

(PoWT) consensus algorithm to validate and secure the training 
data, as well as a customized Binary Cascaded Deep Learning 
Model (BCDLM) to train the model with respect to multiple attack 
signatures. The blockchain-based model is intended to detect and 
mitigate real-time dynamic network attacks, thereby improving the 
security of network systems. In terms of accuracy, computational 
efficiency, and security, the proposed model outperforms existing 
deep learning models. This is done via estimation of attack 
detection Accuracy (A), precision (P), recall (R), and delay (D) 
needed to evaluate different attacks. These metrics are calculated 
via equations 22, 23, 24 & 25 as follows, 

𝐴𝐴 =
1
𝑁𝑁𝑁𝑁�

𝑡𝑡𝑝𝑝𝑖𝑖 + 𝑡𝑡𝑛𝑛𝑖𝑖
𝑡𝑡𝑝𝑝𝑖𝑖 + 𝑡𝑡𝑛𝑛𝑖𝑖 + 𝑓𝑓𝑝𝑝𝑖𝑖 + 𝑓𝑓𝑛𝑛𝑖𝑖

𝑁𝑁𝑁𝑁

𝑖𝑖=1

… (22) 



N. Bahaley et. al. 

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(6), 829             Pg  5 

𝑃𝑃 =
1
𝑁𝑁𝑁𝑁�

𝑡𝑡𝑝𝑝𝑖𝑖
𝑡𝑡𝑝𝑝𝑖𝑖 + 𝑓𝑓𝑝𝑝𝑖𝑖

𝑁𝑁𝑁𝑁

𝑖𝑖=1

… (23) 

𝑅𝑅 =
1
𝑁𝑁𝑁𝑁�

𝑡𝑡𝑝𝑝𝑖𝑖
𝑡𝑡𝑝𝑝𝑖𝑖 + 𝑡𝑡𝑛𝑛𝑖𝑖 + 𝑓𝑓𝑝𝑝𝑖𝑖 + 𝑓𝑓𝑛𝑛𝑖𝑖

𝑁𝑁𝑁𝑁

𝑖𝑖=1

… (24) 

𝑑𝑑 =
1
𝑁𝑁𝑁𝑁�𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑖𝑖 − 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖

𝑁𝑁𝑁𝑁

𝑖𝑖=1

… (25) 

Where, 𝑡𝑡 & 𝑓𝑓 represents true and false rates. This performance is 
evaluated for 𝑁𝑁𝑁𝑁 communications under the following data 
samples, 
• UNSW-NB15 Dataset Samples 

(https://zenodo.org/record/4519767) 
• SNMP 2016 Dataset Samples 

(https://data.mendeley.com/datasets/krbhsg5xrt) 
• Network Intrusion Prevention System Dataset Samples 

(https://www.technavio.com) 
• LU Flow Network Intrusion Detection Dataset Samples 

(https://www.kaggle.com) 
• UNR-IDD Intrusion Detection Dataset Samples 

(https://www.kaggle.com) 
• Gure KDDCup Dataset Samples (https://figshare.com) 

These categories were merged so that DDoS, Finney, 
Masquerading, Sybil, Spoofing, and Spying attacks could be 
identified. Eight distinct assault teams were responsible for 
acquiring 1.5 million samples (including normal class). From this 
set, 10% of the accumulation was allocated to activities involving 
validation and evaluation, while 80% was allocated to activities 
involving training scenarios. This technique was used to evaluate 
the classification accuracy, and the results were contrasted in Table 
1 with BI6, GNN23, and CNN30 in terms of the data's dependability 
levels. In these evaluations, Number of Test Samples (NTS) were 
used as a base point for comparative analysis. 

 

Figure. 3 Accuracy of attack classification under all 8 classes for 
different techniques 

This assessment and figure 3 show that the suggested model can 
increase categorization accuracy by 15.5% when compared to BI,6 
5.4% when compared to GNN,23 and 12.4% when compared to 

CNN30, making it helpful for a variety of real-time network 
situations. The incorporation of binary cascaded categorization 
using packet fingerprints has increased accuracy levels.  

 

Figure. 4 Precision of attack classification under all 8 classes for 
different techniques 

Figure 4 and the assessment show that compared to BI6, GNN23, 
and CNN30, the suggested model improves categorization precision 
by 12.5%, 3.4%, and 10.5%, respectively, making it applicable to a 
broad range of real-time network situations. Packet signature 
analysis and binary categorization processes are combined to 
increase these precision levels.  

 

Figure. 5 Recall of attack classification under all 8 classes for different 
techniques 

According to this assessment and figure 5, it can be seen that the 
suggested model is capable of improving the categorization recall 
by 15.5% when compared with BI,6 8.3% when compared with 
GNN,23 and 6.5% when compared with CNN.30 This enables it to 
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be helpful for a broad assortment of different real-time network 
situations. The combination of PoWT and binary categorization 
procedures has resulted in an improvement to recall levels. 

Based on this evaluation and Figure 6, it can be seen that the 
proposed model can increase classification speed by 10.5% when 
compared to BI,6 18.3% when compared to GNN,23 and 6.5% when 
compared to CNN,30 making it applicable to a broad range of high-
speed network scenarios. Integration of binary classification and 
packet signature analysis increases this rate. As a result of these 
enhancements, the proposed model is able to improve attack 
identification efficacy in both static and dynamic network 
scenarios.  

 

Figure. 6 Delay needed for attack classification under all 8 classes for 
different techniques 

The proposed model's QoS performance is enhanced due to the 
incorporation of a PoWT blockchain model for data transmissions 
when compared to SVD,31 LSTM CGAN,32 and FL39 models under 
various attack conditions. Adjusting the number of aggressor (NA) 
nodes from 1% to 15% and calculating the QoS values under 
Finney, Sybil, Masquerading, and DDoS attacks yields this 
performance. By combining PoWT and Binary Cascaded Deep 
Learning (BCDL), the model is capable of mitigating attacks while 
preserving higher QoS levels. The model was evaluated for 200k 

communications, and attack nodes were manipulated to evaluate 
various QoS metrics.  

 

Figure. 7 Average communication delay for different attack scenarios 

As per this evaluation and figure 7, it can be observed that the 
proposed model is able to improve the delay needed during 
communications by 10.5% when compared with SVD31, 14.5% 
when compared with LSTM CGAZ32, and 12.4% when compared 
with FL39 under different attack levels. This performance is 
improved due to selection of high efficiency miner nodes via PoWT 
consensus that were evaluated for different attacks. Similarly, the 
complexity of mining (CM) (or energy needed for mining 
operations) was estimated. 

 

Figure. 8 Average complexity during mining for different attack 
scenarios 

As per this evaluation and figure 8, it can be observed that the 
proposed model is able to improve the lifetime of network during 
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attack communications by 15.5% when compared with SVD31, 
18.3% when compared with LSTM CGAN32, and 15.4% when 
compared with FL39 under different attack levels. This energy 
performance is improved due to selection of high energy miner 
nodes via PoWT consensus that were evaluated for different 
attacks.  

 

Figure. 9 Average throughput during mining for different attack 
scenarios 

As per this evaluation and figure 9, it can be observed that the 
proposed model is able to improve the throughput of network 
during attack communications by 19.5% when compared with 
SVD31, 24.5% when compared with LSTM CGAN32, and 28.3% 
when compared with FL39 under different attack levels. This 
throughput performance is improved due to selection of high 
throughput miner nodes via PoWT consensus.  

 

Figure. 10 Average PDR during mining for different attack scenarios 

As per this evaluation and figure 10, it can be observed that the 
proposed model is able to improve the PDR of network during 

attack communications by 12.4% when compared with SVD31, 
15.5% when compared with LSTM CGAN,32 and 6.5% when 
compared with FL39 under different attack levels. This throughput 
performance is improved due to selection of high throughput miner 
nodes via PoWT consensus. Due to these optimizations, the 
proposed model is able to improve overall QoS of the network even 
under multiple attack types. 

CONCLUSION 
The proposed model employs a novel Proof-of-Wireless-Trust 

(PoWT) consensus algorithm and a customized Binary Cascaded 
Deep Learning Model (BCDLM) to train the model with respect to 
multiple attack signatures. The proposed model outperforms 
existing deep learning models in terms of accuracy, computational 
efficiency, and security. The incorporation of binary cascaded 
categorization and figure 3 demonstrate that the proposed model 
can improve categorization accuracy by 15.5% when compared to 
BI6, 5.4% when compared to GNN,23 and 12.0% when compared to 
CNN.30 Figure 4 and the evaluation demonstrate that compared to 
BI,6 GNN,23 and CNN,30 the proposed model improves 
categorization precision by 12.5%, 3.4%, and 10.0%. Combining 
packet signature analysis and binary categorization processes 
increases these levels of precision. The proposed model is capable 
of increasing the categorization recall by 15.5% when compared to 
BI6, 8.3% when compared to GNN,23 and 6.5% when compared to 
CNN30 based on an evaluation of attack detection accuracy. This 
recall has been enhanced through the combination of PoWT and 
binary categorization procedures. Based on precision evaluation, 
the proposed model can increase classification speed by 10.5% 
compared to BI,6 18.3% compared to GNN,23 and 6.5% compared 
to CNN.30 Increasing this rate is the integration of binary 
classification and packet signature analysis. As a result of these 
enhancements, the proposed model is able to increase the efficiency 
of attack identification in both static and dynamic network 
scenarios. 

Similarly, recall evaluation demonstrates that the proposed 
model can reduce the delay required for communications by 10.5% 
when compared to SVD,31 14.5% when compared to LSTM 
CGAN,32 and 12.4% when compared to FL39 at various attack 
levels. This performance is enhanced as a result of the evaluation 
and selection of high-efficiency miner nodes via PoWT consensus. 
In terms of evaluation delay, it can be seen that the proposed model 
improves network lifetime during attack communications by 15.5% 
when compared to SVD,31 18.3% when compared to LSTM 
CGAN,32 and 15.4% when compared to FL39 at various attack 
levels. This energy performance is enhanced as a result of the 
evaluation and selection of high-energy miner nodes via PoWT 
consensus that are resistant to a variety of attacks. In terms of 
network data rate, it can be seen that the proposed model improves 
the throughput of network communications during an attack by 
19.5% when compared to SVD,31 24.5% when compared to LSTM 
CGAN,32 and 28.3% when compared to FL39 at various attack 
levels. This throughput performance is enhanced as a result of the 
selection of high throughput miner nodes using PoWT consensus.  

The proposed model improves the PDR of network 
communications during an attack by 12.4% when compared to 
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SVD,31 15.5% when compared to LSTM CGAN32, and 6.4% when 
compared to FL39 at various attack levels. This throughput 
performance is enhanced as a result of the selection of high 
throughput miner nodes using PoWT consensus. Due to these 
optimizations, the proposed model is capable of enhancing the 
network's overall QoS even in the face of multiple attack types. 
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