
Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(6), 828 Pg 1

J. Integr. Sci. Technol. 2024, 12(6), 828

Journal of Integrated

SCIENCE & TECHNOLOGY

Enhancing security in vehicular Ad hoc networks: A novel approach using
DSFLA, SACVAEGAN, and OAEF
Venkata Subbaiah Desanamukula,1 B. Gunapriya,2 M. Janardhan,3 Venkateswarlu Gundu,4 Syed Ziaur Rahman,5
R.J. Anandhi,2 Ramesh Vatambeti6*
1 Department of Computer Science and Engineering, Lakireddy Bali Reddy College of Engineering, Mylavaram 521230, India.
2New Horizon College of Engineering, Ring Road, Bellandur Post, Bengaluru, India. 3Department of Computer Science and
Engineering, G. Pullaiah College of Engineering and Technology, Kurnool, India. 4Department of Computer Science and
Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India. 5Faculty of Information Technology,
Majan University College (Affiliated to University of Bedfordshire, United Kingdom), Muscat- 710, Oman. 6School of Computer
Science and Engineering, VIT-AP University, Vijayawada, India.

Received on: 28-Dec-2023, Accepted and Published on: 28-May-2024

ABSTRACT

Vehicular Ad hoc Networks
(VANETs), a crucial type of
Mobile Ad hoc Networks
(MANETs), consist of
wirelessly connected
vehicles. Ensuring the safety
of VANETs is critical, as a
single security failure can result in significant loss of life. Traditional Intrusion Detection Systems (IDS) often fail to keep pace with the increasing
sophistication of pattern-based attacks. To address this, we propose a novel optimal feature-selection method called the Differentiated Shuffled
Frog-Leaping Algorithm (DSFLA). Traditional IDSs struggle with complex attacks. We propose DSFLA for feature selection, SACVAEGAN for data
enhancement, and OAEF for parameter optimization. Testing on the Car Hacking dataset shows superior performance, promising enhanced
VANET security Additionally, we introduce a Self-Attention-Based Conditional Variational Autoencoder Generative Adversarial Network
(SACVAEGAN) to generate virtual samples and enhance training data. To optimize hyper-parameters, we employ an enhanced artificial electric
field (AEF) technique known as Opposition-Based AEF (OAEF). Experimental results on the Car Hacking dataset demonstrate that our approach
not only effectively detects intrusions but also significantly outperforms current state-of-the-art deep learning models in classification tasks. The
designed methodology enhances IDS efficiency, offering robust security solutions for VANETs. VANETs are susceptible to various sophisticated
attacks due to their dynamic and decentralized nature. The designed approach strengthens the network's resilience by providing advanced
mechanisms for detecting and responding to malicious activities, thereby reducing the risk of successful cyber-attacks.

Keywords: Vehicular Ad hoc Networks; Differentiated shuffled frog-leaping algorithm; Conditional Variational Autoencoder Generative
Adversarial Network; Artificial electric field; Intrusion Detection Systems.

INTRODUCTION
Embedded updates and networking devices have all contributed

to the expansion of the Internet of Vehicles (IoV). Privacy concerns

are just some of the threats that remain in the IoV. The increasing
prevalence of intelligent services, remote access, and routine
network updates has given rise to several privacy and security
problems.1 Therefore, there is a lot of worry about security flaws in
IoV data transit. Malicious attacks and data manipulation, as well
as system outages, can put people and their possessions in danger.2

The first threat is V2V communication, in which an attacker
might potentially harm drivers by tampering with their data.
Simultaneously, the Vehicle-to-Infrastructure (V2I)
communication situation might provide an additional security
concern. Multiple attack models for intelligent cars have created

*Corresponding Author: Dr. Ramesh Vatambeti
Email: v2ramesh634@gmail.com

Cite as: J. Integr. Sci. Technol., 2024, 12(6), 828.
URN:NBN:sciencein.jist.2024.v12.828
DOI: 10.62110/sciencein.jist.2024.v12.828

©Authors CC4-NC-ND, ScienceIN http://pubs.thesciencein.org/jist

Article

https://pubs.thesciencein.org/journal/index.php/jist

Venkata Subbaiah et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(6), 828 Pg 2

numerous privacy and security issues for intelligent transportation
networks.3 The VANET communication network has major
security concerns due to the possibility of signal jamming and
spoofing by cyber attackers. Because of this, the integrity of the
message delivered may be compromised, and the intended goals of
the V2X system may not be achieved.4

An increasingly significant category of Mobile Ad hoc Networks
(MANETs) is comprised of VANET, referring to a network of
automobiles that are wirelessly connected to one another. Vehicle-
to-Infrastructure (V2I) communication, also abbreviated as V2V
and V2I, respectively, performs the bulk of the communication in
VANETs.5 The term "V2V communication" describes interactions
between cars, whereas the term "V2I communication" describes
interactions between vehicles and infrastructure nodes like traffic
lights and petrol stations. To include the WAVE protocol, the IEEE
802.11 standard was updated to become IEEE 802.11p. Wireless
Access in a Mobile Environment (WAVE) is the acronym for this
concept. This protocol facilitates the deployment of 5.9 GHz-band
Dedicated Short-Range Communications (DSRC).6 Integrity
attacks, confidentiality attacks, attacks, and authentication attacks
are the five main types of VANET attacks.7 In a VANET, IDS can
be deployed both on the network segments and on the nodes
themselves. While local IDSs work for the node on which they are
deployed, global IDSs monitor the VANET segment where they are
responsible for the group of cars in their segment and detect the
segment. Local intrusion detection systems track all incoming and
outgoing network traffic.8

A cyberattack is any unauthorized attempt to get information by
breaking into a computer system or the internet and using that
information for malicious purposes. Potential outcomes9 include
cyber terrorism, conflict, and threats. Because of its widespread
availability, low price, and quick development, the internet plays a
pivotal role in modern society. However, trends like remote work,
inadequate and ineffective intrusion detection systems are
broadening the scope of assaults alongside this rapid progress.
Denial intruder assaults are just some of the cyberattacks that might
happen.10 Cybersecurity experts are responding by focusing their
research on new and improved ways to prevent and detect assaults.
Since attackers may now use a wide variety of sophisticated
technological methods, cybersecurity has become an important
subject of study in the previous decade.11 As internet use grows and
cybercrime becomes more common and damaging, the topic of
cybersecurity has gained prominence throughout the world. Recent
high-profile cybercrimes have shown how easily cyberattacks may
spread internationally, wreaking havoc on enterprises, damaging
critical data, stealing information, gaining unauthorized access, and
so on.12

Machine learning (ML) has recently become crucial in
cybersecurity13 because of its rapid development and outstanding
performance. Developing a reasonable ML model requires proper
data, which means a significant quantity of data and sufficient
sample categories. The Car Hacking dataset is widely used as a
benchmark for intrusion detection systems. Various ML
techniques, including generative adversarial networks (GANs),
deep neural networks (NNs), and ensemble NNs, have been used to
construct a wide variety of IDS models for VANETs.14 Instead of

addressing the inconsistencies in the datasets, the time difficulty,
and the efficiency of the techniques, the IDS research for VANETs
has concentrated on improving accuracy with a standardized dataset
in general.15 Since millions of packets flow across VANETs every
day, relying on accuracy measures alone is not feasible. This is why
even a 0.1% loss in accuracy can be problematic for the network.

Due to the specific difficulties and vulnerabilities of VANETs, it
is essential that a more effective and efficient IDS be developed for
these networks. VANETs allow cars and infrastructure to share
information, improving management. Their dynamic and
decentralized nature, however, renders them vulnerable to security
concerns including data manipulation, malicious attacks, and
unauthorized access. Existing VANET IDSs have difficulty
meeting these challenges head-on.16 They may have a high false
positive rate, disrupting traffic unnecessarily, or they may be unable
to keep up with the ever-changing patterns of sophisticated attacks.
Therefore, it is crucial to improve IDSs for VANETs to guarantee
the safety and dependability of vehicular communication.

The purpose of this research is to create a brand-new IDS that
places a premium on accurate case classification and assault
category categorization. Predicting whether data is normal or
attack-related is done with the use of a classifier called self-
attention based conditional VAEGAN, and DSFLA is used as a
feature selection model. In order to learn attack characteristics from
subsets of the original dataset, we present a method for properly
preparing the training set.

RELATED WORK
To better categorize attack instances with little information, Dhar

et al.17 present a new IDS for VANETs that uses principal
component analysis. In the first stage, the designed Cascaded ML
framework distinguishes among attack and regular situations. In the
second stage, the attack data are classified. The framework stresses
the need not to place an assault in the "normal" category. Finally,
the suggested framework is implemented using the most widely
used ML model, an artificial neural network, and tested on the Car
Hacking dataset. This research not only examines the efficacy of
the suggested framework but also evaluates the efficiency of
common categorization tasks. The suggested technique has been
shown to be an efficient IDS, with experimental findings on the Car
Hacking dataset showing that it outperforms the current state-of-
the-art ML representations.

An expert system for preventing and detecting intrusions in
Vehicular Ad Hoc Networks has been developed by Sontakke and
Chopade.18 The data nodes originate from many web resources.
Once the node data has been collected, the autoencoder model may
be used to extract useful information. The Beetle-Whale Swarm
Optimization was used in the feature selection phase after feature
extraction to choose the best features. When it comes to detecting
network intrusion, a technique is used to make use of the selected
correct attributes. To stop intruders, the Trust-based routing
protocol uses the same B-WSO to pick the most efficient routing
path around the malicious node. The suggested approach is
evaluated experimentally using standard methods to ensure its
efficacy.

Venkata Subbaiah et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(6), 828 Pg 3

Registration, key creation, data decoding are the five steps in the
method suggested by Kumar Pulligilla et al.19 Data packets are used
for OBU authentication. The optimized model is then used to
perform the intrusion detection. Log files are analyzed with Renyi
entropy to choose characteristics to analyze. For intrusion
detection, we use a neural network based on Rider's optimization
algorithm (ROA) and Sea Lion Optimization (SLnO) called Rider-
based Sea Lion Optimization (RBSLO). With improved accuracy
of 92.5%, measures and the shortest calculation time of 135.654 s,
the suggested RBSLO-based RideNN promises to enhance
accomplishment.

Distributed federated learning (FL) networks are presented by
Arya et al.20 as a method for intrusion detection in smart cities. By
employing the most effective method of intruder detection, it helps
save time and materials. In the first step, cars create local IDS
classifiers for VANET data streams using deep learning and a
federated learning approach. When asked, these cars will
communicate the classifiers they've learned locally, cutting down
on the amount of data needed to be transmitted to other vehicles.
Each vehicle then has a set of locally and remotely trained
classifiers added to an ensemble of neural networks. At last, the
global ensemble model is redistributed to regional nodes for their
periodic refresh. Using attack detection accuracy, precision, recall,
and F1 scores throughout a ToN-IoT data stream, the efficacy of
the designed technique is assessed for intrusion finding in
VANETs. The ID model achieves an accuracy of 0.99% in training
and 0.981% in testing.

Improved intrusion detection for VANETs has been proposed by
Amaouche et al.21, which uses synthetic minority oversampling
(SMOTE) to address the class imbalance problem and mutual
information to choose the best characteristics on which to base an
efficient model. We use Random Forest (RF) as our classifier and
compare it to other machine learning (ML) methods. To ensure the
model can handle missing values, imbalanced data, and categorical
values, it is put through its paces on three datasets: CICIDS2017.
When compared to other models, ours performed really well. At
100% on the 99.9% on both the NSL-KDD and CICIDS2017
datasets, it demonstrated excellent accuracy, precision, recall, and
F1 score. The ROC analysis also showed our model's superior
performance, with an AUC of 100%.

An IDS model was developed by Shams et al.22 that can gather
data from automobiles and Roadside Units (RSUs) on a network
together. We used the popular Network Simulator 3 (ns-3) and
simulation tools to create synthetic network data for training the
core of our proposed IDS. We also created independent test data,
which is not a subset of the training data. This guarantees that the
erroneous performance result of an overfitted model is wiped out.
We used a Network, to build a multi-class IDS. Using the gathered
network traffic data, the CAFECNN model can identify both
passive and aggressive assaults. The findings demonstrate that the
suggested model outperforms techniques in spotting difficult-to-
detect passive assaults. We also simulated the model in real time
and found that network performance improved immediately,
notably in terms of ratio and throughput, despite the intrusions.

Cui et al.23 investigate federated learning on VANETs and create
a CIDS model that is both effective and efficient. The technique

makes use of local SDN collaboration to jointly train the CIDS
model flows, making IDSs more scalable and global in scope. This
research uses in a restricted multi-objective optimization
framework with the goal of decreasing the model alteration
between clients of the same SDN and increasing the detection
accuracy. Pareto optimality is reached for fairness constraint
maximization performance by the method's two-stage gradient
optimization of a surrogate maximum function comprising all the
goals. In addition, the training model is analyzed in this paper and
compared to state-of-the-art techniques using two publicly
available datasets. The experimental findings show that the
suggested perfect is superior to the current methods since it protects
the privacy of local data and shows excellent accuracy and
efficiency in identifying assaults.

Research Gap
Anomaly detection systems are used extensively in disciplines

like artificial detection, pattern recognition, and machine learning
due to their ability to identify unexpected attacks. The feature
extraction and feature selection processes used by conventional
machine learning methods, which are widely used in IDS, are
tedious and time-consuming. In addition, the prevailing
classification technique relies on a very basic form of machine
learning. In a practical network setting, shallow methods can reduce
the detection rate by analysing high-dimensional inputs.

Finally, there are important differences between network traffic
and host call sequences, the two primary types of data that IDS
systems must process. The sequence of host calls is more akin to a
sequence problem than it is to data from a network. The detection
algorithms used in traditional approaches, notably those used in
hybrid data source detection systems and state-of-the-art detection
systems, are not flexible enough to adapt to new situations. This
means that prior detection methods are useless.

DESIGNED SYSTEM
The suggested IDS is a hierarchical structure that uses a subclass

division paradigm. Furthermore, a designed model has been

Figure 1: Workflow of the Work

Venkata Subbaiah et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(6), 828 Pg 4

reviewed to prove the effectiveness of this framework. Pioneering
and more contemporary efforts have been compared to the
suggested model to measure its performance. The following
sections detail the dataset, the experimental design, the outcomes
of the experiments, and a comparison of the results. The workflow
of the designed model is given in Figure 1.

Dataset Description and Preprocessing
Eleven features/attributes and four forms of attacks are included

in the Car Hacking dataset.24 Modern VANET models, like CAN,
include high levels of network connection. In order to compile the
dataset, we first classified CAN traffic including malicious
messages put into actual automobiles. Every 30–40 minutes of
CAN traffic was disrupted for 3–5 seconds. The characteristics of
Normal and attack classes are summarized in Table 1.

Table 1. Characteristics and Sum of Trials in the Car
Hacking Dataset

Attack
Names Timestamp CAN ID

Sum of
Statistic
s Bytes

Data
[0–7] Outpu

t
Class

Quantit
y of

Sample
s

DoS Every 0.3
milliseconds

Domina
nt value
“0000”

0–8 (but
altogeth
er are 8)

Data
degre

e

R 587,521

Normal -- Chance
hex

value

0–8 (but
altogeth
er are 8)

Data
degre

e

T 988,872

Spoofin
g

Every 1
millisecond

Chance
hex

value

0–8 (but
altogeth
er are 8)

Data
degre

e

R 654,897

Gear
attack

Every 1
milliseco

nd

Chance
hex

value

0–8 (but
altogether

are 8)

Data
degre

e
R 597,252

For each category in the dataset, there are 5.csv files. The Normal

class's.csv file contains just Normal class data, whereas the attack
class's.csv files contain data for both the attack class (labelled "R")
and the Normal class (labelled "T"). Data for Normal, DoS, Gear,
RPM, and Fuzzy totaled 988,872, 587,521, 597,252, 654,897, and
491,847 samples, respectively, after preprocessing. This was
achieved by taking the entire.csv file containing Normal data and
only the "R" labelled data from the remaining four attack.csv files.
There were only numeric values for attributes. Scaling was done on
numeric properties to make them fit within the range of 0–1. One-
hot encoding was utilised for the transformation of output levels in
both the main and secondary class models. In this method, the
obtainable samples were divided into training and test sets to
guarantee fair datasets. For classes with large sample sizes, about
80% of the data was used as a training set, while 20% was set aside
as test samples. The diversity of attacks within the dataset was
preserved, as can be seen in the next description of the confusion
matrix.

Specifically, Data [0-7] in the 8-byte data representation. For
examples of the DoS, Gear, and RPM classes, these 8 bytes are
always assigned to the same value. Variations may be found in both

Fuzzy and Normal data samples, with minimum and maximum
values of 0 and 255, respectively. All 8-byte characteristics in the
Fuzzy data tend to average around 127, but in the Normal data they
tend to average out to different numbers.

According to the data, classes fixed values in the 8-byte
characteristics, suggesting that they are free of noise and variance.
Neither the Fuzzy nor the Normal data are free from noise, although
the allowed range of values (0–255) is rather large. Comparatively,
the fluctuating averages in Normal data may show noise, whereas
the stable average of 127 across all characteristics in Fuzzy data
implies coherence. The deviations appear to fall within expected
thresholds and display patterns rather than being completely at
random, giving the impression that the dataset is rather clean at first
glance.

Data Preprocessing
Data preprocessing is a crucial step in preparing raw data for

analysis or machine learning tasks. It involves several steps aimed
at cleaning, transforming, and organizing the data to make it
suitable for further analysis or modeling. The dataset is making it
more suitable for a classifier.

Removal of Socket Material
To prevent overfitting training towards socket information, it is

required to remove the IP addresses of the source and dataset. The
classifier should be trained on the properties of the packets
themselves, rather than the socket data, to ensure that any host with
matching packet characteristics is blocked.

Remove White Spaces
White space can be used when making labels for many classes.

These blanks cause new classes to form since the actual value is the
same class.

Label Encoding
The dataset's multi-class labels, which contain the names of

assaults, are all labelled with string values. It is required to
numerically encode these values to train the classifier as to which
class each tuple belongs to. Since the zero-one establishment
necessary for this operation, the multi-class labels are utilised
instead.

Data Normalization
Training the classifier might be difficult due to the dataset's high

degree of numerical variation. This implies that zero and one should
be used for the values of each feature. The classifier benefits from
the more consistent values, and the relevance of each attribute's
values is preserved.

Feature Selection using DSFLA
Introduction to SFLA
In SFLA, each potential answer corresponds to the location of a

digital frog, and the population of answers is represented by a
collection of these frogs. Once the starting populace P has been
generated, the subsequent steps—are continued indefinitely or until
some limiting disorder is reached.
𝑥𝑥𝑤𝑤′ = 𝑥𝑥𝑤𝑤 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × (𝑥𝑥𝑏𝑏 − 𝑥𝑥𝑤𝑤) (1)
𝑥𝑥𝑤𝑤′ = 𝑥𝑥𝑤𝑤 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × �𝑥𝑥𝑔𝑔 − 𝑥𝑥𝑤𝑤� (2)
where rand is a accidental amount subsequent in [0.1].

By mixing up the order of all the developed memeplexes, a new
population P is built. As mentioned above, the search technique and

Venkata Subbaiah et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(6), 828 Pg 5

parameters used to generate memeplexes are generally the same,25
and the concept of differentiated search within memeplexes is
seldom taken into account. Introducing unique search operators and
parameters strengthens the search capability and allows for the
efficient avoidance of local optima, considerably enhancing the
search efficiency. In this research, DSFLA is introduced as a means
of selecting relevant characteristics from raw data. The diversified
search is incorporated into DSFLA's second phase.

Initialization, Population Separation, and the First Stage
In this study, a solution of the problematic is characterized as

�𝑀𝑀𝜃𝜃1 ,𝑀𝑀𝜃𝜃2 , … . ,𝑀𝑀𝜃𝜃𝑛𝑛� and a string [𝑞𝑞1, 𝑞𝑞2,· · · , 𝑞𝑞𝑛𝑛], where 𝑀𝑀𝜃𝜃𝑗𝑗 is the
allocated features for job 𝐽𝐽𝑗𝑗 , 𝑗𝑗 = 1, 2,· · · ,𝑟𝑟, and 𝑞𝑞l is agrees to 𝐽𝐽l.
Each of these two strings functions separately. What follows is a
breakdown of the decoding procedure. Each job's machine is
selected first using the machine Mk, all jobs are run simultaneously.
𝐽𝐽𝑖𝑖 , 𝐽𝐽𝑖𝑖+1,· · · , 𝐽𝐽𝑗𝑗 allocated on 𝑀𝑀k—that is, 𝑀𝑀𝜃𝜃𝑖𝑖 = 𝑀𝑀𝜃𝜃𝑖𝑖+1 ,· · · , = 𝑀𝑀𝜃𝜃𝑗𝑗 =
 𝑀𝑀𝑘𝑘. The dispensation order of 𝑞𝑞𝑙𝑙, 𝑙𝑙 ∈ [𝑖𝑖, 𝑗𝑗], 𝑖𝑖 < 𝑗𝑗, and 𝑀𝑀k
sequentially.

Following the random generation of the preliminary population
P, the population is divided as follows. Select the top s solutions
from set P and arrange them from best to worst according to their
effectiveness. Then, the memeplexes are given a portion of the
original response to work with. We'll call the first answer M_1, the
second M_2, and so on. Assigning other solutions to memeplexes
is then done using binary tournament selection, where two solutions
are chosen at random and compared to see which is superior. Then,
we incorporate x_i (x_j) into M_1. If there are multiple keys with
the same goal, then randomly select one of them and include it into
M_1. Unselected options are returned to population P. The same
procedure for settling on a solution for ℳ2,ℳ3, … . ,ℳ𝑠𝑠 and then
recurrence the above way pending all keys are allocated.
Obviously, 𝑁𝑁 = 𝑠𝑠 × 𝜃𝜃, where 𝜃𝜃 symbolizes memeplex.
Global search is only employed in the initial stage because of its
superior exploratory capabilities. Differentiated search procedures
based on memeplex quality assessments are employed in the second
stage.
 The Second Phase

In SFLA, assessing memeplex quality is rarely taken into
account. The quality of memeplexes is measured by how well they
solve problems and how well they evolve. Meant Memeplexly ℳ𝑙𝑙 ,
its quality 𝑀𝑀eql is defined by

𝑀𝑀eql = 𝑟𝑟1 × 𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑠𝑠𝑞𝑞1
𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛

+ 𝑟𝑟2 × 𝑚𝑚𝑚𝑚𝑚𝑚1−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛

 (3)

where 𝑟𝑟1, 𝑟𝑟2 are real number, 𝑚𝑚𝑠𝑠𝑞𝑞l and 𝑚𝑚𝑚𝑚𝑞𝑞l indicate solution
quality of ℳ𝑙𝑙 , respectively, 𝑚𝑚𝑠𝑠𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 =

𝑚𝑚𝑟𝑟𝑥𝑥
𝑙𝑙 = 1,2,··· , 𝑠𝑠 {𝑚𝑚𝑠𝑠𝑞𝑞𝑙𝑙},𝑚𝑚𝑠𝑠𝑞𝑞𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑚𝑚𝑖𝑖𝑟𝑟

𝑙𝑙 = 1,2,··· , 𝑠𝑠 {𝑚𝑚𝑠𝑠𝑞𝑞𝑙𝑙}, 𝑚𝑚𝑚𝑚𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚

and 𝑚𝑚𝑚𝑚𝑞𝑞min represent all memeplexes, separately.
After entirely solutions in ℳ𝑙𝑙 are organized in the make span, let
𝐻𝐻1 indicate primary 𝜃𝜃/2 solutions except 𝑥𝑥b and 𝐻𝐻2 is the set of the
endured 𝜃𝜃/2 keys in ℳ𝑙𝑙 ,
𝑚𝑚𝑠𝑠𝑞𝑞𝑙𝑙 = 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑏𝑏) + 𝛽𝛽1 × 𝐶𝐶�̅�𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1) + 𝛽𝛽2 × 𝐶𝐶�̅�𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2) (4)
where 𝐶𝐶�̅�𝑚𝑚𝑚𝑚𝑚(𝐻𝐻𝑖𝑖) is the regular makespan of all keys in 𝐻𝐻i, i = 1, 2,
𝛽𝛽𝑖𝑖 . 𝑖𝑖 = 1, 2 is a
real number. Solutions of 𝐻𝐻1 are better than those of 𝐻𝐻2;

consequently, we set 𝛽𝛽1 > 𝛽𝛽2 to reflect this feature. 𝛽𝛽1 = 0.4 and 𝛽𝛽2
= 0.1 are gotten by trials.
Let 𝐼𝐼𝑚𝑚x designate the improved sum of x group. When 𝑥𝑥 ∈ 𝑀𝑀𝑙𝑙 is
selected 𝑥𝑥w, in general SFLA, if than x, then 𝐼𝐼𝑚𝑚𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑚𝑚 + 1. 𝑆𝑆𝑆𝑆x
is the total primary generation.
𝑚𝑚𝑚𝑚𝑞𝑞1 = ∑ 𝐼𝐼𝑚𝑚𝑚𝑚/∑ 𝑆𝑆𝑆𝑆x𝑚𝑚∈𝑀𝑀𝑙𝑙𝑚𝑚∈𝑀𝑀𝑙𝑙 (5)
For solution 𝑥𝑥i, its 𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚𝑖𝑖 is used to assess is figured by
𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚𝑖𝑖 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑖𝑖/𝑆𝑆𝑆𝑆x𝑖𝑖 (6)
The second phase is exposed as shadows.

(1) Perform populace separation, calculate 𝑀𝑀𝑆𝑆𝑞𝑞l for
completely in descending order of 𝑀𝑀𝑆𝑆𝑞𝑞l, and construct set
Θ = {𝑀𝑀𝑙𝑙|𝑚𝑚𝑆𝑆𝑞𝑞𝑙𝑙 > 𝑀𝑀𝑆𝑆𝑞𝑞������, 𝑙𝑙 ≤ 𝜂𝜂 × 𝜃𝜃}.

(2) For correspondingly memeplex 𝑀𝑀𝑙𝑙, 𝑀𝑀𝑙𝑙 ∉ Θ, recurrence
the subsequent steps 𝑅𝑅1 aeras if |𝜏𝜏| > 0,
execute global search among xb and chosen y 2 T ; else
achieve global
search among 𝑥𝑥b and a key 𝑦𝑦 | ∈ 𝑀𝑀𝑙𝑙 with 𝑟𝑟𝑎𝑎𝑎𝑎𝑦𝑦 ≥ 𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚
for all 𝑥𝑥 ∈ 𝑀𝑀𝑙𝑙.

(3) For each memeplex 𝑀𝑀𝑙𝑙 ∈ Θ,
1. sort all keys in 𝑀𝑀𝑙𝑙 in the suppose 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥1) ≤

 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥2) ≤ · · · ≤ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝜃𝜃), and hypothesis
a set 𝜑𝜑 = �𝑥𝑥𝑖𝑖|𝑟𝑟𝑖𝑖𝑠𝑠𝑎𝑎𝑚𝑚𝑖𝑖 < 𝑟𝑟𝑑𝑑𝑠𝑠𝑎𝑎�����, 𝑖𝑖 ≤ 𝜃𝜃/2�.

2. Recurrence the subsequent ladders 𝑅𝑅2 times,
key 𝑥𝑥𝑖𝑖 ∈ 𝑀𝑀𝑙𝑙/𝜑𝜑 if 𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚𝑖𝑖 > 0.5, then select a
solution 𝑦𝑦 ∈ 𝜑𝜑 by roulette assortment based on
𝑃𝑃𝑟𝑟y, execute global search among 𝑥𝑥i and y, and
inform memory T ; else search among 𝑥𝑥i and a
solution z with 𝑟𝑟𝑎𝑎𝑎𝑎𝑧𝑧 ≥ 𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚𝑖𝑖 for all 𝑥𝑥𝑖𝑖 ∈ 𝑀𝑀𝑙𝑙 and
T .

(4) Execute hunts on each key 𝑥𝑥 ∈ 𝜑𝜑.
(5) Perform novel populace shuffling.

where 𝑟𝑟𝑖𝑖𝑠𝑠𝑎𝑎𝑚𝑚𝑖𝑖 = |𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑖𝑖) − 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑏𝑏)| is distinct for each key
𝑥𝑥𝑖𝑖 ∈ 𝑀𝑀𝑙𝑙 and 𝑟𝑟𝑑𝑑𝑠𝑠𝑎𝑎����� is the
regular value of all 𝑟𝑟𝑖𝑖𝑠𝑠𝑎𝑎xi in 𝑀𝑀𝑙𝑙. 𝜂𝜂 is a real sum and set to be 0.4 by
trials, 𝑀𝑀𝑆𝑆𝑞𝑞������
designates the average excellence, Θ is the set of 𝑃𝑃𝑟𝑟y
is a probability and distinct by

𝑃𝑃𝑟𝑟y =
|𝜑𝜑|−𝑟𝑟𝑚𝑚𝑛𝑛𝑘𝑘𝑦𝑦

|𝜑𝜑|
× 𝐼𝐼𝑚𝑚𝑦𝑦

∑ 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚∈𝜑𝜑
 (7)

where 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑦𝑦 is an numeral and obvious by ranking rendering to
initial phase of step (3) in the above Procedure.
In the second phase, after altogether in the descendant order of
Meql,
suppose 𝑀𝑀𝑆𝑆𝑞𝑞1 ≥ 𝑀𝑀𝑆𝑆𝑞𝑞2 ≥ · · · 𝑀𝑀𝑆𝑆𝑞𝑞𝑠𝑠.
Memory 𝑇𝑇 is used to store keys. The maximum extent |𝑇𝑇|max is
given in early payment. We set |𝑇𝑇|max to be 200 by trials. When the
sum of keys exceeds |𝑇𝑇|max, a key x can be supplementary into
better than one.
Six neighborhood constructions are used. 𝑁𝑁1 is exposed below.
Arbitrarily first-class a job from the machine 𝑀𝑀k with the largest
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘 and machine 𝑀𝑀g with the smallest 𝐶𝐶max

𝑔𝑔 , where 𝐶𝐶max𝑘𝑘 and 𝐶𝐶max
𝑔𝑔

are last treated job on 𝑀𝑀k and 𝑀𝑀g, individually. 𝑁𝑁2 is achieved in
the subsequent way. Decide on a machine 𝑀𝑀k with the major 𝐶𝐶max𝑘𝑘

Venkata Subbaiah et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(6), 828 Pg 6

and a job 𝐽𝐽i with the major processing time 𝑝𝑝ki on 𝑀𝑀k, arbitrarily
pick a machine 𝑀𝑀g, g≠k and a job 𝐽𝐽j with the largest 𝑝𝑝gj and
conversation 𝐽𝐽i and 𝐽𝐽j among 𝑀𝑀k and Mg.
𝑁𝑁3 is described as shadows. Arbitrarily choice two machines 𝑀𝑀k
and 𝑀𝑀g and talk a job 𝐽𝐽i with the largest 𝑝𝑝ki and a job 𝐽𝐽j with the
major pgj among these two machines. 𝑁𝑁1,𝑁𝑁2,𝑁𝑁3 only act on the
string.
𝑁𝑁4,𝑁𝑁5,𝑁𝑁6 are operations on a string whereby two genes are
exchanged, one gene is inserted into a new location that is also
decided at random, and the genes are inverted amid two positions
𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟1 < 𝑟𝑟2.
Multiple key 𝑥𝑥, let 𝑢𝑢 = 1, recurrence the subsequent ladders 𝑉𝑉
times: yield a key 𝑧𝑧 ∈ 𝑁𝑁𝑢𝑢(𝑥𝑥), u=u+1, let 𝑢𝑢 = 1 if 𝑢𝑢 = 7, and 𝐼𝐼𝑚𝑚𝑚𝑚 =
 𝐼𝐼𝑚𝑚𝑚𝑚 + 1.
The procedure for the second phase of the global search is identical
to the first.
Using the s developed memeplexes, the current SFLA25 builds a
new population P. In this research, we reshuffle the population in
the following ways: The most successful memeplexes from both the
original population (T) and the new population (P) are included into
the new population. Using experimental methods, we establish 𝛾𝛾 =
0.1 ×|𝑇𝑇|𝑚𝑚𝑚𝑚𝑚𝑚.
In other words, memeplex search or shuffling can be used to
enhance some of P's worse solutions.
A global search of optimisation object x is applied in accordance
with act_x, and then manifold neighbourhood search is performed
on the keys in to find a good memeplex, which is the focus of the
second phase. For other memeplexes, just a global search is
performed; additionally, several parameters, 𝑅𝑅1,𝑅𝑅2,𝑅𝑅1 ≠ 𝑅𝑅2, are
used, and, as a consequence, distinguished search is applied.

Algorithm Explanation
The comprehensive stepladders of DSFLA are exposed

underneath.
1. Initiation, 1. Let T start out empty and randomly

generate N solutions for P.
2. Divvying up the people, number two. carry out the

search procedure inside of every memeplex.
3. Three, reorganise the people.
4. (If the first phase's termination condition is not

fulfilled, proceed to the second stage.
5. Carry on with the second stage until the termination

disorder is reached.

The computational difficulty is 𝑂𝑂(𝑁𝑁 × 𝑅𝑅1 × 𝐿𝐿), where L is the
recurrent sum of phases 2–3.

DSFLA differs from the original SFLA in the ways listed below.
(1) Memeplexes are sorted into two groups, good and other, based
on an evaluation of their quality that takes into account both their
solution quality and their evolution quality. (2) The distinguished
search is put into action by employing various search algorithms
and limits for two types of memeplexes, which increases
exploration capabilities and drastically reduces the likelihood of
settling into local optimums.

Classification using Designed Methodology

Here, we provide an overview of the SA-CVAE procedure that
has been proposed. The network architecture is composed of a
discriminator, a value-added extractor, and a classifier. If the input
tasters are genuine or virtual, the discriminator's module can tell
you. The encoder and generator make up the VAE module. To
create synthetic data, the generator takes actual samples and utilises
the encoder's latent vectors in combination with random latent
vectors. Input actual and synthetic samples are sorted by the
classifier module.

Discriminator
It is the discriminator's module, as seen in Figure 2. There are

four convolutional layers in total. The kernel size is 3 3 for each
layer. The self-attention layer is used after the initial two
convolution layers have already been applied. The information is
transformed into a feature vector after the last layer. Reference26
suggests that the model's stability can be improved by feeding the
label information into the discriminator. The label is transformed
into a vector and then appended to the feature vector through a
complete connection layer. Then, the dimension is shrunk by
applying a complete connecting layer. The function is then used to
the data to verify their veracity.
Here is the loss discriminator D:
𝐿𝐿𝐷𝐷 = 𝐿𝐿𝐷𝐷𝐺𝐺𝐺𝐺 + 𝐿𝐿𝐷𝐷𝐺𝐺(𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑟𝑟𝑚𝑚|𝑦𝑦) (8)

Loss in WGAN-GP among x and G(z|y) can improve perfect
stability, and loss in the discriminator determines whether a
feature is retained or dropped. 𝐺𝐺(𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑜𝑜𝑚𝑚|𝑦𝑦) is false.
Among them:
𝐿𝐿𝐷𝐷𝐺𝐺𝐺𝐺 = 𝐸𝐸𝑧𝑧~𝑃𝑃𝑧𝑧[𝐷𝐷(𝐺𝐺(𝑧𝑧|𝑦𝑦)|𝑦𝑦)] − 𝐸𝐸𝑚𝑚~𝑃𝑃(𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙)[𝐷𝐷(𝑥𝑥|𝑦𝑦)] +

𝜆𝜆𝐸𝐸𝑧𝑧~𝑃𝑃𝑧𝑧 ���∇𝐺𝐺�𝑧𝑧�𝑦𝑦�𝐷𝐷(𝐺𝐺(𝑧𝑧|𝑦𝑦)|𝑦𝑦)�
2
− 1�

2
� (9)

𝐿𝐿𝐷𝐷𝑚𝑚𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑟𝑟𝑚𝑚 = −𝐸𝐸𝑧𝑧~𝑃𝑃𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑟𝑟𝑚𝑚
[𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷(𝐺𝐺(𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑜𝑜𝑚𝑚|𝑦𝑦)|𝑦𝑦)] (10)

where z characterizes the latent vector produced by the encoder,
𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑜𝑜𝑚𝑚 characterizes the arbitrarily, 𝑥𝑥real embodies real tasters,
G(z|y) characterizes the produced by the generator rendering
consistent label, 𝐺𝐺(𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑜𝑜𝑚𝑚|𝑦𝑦) characterizes the virtual taster
produced by the producer rendering to 𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑜𝑜𝑚𝑚 and the
consistent label, and y characterizes the tag.

Figure 2 The assembly of the discriminator D.

Variational Auto-Encoder

The encoder and generator are the two main components of the
VAE module. After the genuine samples have been encoded into
generator G may utilise that information to create a synthetic
sample. To vector m and the covariance e of the space, the encoder
E is split into extraction networks. The network architecture is the

Venkata Subbaiah et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(6), 828 Pg 7

same for all feature extraction networks. It is made up of networks
for extracting features both in space and in time. The network for
extracting spectral features has four 1-dimensional convolution
layers, each with a 5 by 1 kernel. Both the initial and secondary
levels incorporate self-awareness. There are four 2-D convolution
layers in the spatial feature network, each with in the first two
layers. Following a network for extracting both spectral and spatial
features, we combine the two into a single unified feature and apply
a complete connection layer for dimensionality reduction. Using
the vector e, we can calculate the latent vector l using the following
equation.:
z = µ + r ∗ exp(ϵ) (11)

The purpose of generator G is to simulate data distributions
based on learned models. Specifically, G is made up of layers, and
a final hidden layer. The latent vector and its associated label are
first obtained, and then the vector is reshaped using two complete
connection layers. The vector is then transformed into a cube of
three-dimensional data and sent along to the transposed convolution
layers. The transposed convolution layer has a kernel size of 3 x 3.
At long last, a digital sample is within reach.
The loss function of VAE is as shadows:
𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉 = 𝐿𝐿𝑘𝑘𝑙𝑙 + 𝐿𝐿𝐺𝐺 + 𝐿𝐿𝑚𝑚𝑚𝑚𝑒𝑒𝐷𝐷 + 𝐿𝐿𝑚𝑚𝑚𝑚𝑒𝑒𝐶𝐶 (12)

KL divergence is the initial term, and it is used to close the gap
between the observed and expected latent vector distributions.
Renovation loss among x and G(z|y) is l_2, thus that's the second
term. The third term is the total of the loss in determining whether
or not G(z_random |y)|y is true, as well as the loss in matching
among x and G(z|y) in the discriminator D. The last term is the
addition of the loss from the classification result of classifier C and
the loss among x and G(z|y)..
Among them:
𝐿𝐿𝑘𝑘𝑙𝑙 = 1

2
(𝜇𝜇𝑇𝑇𝜇𝜇 + 𝑠𝑠𝑢𝑢𝑚𝑚(exp(𝜖𝜖) − 𝜖𝜖 − 1)) (13)

𝐿𝐿𝐺𝐺 = 1
2

(‖𝑥𝑥 − 𝐺𝐺(𝑧𝑧|𝑦𝑦)‖22) (14)

𝐿𝐿𝑚𝑚𝑚𝑚𝑒𝑒𝐷𝐷 = ‖𝑓𝑓𝐷𝐷(𝑥𝑥) − 𝑓𝑓𝐷𝐷(𝐺𝐺(𝑧𝑧|𝑦𝑦))‖22 + 𝐸𝐸[log (1 −
𝐷𝐷(𝐺𝐺(𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑜𝑜𝑚𝑚|𝑦𝑦)))] (15)
𝐿𝐿𝑚𝑚𝑚𝑚𝑒𝑒𝐶𝐶 = ‖𝑓𝑓𝐶𝐶(𝑥𝑥) − 𝑓𝑓𝐶𝐶(𝐺𝐺(𝑧𝑧|𝑦𝑦))‖22 −
𝐸𝐸[log 𝑃𝑃(𝑦𝑦|𝐺𝐺(𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑜𝑜𝑚𝑚|𝑦𝑦)))] (16)

where 𝜇𝜇 and 𝜖𝜖 characterize encoder, respectively; 𝑓𝑓D
characterizes the features discriminator D; 𝑓𝑓C represents the
topographies of samples is embodied as 𝑥𝑥real; the rendering to the
latent vector produced by the encoder is 𝐺𝐺(𝑧𝑧|𝑦𝑦); the produced
vector is 𝐺𝐺(𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑜𝑜𝑚𝑚|𝑦𝑦); and y characterizes the label.

Classifier
The outputs of classifier C are used for this purpose. Also,

spectral-spatial feature extraction networks are part of classifier C.
Five 1 layers with a 1 5 kernel make up network, while five 2-D
layers with a 3 3 kernel make up the spatial chin extraction network.
In the end, we combine the spectral and spatial information and feed
them into two complete connection layers. Here is how the LC loss
function is calculated: The unit exposed in Figure 3.

Figure 3: Structure of classifier

𝐿𝐿𝐶𝐶 = 𝐿𝐿𝐶𝐶𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙 + 𝜆𝜆1𝐿𝐿𝐶𝐶𝑚𝑚𝑧𝑧 + 𝜆𝜆1𝐿𝐿𝐶𝐶𝑚𝑚𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑟𝑟𝑚𝑚 (17)

where the first term represents a reduction in the classification of
x's outcome. The second tenure is the total loss from matching
features among x and G(z|y). The final word represents a failure to
preserve the outcome of classifying G(zrandom|y). the relative
strengths of l1 and l2 in 𝐿𝐿𝐶𝐶𝑚𝑚𝑧𝑧 and 𝐿𝐿𝐶𝐶𝑚𝑚𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑟𝑟𝑚𝑚 loss, separately.

𝐿𝐿𝐶𝐶𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙 = −𝐸𝐸[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑎𝑎|𝑥𝑥𝑟𝑟𝑒𝑒𝑚𝑚𝑙𝑙)] (18)

𝐿𝐿𝐶𝐶𝑚𝑚𝑧𝑧 = ‖𝑓𝑓𝐶𝐶(𝑥𝑥𝑟𝑟𝑒𝑒𝑚𝑚𝑙𝑙) − 𝑓𝑓𝐶𝐶(𝑥𝑥𝑧𝑧)‖22 (19)

𝐿𝐿𝐶𝐶𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑟𝑟𝑚𝑚 = −𝐸𝐸�𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑦𝑦|𝑥𝑥𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑟𝑟𝑚𝑚)� (20)

where 𝑓𝑓𝐶𝐶 represents the features of classifier, 𝑥𝑥real characterizes the
real tasters, 𝑥𝑥z characterizes the virtual dormant vector z produced
by, 𝑥𝑥𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑟𝑟𝑚𝑚 characterizes the virtual taster generated by entering
the arbitrarily vector 𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑜𝑜𝑚𝑚 into the producer, and y embodies the
label. The parameters are tuned by using improved AEF algorithm
that is described as follows.
Hyper-parameter tuning using Opposition-based optimization
approach

Slow finest key are problems for the fundamental artificial
electric field. There may be superior alternatives that are far from
the present solution, however upgrading certain solutions towards
the local best solution causes these drawbacks. By looking at other
approaches, the OAEF sidesteps these problems. When the search
capabilities of the normal version of AEF are combined with those
of OBL, the search space may be explored more efficiently. Since
the addition of OBL has no effect on the AEF setup, the suggested
method requires less parameters to be set, and its best solution is
more accurate when compared to other methods. Since OAEF can
search a larger space, a smaller initial population may be used,
which improves optimum solution convergence.

The suggested technique improves AEF in two phases. First,
OBL is used to seed the population, which searches the whole
search space for solutions to boost convergence speed and avoid
becoming stuck on the local best one. Second, it's put to use when
determining if a solution that goes in the other way improves upon
the present population solution. Both procedures are elaborated
about below.

A). Initialization stage
A random populace of X (of size N) is first generated so that the

site vector of the preliminary solution may be written as 𝑋𝑋𝑖𝑖 =
[𝑋𝑋𝑖𝑖1,𝑋𝑋𝑖𝑖2, … ,𝑋𝑋𝑖𝑖𝐷𝐷]where 𝑖𝑖 = 1,2, … ,𝑁𝑁 and 𝑟𝑟 = 1,2, … ,𝐷𝐷. After that,

Venkata Subbaiah et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(6), 828 Pg 8

OBL computes the conflicting populace of X is produced. The best
N sum of keys is designated based on X and 𝑋𝑋�.

 Keys of X populace are arbitrarily prepared.
 The opposite populace 𝑋𝑋�(𝑋𝑋�𝑖𝑖𝑟𝑟 = 𝑢𝑢𝑟𝑟 + 𝑙𝑙𝑟𝑟 − 𝑋𝑋𝑖𝑖𝑟𝑟 , 𝑖𝑖 =

1,2, . . ,𝑁𝑁 and d=1,2,..,D) is intended l is search space, 𝑋𝑋𝑖𝑖𝑟𝑟
and 𝑋𝑋�𝑖𝑖𝑟𝑟, denote the locations of the d-th and i-th
parameters of the i-th and x-th solutions, respectively, in
populace X.

 The top N answers derived from all of these variables are:
𝑋𝑋 ∪ 𝑋𝑋� are selected to make a new populace.

B). Updating stage
The optimal solution X_best is found after selecting the top N

solutions from a fresh population. In order to determine the fitness
functions of the updated solutions in the X population, AEF is
applied. Additionally, fitness functions for the OBL-obtained X
population and its counterpart are determined.

For the purpose of evaluating OAEF's efficacy, we used the
Sphere, Ackley, Egg Crate, and Easom benchmark functions. The
definitions of adopted test functions are summarised in Table 2.27
We settled on 50 for the population size and 500 for the maximum
sum of iterations. Twenty iterations of the OAEF procedure
proposal were tested.

Table 2: Approximately benchmark purposes.
Test Function Function Description Dimension Range Global Optimum
Sphere

𝐹𝐹1(𝑋𝑋) = �𝑋𝑋𝑖𝑖2
𝐷𝐷

𝑖𝑖=1

D=30 -100≤ 𝑥𝑥𝑖𝑖 ≤ 100 0

Rosenbrock
𝐹𝐹2(𝑋𝑋) = ��100�𝑋𝑋𝑖𝑖+1 − 𝑋𝑋𝑖𝑖2� + (𝑋𝑋𝑖𝑖

𝐷𝐷−1

𝑖𝑖=1
− 1)2�

D=30 -30≤ 𝑥𝑥𝑖𝑖 ≤ 30 0

Schwefel
𝐹𝐹3(𝑋𝑋) = −�𝑋𝑋𝑖𝑖𝑠𝑠𝑖𝑖𝑟𝑟 ��|𝑋𝑋𝑖𝑖|�

𝐷𝐷

𝑖𝑖=1

D=30 -50≤ 𝑥𝑥𝑖𝑖 ≤ 500 -12569.487

Ackley 𝐹𝐹4(𝑋𝑋) = 𝑋𝑋12 + 𝑋𝑋22 + 25[𝑠𝑠𝑖𝑖𝑟𝑟2(𝑥𝑥1)
+ 𝑠𝑠𝑖𝑖𝑟𝑟2(𝑥𝑥2)]

D=30 -32≤ 𝑥𝑥𝑖𝑖 ≤ 32 0

Egg Crate 𝐹𝐹5(𝑋𝑋) = 𝑋𝑋12 + 𝑋𝑋22 + 25[𝑠𝑠𝑖𝑖𝑟𝑟2(𝑥𝑥1) +
𝑠𝑠𝑖𝑖𝑟𝑟2(𝑥𝑥2)]

D=2 -5≤ 𝑥𝑥𝑖𝑖 ≤ 5 0

Easom 𝐹𝐹6(𝑋𝑋) = −cos (𝑥𝑥1)cos (𝑥𝑥2)𝑆𝑆𝑥𝑥𝑝𝑝(−(𝑥𝑥1
− 𝜋𝜋)2 − (𝑥𝑥2 − 𝜋𝜋)2)

D=2 -100≤ 𝑥𝑥𝑖𝑖 ≤ 100 -1

RESULTS AND DISCUSSION
During the trial, Python and the Anaconda integrated

development environment were utilized. The experimental
computer used the following specifications: NVIDIA GeForce
GTX 1070Ti, 8 GB GPU, with Intel® CoreTM i5-7400 CPU, 3.50
GHz. Each model was trained for 300 iterations using the suggested
optimizer.

Performance Metrics
For the determination of measuring the efficacy of transfer

learning with learning, we employed the following metrics to assess
the CNN models used in the process:
𝑟𝑟𝑎𝑎𝑎𝑎𝑢𝑢𝑟𝑟𝑟𝑟𝑎𝑎𝑦𝑦 = 𝑇𝑇𝑃𝑃+𝑇𝑇𝑇𝑇

𝑇𝑇𝑃𝑃+𝐹𝐹𝑃𝑃+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇
 (21)

𝑃𝑃𝑟𝑟𝑆𝑆𝑎𝑎𝑖𝑖𝑠𝑠𝑖𝑖𝑙𝑙𝑟𝑟 = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝑃𝑃

 (22)

𝑟𝑟𝑆𝑆𝑎𝑎𝑟𝑟𝑙𝑙𝑙𝑙 = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝑇𝑇

 (23)

𝑆𝑆𝑝𝑝𝑆𝑆𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑦𝑦 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑃𝑃

 (24)

𝑟𝑟𝑆𝑆𝑙𝑙𝑟𝑟𝑎𝑎𝑖𝑖𝑚𝑚𝑆𝑆 𝑝𝑝𝑟𝑟𝑆𝑆𝑟𝑟𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖𝑚𝑚𝑆𝑆 𝑚𝑚𝑟𝑟𝑙𝑙𝑢𝑢𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (25)

𝐹𝐹1𝑠𝑠𝑎𝑎𝑙𝑙𝑟𝑟𝑆𝑆 = 2 𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝𝑖𝑖𝑠𝑠𝑖𝑖𝑜𝑜𝑛𝑛×𝑟𝑟𝑒𝑒𝑝𝑝𝑚𝑚𝑙𝑙𝑙𝑙
𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝𝑖𝑖𝑠𝑠𝑖𝑖𝑜𝑜𝑛𝑛+𝑟𝑟𝑒𝑒𝑝𝑝𝑚𝑚𝑙𝑙𝑙𝑙

 (26)

𝐹𝐹𝑟𝑟𝑙𝑙𝑠𝑠𝑆𝑆 𝑝𝑝𝑙𝑙𝑠𝑠𝑖𝑖𝑎𝑎𝑖𝑖𝑚𝑚𝑆𝑆𝑠𝑠 (𝐹𝐹𝑃𝑃) 𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑟𝑟𝑙𝑙𝑠𝑠𝑆𝑆 𝑟𝑟𝑆𝑆𝑙𝑙𝑟𝑟𝑎𝑎𝑖𝑖𝑚𝑚𝑆𝑆𝑠𝑠 (𝐹𝐹𝑁𝑁) are the
inverse of the 𝑎𝑎𝑟𝑟𝑢𝑢𝑆𝑆 𝑝𝑝𝑙𝑙𝑠𝑠𝑖𝑖𝑎𝑎𝑖𝑖𝑚𝑚𝑆𝑆𝑠𝑠 (𝑇𝑇𝑃𝑃) and true negatives (TN).
The AUC and ROC curve were also determined.

Table 3: Comparative analysis of Feature Selection

Metrics/Models SFLA GWO ACO DSFLA

Recall (%) 93.98 87.86 89.33 96.24

F-measure (%) 93.79 86.55 88.74 95.91

Accuracy (%) 93.88 88.35 90.61 96.72

Precision (%) 93.97 85.27 87.92 95.85

In above Table 3 characterise that the Comparative investigation

of Feature Selection. In the analysis of Accuracy (%) of GWO
model attained as 88.35 and ACO model attained the 90.61and
SFLA model attained the value as 93.88 and lastly DFLA model
attained the value as 96.72 correspondingly. Then the Precision (%)
of GWO model attained as 85.27 and ACO model attained the
87.92 and SFLA model attained the value as 93.97 and lastly DFLA
model attained the value as 95.85 correspondingly. Then the Recall

Venkata Subbaiah et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(6), 828 Pg 9

(%) of GWO model attained as 87.86 and ACO model attained the
89.33 and SFLA model attained the value as 93.98 and lastly DFLA
model attained the value as 96.24 correspondingly. Then the F-
measure (%) of GWO model attained as 86.55 and ACO model
attained the 88.74 and SFLA model attained the value as 93.79 and
lastly DFLA model attained the value as 95.91 correspondingly.
Figure 4 presents the visual analysis of the designed model.

Figure 4: Graphical Description of different feature selection
techniques

Table 4: Analysis of Various Classifiers on K=10

Models F1
Score

Precisi
on

Reca
ll

Specific
ity

mpv Accura
cy

AUC
Score

AE 0.847
5

0.8929 0.80
65

0.8824 0.78
95

0.8407 0.9064

VAE 0.847
5

0.8929 0.80
65

0.8824 0.78
95

0.8407 0.9089

SVM 0.78
95

0.865
4

0.72
58

0.862
7

0.721
3

0.78
76

0.90
89

DBN 0.85
00

0.879
3

0.82
26

0.862
7

0.800
0

0.84
07

0.92
03

SACVAE
GAN

0.82
81

0.803
0

0.85
48

0.745
1

0.808
5

0.80
53

0.87
86

In above Table 4 characterise that the Investigation of Various

Classifiers on K=10. In the analysis of SVM model accomplished
the accuracy obtained as 0.7876 then precision as 0.8654 besides
the recall range of 0.7258 besides the specificity as 0.8627 and the
mpy range of 0.7213 besides F1-score as 0.7895 and to conclude
the AUC as 0.9089 congruently. Then the DBN model
accomplished the accuracy of 0.8407 and precision accomplished
as 0.8793 besides the recall range of 0.8226 and the specificity as
0.8627 and the mpy range of 0.8000 and F1-score as 0.8500 and
lastly the AUC slash as 0.9203 correspondingly. Then the AE
model attained the accuracy obtained as 0.8407 and precision as
0.8929 and the recall range of 0.8065 and the specificity as 0.8824
and lastly the AUC score as 0.7895 and the mpy range of 0.8475
and F1-score as 0.9064 congruently. Then the VAE model attained
as 0.8929 besides the recall range of 0.8065 and the specificity as
0.8824 and lastly the AUC score as 0.7895 and the mpy range of
0.8475 and F1-score as 0.9089 correspondingly. Then the
SACVAEGAN prototypical accomplished the accuracy of 0.8053

besides precision as 0.8030 then the recall range of 0.8548 then the
specificity as 0.7451 formerly the mpy range of 0.8085 besides F1-
score obtained as 0.8281 and lastly the AUC groove as 0.8786
consistently, where it is graphically seen in Figure 5.

Figure 5: Graphical Description of different models on two K-fold
analysis

Table 5: Comparison of different models on K=20

Models Precisi
on

Reca
ll

Specific
ity

mpv F1
Score

AUC
Score

Accura
cy

AE 0.8966 0.83
87

0.8824 0.81
82

0.866
7

0.9330 0.8584

VAE 0.9016 0.88
71

0.8824 0.86
54

0.894
3

0.9374 0.8850

SVM 0.866
7

0.83
87

0.843
1

0.811
3

0.85
25

0.91
90

0.84
07

DBN 0.927
3

0.82
26

0.921
6

0.810
3

0.87
18

0.92
19

0.86
73

SACVAE
GAN

0.859
4

0.88
71

0.823
5

0.857
1

0.87
30

0.92
82

0.85
84

Table 5 describes the comparison of various models on a K=20

basis. In the analysis of the SVM model, the accuracy was 0.8407,
precision was 0.8667, recall range was 0.8387, specificity was
0.8431, mpy range was 0.8113, F1-score was 0.8525, and lastly the
AUC score was 0.9190. The DBN model then achieved the
corresponding accuracy of 0.8673, precision of 0.9273, specificity
of 0.8226, mpy range of 0.9216, 0.8103, and 8718, and AUC score
of 0.9219. The AE model then achieved the following results in that
order: accuracy obtained as 0.8584, precision of 0.8966, recall
range of 0.8387, specificity of 0.8824, mpy range of 0.8182, F1-
score of 0.8667, and lastly the AUC notch of 0.9330. The VAE
prototypical then achieved accuracy of 0.8850, precision
accomplished as 0.9016, recall range of 0.8871, specificity of
0.8824, mpy range of 0.8654, F1-score obtained as 0.8943, and
lastly an AUC score of 0.9374, all in that order. The SACVAEGAN
model then obtained the corresponding accuracy of 0.8584,
precision accomplished as 0.8594, recall range of 0.8871,
specificity of 0.8235, mpy range of 0.8571, F1-score obtained as

Venkata Subbaiah et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(6), 828 Pg 10

0.8730, and lastly AUC notch of 0.9282, where Figure 6 shows the
comparison of two different K values of designed model with
existing techniques.

Figure 6: Analysis of various classifiers in terms of different metrics

Table 6: Validation Analysis of different Classifiers

Models Accuracy Train
Time(s)

Test
Time(s)

SVM 93.00% 6.503 0.01505

DBN 95.00% 10.083 0.01506

AE 90.70% 1.632 0.01512

VAE 82.20% 2.207 0.01702

SACVAEGAN 98.67% 16.146 0.01553

In above Table 6 signifies that the Validation Investigation of

different Classifiers. In the investigation of SVM model attained
accuracy rate as 93.00% and train time as 6.503 and test time as
0.01505 correspondingly. Then the DBN model attained accuracy
rate as 95.00% and train time as 10.083 and test time as 0.01506
correspondingly. Then the AE model attained accuracy rate as
90.70% and train time as 1.632 and test time as 0.01512
correspondingly. Then the VAE model attained accuracy rate as
82.20% and train time as 2.207 and test time as 0.01702
correspondingly. Then the SACVAEGAN model attained accuracy
rate as 98.67% and train time as 16.146 and test time as 0.01553
correspondingly. Study A utilized a qualitative approach to explore
the impact of social media on adolescent mental health. Through
interviews and thematic analysis, it identified key stressors and
coping mechanisms.

CONCLUSION
This work presents a deep learning-based IDS for VANETs,

efficiently dividing assaults into subclasses without incorrectly
labeling any attacks as belonging to the Normal class. In this study,
we introduce a SACVAEGAN for classifying VANET IDS. To
further improve performance, we employ CVAEGAN, capable of
producing more high-quality training data. Additionally, our
suggested SACVAEGAN utilizes the self-attention mechanism to

enhance feature extraction. The entire training procedure is
stabilized by employing a unique loss function. On input datasets,
SACVAEGAN outperformed state-of-the-art tactics, including
GAN-based algorithms, in terms of classification accuracy. The
suggested approach achieves the required outcomes, as shown by
experiments conducted on the Car Hacking dataset. This finding
opens up a number of avenues for further investigation. To begin,
the suggested framework relies heavily on NNs, but alternative
methods, such as the game theoretic approach, could achieve better
results. Adopting this IDS for use in a real-time situation in a safety
scheme is another potential direction for future development. The
lack of a robust and endangered scheme in VANETs makes it
interesting that the concept of statistics increases and cascaded
outlines will be appropriate for similar situation belongings like
handling security issues and preventing an attacker from entering
the system.

FUTURE SCOPE
Future research on the deep learning-based IDS for VANETs can

explore alternative methods like game theory, implement real-time
applications through edge computing, and enhance robustness
against adversarial attacks. Additionally, applying this IDS
framework to other networks, such as IoT, and collaborating with
industry for real-world deployment and standardization are
promising directions.

CONFLICT OF INTEREST STATEMENT
Authors do not have any confict of interest, financial, academic

or otherwise, for publication of this work in public domain.

REFERENCES
1. H. Bangui, M. Ge, B. Buhnova. A hybrid machine learning model for

intrusion detection in VANET. Computing 2022, 104 (3), 503–531.
2. A. Haydari, Y. Yilmaz. RSU-Based Online Intrusion Detection and

Mitigation for VANET. Sensors 2022, 22 (19), 7612.
3. I. Naqvi, A. Chaudhary, A. Kumar. A Systematic Review of the Intrusion

Detection Techniques in VANETS. TEM J. 2022, 11 (2), 900–907.
4. H. Bangui, M. Ge, B. Buhnova. A hybrid machine learning model for

intrusion detection in VANET. Computing 2022, 104 (3), 503–531.
5. H. Bangui, B. Buhnova. Recent advances in machine-learning driven

intrusion detection in transportation: Survey. Procedia Comput. Sci. 2021,
184, 877–886.

6. B. Karthiga, D. Durairaj, N. Nawaz, et al. Intelligent Intrusion Detection
System for VANET Using Machine Learning and Deep Learning
Approaches. Wirel. Commun. Mob. Comput. 2022, 2022.

7. I. Naqvi, A. Chaudhary, A. Rana. Intrusion Detection in VANETs. In 2021
9th International Conference on Reliability, Infocom Technologies and
Optimization (Trends and Future Directions), ICRITO 2021; IEEE, 2021;
pp 1–5.

8. A. Thirumalraj, R.J. Anandhi, V. Revathi, S. Stephe. Supply chain
management using fermatean fuzzy-based decision making with ISSOA. In
Convergence of Industry 4.0 and Supply Chain Sustainability; 2024; pp
296–318.

9. F. Gonçalves, J. Macedo, A. Santos. Evaluation of VANET datasets in
context of an intrusion detection system. In 2021 29th International
Conference on Software, Telecommunications and Computer Networks,
SoftCOM 2021; IEEE, 2021; pp 1–6.

10. A.R. Gad, A.A. Nashat, T.M. Barkat. Intrusion Detection System Using
Machine Learning for Vehicular Ad Hoc Networks Based on ToN-IoT
Dataset. IEEE Access 2021, 9, 142206–142217.

Venkata Subbaiah et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(6), 828 Pg 11

11. Y. Yu, X. Zeng, X. Xue, J. Ma. LSTM-Based Intrusion Detection System
for VANETs: A Time Series Classification Approach to False Message
Detection. IEEE Trans. Intell. Transp. Syst. 2022, 23 (12), 23906–23918.

12. M. Zang, Y. Yan. Machine Learning-Based Intrusion Detection System for
Big Data Analytics in VANET. In IEEE Vehicular Technology Conference;
IEEE, 2021; Vol. 2021-April, pp 1–5.

13. A. Alsarhan, M. Alauthman, E. Alshdaifat, A.R. Al-Ghuwairi, A. Al-Dubai.
Machine Learning-driven optimization for SVM-based intrusion detection
system in vehicular ad hoc networks. J. Ambient Intell. Humaniz. Comput.
2023, 14 (5), 6113–6122.

14. N. Ben Rabah, H. Idoudi. A Machine Learning Framework for Intrusion
Detection in VANET Communications. In Emerging Trends in
Cybersecurity Applications; Springer International Publishing, Cham,
2022; pp 209–227.

15. S.N. Ohatkar. Heuristics for optimizing minimum interference channel
allocation problem in cellular networks. J. Integr. Sci. Technol. 2024, 12 (4
SE-Computer Sciences and Mathematics), 789.

16. G. Singh, N. Khare. A survey of intrusion detection from the perspective of
intrusion datasets and machine learning techniques. Int. J. Comput. Appl.
2022, 44 (7), 659–669.

17. A.C. Dhar, A. Roy, M.A.H. Akhand, M.A.S. Kamal. CascadMLIDS: A
Cascaded Machine Learning Framework for Intrusion Detection System in
VANET. Electron. 2023, 12 (18), 3779.

18. P. V. Sontakke, N.B. Chopade. Hybrid DNN-BiLSTM-aided intrusion
detection and trust-clustering and routing-based intrusion prevention
system in VANET. J. Control Decis. 2023, 1–18.

19. M. kumar Pulligilla, C. Vanmathi. An authentication approach in SDN-
VANET architecture with Rider-Sea Lion optimized neural network for
intrusion detection. Internet of Things (Netherlands) 2023, 22, 100723.

20. M. Arya, H. Sastry, B.K. Dewangan, et al. Intruder Detection in VANET
Data Streams Using Federated Learning for Smart City Environments.
Electron. 2023, 12 (4), 894.

21. S. Amaouche, A. Guezzaz, S. Benkirane, et al. FSCB-IDS: Feature
Selection and Minority Class Balancing for Attacks Detection in VANETs.
Appl. Sci. 2023, 13 (13), 7488.

22. E. A. Shams, A. Rizaner, A.H. Ulusoy. Flow-based intrusion detection
system in Vehicular Ad hoc Network using context-aware feature
extraction. Veh. Commun. 2023, 41, 100585.

23. J. Cui, H. Sun, H. Zhong, et al. Collaborative Intrusion Detection System
for SDVN: A Fairness Federated Deep Learning Approach. IEEE Trans.
Parallel Distrib. Syst. 2023, 34 (9), 2512–2528.

24. H.M. Song, J. Woo, H.K. Kim. In-vehicle network intrusion detection using
deep convolutional neural network. Veh. Commun. 2020, 21, 100198.

25. D. Lei, X. Guo. A shuffled frog-leaping algorithm for hybrid flow shop
scheduling with two agents. Expert Syst. Appl. 2015, 42 (23), 9333–9339.

26. A.W. Burange, V.M. Deshmukh. Trust based secured Routing System for
low power networks. J. Integr. Sci. Technol. 2023, 11 (1), 431.

27. W. Zhao, L. Wang, Z. Zhang. Atom search optimization and its application
to solve a hydrogeologic parameter estimation problem. Knowledge-Based
Systems. 2019, pp 283–304.

	Received on: 28-Dec-2023, Accepted and Published on: 28-May-2024
	ABSTRACT
	Introduction
	Related work
	Designed System
	Results and discussion
	Conclusion
	Future scope
	Conflict of Interest statement
	References

