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ABSTRACT 
 

Vehicular Ad hoc Networks 
(VANETs), a crucial type of 
Mobile Ad hoc Networks 
(MANETs), consist of 
wirelessly connected 
vehicles. Ensuring the safety 
of VANETs is critical, as a 
single security failure can result in significant loss of life. Traditional Intrusion Detection Systems (IDS) often fail to keep pace with the increasing 
sophistication of pattern-based attacks. To address this, we propose a novel optimal feature-selection method called the Differentiated Shuffled 
Frog-Leaping Algorithm (DSFLA). Traditional IDSs struggle with complex attacks. We propose DSFLA for feature selection, SACVAEGAN for data 
enhancement, and OAEF for parameter optimization. Testing on the Car Hacking dataset shows superior performance, promising enhanced 
VANET security Additionally, we introduce a Self-Attention-Based Conditional Variational Autoencoder Generative Adversarial Network 
(SACVAEGAN) to generate virtual samples and enhance training data. To optimize hyper-parameters, we employ an enhanced artificial electric 
field (AEF) technique known as Opposition-Based AEF (OAEF). Experimental results on the Car Hacking dataset demonstrate that our approach 
not only effectively detects intrusions but also significantly outperforms current state-of-the-art deep learning models in classification tasks. The 
designed methodology enhances IDS efficiency, offering robust security solutions for VANETs. VANETs are susceptible to various sophisticated 
attacks due to their dynamic and decentralized nature. The designed approach strengthens the network's resilience by providing advanced 
mechanisms for detecting and responding to malicious activities, thereby reducing the risk of successful cyber-attacks. 

Keywords: Vehicular Ad hoc Networks; Differentiated shuffled frog-leaping algorithm; Conditional Variational Autoencoder Generative 
Adversarial Network; Artificial electric field; Intrusion Detection Systems.  

INTRODUCTION 
Embedded updates and networking devices have all contributed 

to the expansion of the Internet of Vehicles (IoV). Privacy concerns 

are just some of the threats that remain in the IoV. The increasing 
prevalence of intelligent services, remote access, and routine 
network updates has given rise to several privacy and security 
problems.1 Therefore, there is a lot of worry about security flaws in 
IoV data transit. Malicious attacks and data manipulation, as well 
as system outages, can put people and their possessions in danger.2 

The first threat is V2V communication, in which an attacker 
might potentially harm drivers by tampering with their data. 
Simultaneously, the Vehicle-to-Infrastructure (V2I) 
communication situation might provide an additional security 
concern. Multiple attack models for intelligent cars have created 
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numerous privacy and security issues for intelligent transportation 
networks.3 The VANET communication network has major 
security concerns due to the possibility of signal jamming and 
spoofing by cyber attackers. Because of this, the integrity of the 
message delivered may be compromised, and the intended goals of 
the V2X system may not be achieved.4 

An increasingly significant category of Mobile Ad hoc Networks 
(MANETs) is comprised of VANET, referring to a network of 
automobiles that are wirelessly connected to one another. Vehicle-
to-Infrastructure (V2I) communication, also abbreviated as V2V 
and V2I, respectively, performs the bulk of the communication in 
VANETs.5 The term "V2V communication" describes interactions 
between cars, whereas the term "V2I communication" describes 
interactions between vehicles and infrastructure nodes like traffic 
lights and petrol stations. To include the WAVE protocol, the IEEE 
802.11 standard was updated to become IEEE 802.11p. Wireless 
Access in a Mobile Environment (WAVE) is the acronym for this 
concept. This protocol facilitates the deployment of 5.9 GHz-band 
Dedicated Short-Range Communications (DSRC).6 Integrity 
attacks, confidentiality attacks, attacks, and authentication attacks 
are the five main types of VANET attacks.7 In a VANET, IDS can 
be deployed both on the network segments and on the nodes 
themselves. While local IDSs work for the node on which they are 
deployed, global IDSs monitor the VANET segment where they are 
responsible for the group of cars in their segment and detect the 
segment. Local intrusion detection systems track all incoming and 
outgoing network traffic.8 

A cyberattack is any unauthorized attempt to get information by 
breaking into a computer system or the internet and using that 
information for malicious purposes. Potential outcomes9 include 
cyber terrorism, conflict, and threats. Because of its widespread 
availability, low price, and quick development, the internet plays a 
pivotal role in modern society. However, trends like remote work, 
inadequate and ineffective intrusion detection systems are 
broadening the scope of assaults alongside this rapid progress. 
Denial intruder assaults are just some of the cyberattacks that might 
happen.10 Cybersecurity experts are responding by focusing their 
research on new and improved ways to prevent and detect assaults. 
Since attackers may now use a wide variety of sophisticated 
technological methods, cybersecurity has become an important 
subject of study in the previous decade.11 As internet use grows and 
cybercrime becomes more common and damaging, the topic of 
cybersecurity has gained prominence throughout the world. Recent 
high-profile cybercrimes have shown how easily cyberattacks may 
spread internationally, wreaking havoc on enterprises, damaging 
critical data, stealing information, gaining unauthorized access, and 
so on.12 

Machine learning (ML) has recently become crucial in 
cybersecurity13 because of its rapid development and outstanding 
performance. Developing a reasonable ML model requires proper 
data, which means a significant quantity of data and sufficient 
sample categories. The Car Hacking dataset is widely used as a 
benchmark for intrusion detection systems. Various ML 
techniques, including generative adversarial networks (GANs), 
deep neural networks (NNs), and ensemble NNs, have been used to 
construct a wide variety of IDS models for VANETs.14 Instead of 

addressing the inconsistencies in the datasets, the time difficulty, 
and the efficiency of the techniques, the IDS research for VANETs 
has concentrated on improving accuracy with a standardized dataset 
in general.15 Since millions of packets flow across VANETs every 
day, relying on accuracy measures alone is not feasible. This is why 
even a 0.1% loss in accuracy can be problematic for the network. 

Due to the specific difficulties and vulnerabilities of VANETs, it 
is essential that a more effective and efficient IDS be developed for 
these networks. VANETs allow cars and infrastructure to share 
information, improving management. Their dynamic and 
decentralized nature, however, renders them vulnerable to security 
concerns including data manipulation, malicious attacks, and 
unauthorized access. Existing VANET IDSs have difficulty 
meeting these challenges head-on.16 They may have a high false 
positive rate, disrupting traffic unnecessarily, or they may be unable 
to keep up with the ever-changing patterns of sophisticated attacks. 
Therefore, it is crucial to improve IDSs for VANETs to guarantee 
the safety and dependability of vehicular communication. 

The purpose of this research is to create a brand-new IDS that 
places a premium on accurate case classification and assault 
category categorization. Predicting whether data is normal or 
attack-related is done with the use of a classifier called self-
attention based conditional VAEGAN, and DSFLA is used as a 
feature selection model. In order to learn attack characteristics from 
subsets of the original dataset, we present a method for properly 
preparing the training set.  

RELATED WORK 
To better categorize attack instances with little information, Dhar 

et al.17 present a new IDS for VANETs that uses principal 
component analysis. In the first stage, the designed Cascaded ML 
framework distinguishes among attack and regular situations. In the 
second stage, the attack data are classified. The framework stresses 
the need not to place an assault in the "normal" category. Finally, 
the suggested framework is implemented using the most widely 
used ML model, an artificial neural network, and tested on the Car 
Hacking dataset. This research not only examines the efficacy of 
the suggested framework but also evaluates the efficiency of 
common categorization tasks. The suggested technique has been 
shown to be an efficient IDS, with experimental findings on the Car 
Hacking dataset showing that it outperforms the current state-of-
the-art ML representations. 

An expert system for preventing and detecting intrusions in 
Vehicular Ad Hoc Networks has been developed by Sontakke and 
Chopade.18 The data nodes originate from many web resources. 
Once the node data has been collected, the autoencoder model may 
be used to extract useful information. The Beetle-Whale Swarm 
Optimization was used in the feature selection phase after feature 
extraction to choose the best features. When it comes to detecting 
network intrusion, a technique is used to make use of the selected 
correct attributes. To stop intruders, the Trust-based routing 
protocol uses the same B-WSO to pick the most efficient routing 
path around the malicious node. The suggested approach is 
evaluated experimentally using standard methods to ensure its 
efficacy. 
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Registration, key creation, data decoding are the five steps in the 
method suggested by Kumar Pulligilla et al.19 Data packets are used 
for OBU authentication. The optimized model is then used to 
perform the intrusion detection. Log files are analyzed with Renyi 
entropy to choose characteristics to analyze. For intrusion 
detection, we use a neural network based on Rider's optimization 
algorithm (ROA) and Sea Lion Optimization (SLnO) called Rider-
based Sea Lion Optimization (RBSLO). With improved accuracy 
of 92.5%, measures and the shortest calculation time of 135.654 s, 
the suggested RBSLO-based RideNN promises to enhance 
accomplishment. 

Distributed federated learning (FL) networks are presented by 
Arya et al.20 as a method for intrusion detection in smart cities. By 
employing the most effective method of intruder detection, it helps 
save time and materials. In the first step, cars create local IDS 
classifiers for VANET data streams using deep learning and a 
federated learning approach. When asked, these cars will 
communicate the classifiers they've learned locally, cutting down 
on the amount of data needed to be transmitted to other vehicles. 
Each vehicle then has a set of locally and remotely trained 
classifiers added to an ensemble of neural networks. At last, the 
global ensemble model is redistributed to regional nodes for their 
periodic refresh. Using attack detection accuracy, precision, recall, 
and F1 scores throughout a ToN-IoT data stream, the efficacy of 
the designed technique is assessed for intrusion finding in 
VANETs. The ID model achieves an accuracy of 0.99% in training 
and 0.981% in testing. 

Improved intrusion detection for VANETs has been proposed by 
Amaouche et al.21, which uses synthetic minority oversampling 
(SMOTE) to address the class imbalance problem and mutual 
information to choose the best characteristics on which to base an 
efficient model. We use Random Forest (RF) as our classifier and 
compare it to other machine learning (ML) methods. To ensure the 
model can handle missing values, imbalanced data, and categorical 
values, it is put through its paces on three datasets: CICIDS2017. 
When compared to other models, ours performed really well. At 
100% on the 99.9% on both the NSL-KDD and CICIDS2017 
datasets, it demonstrated excellent accuracy, precision, recall, and 
F1 score. The ROC analysis also showed our model's superior 
performance, with an AUC of 100%. 

An IDS model was developed by Shams et al.22 that can gather 
data from automobiles and Roadside Units (RSUs) on a network 
together. We used the popular Network Simulator 3 (ns-3) and 
simulation tools to create synthetic network data for training the 
core of our proposed IDS. We also created independent test data, 
which is not a subset of the training data. This guarantees that the 
erroneous performance result of an overfitted model is wiped out. 
We used a Network, to build a multi-class IDS. Using the gathered 
network traffic data, the CAFECNN model can identify both 
passive and aggressive assaults. The findings demonstrate that the 
suggested model outperforms techniques in spotting difficult-to-
detect passive assaults. We also simulated the model in real time 
and found that network performance improved immediately, 
notably in terms of ratio and throughput, despite the intrusions. 

Cui et al.23 investigate federated learning on VANETs and create 
a CIDS model that is both effective and efficient. The technique 

makes use of local SDN collaboration to jointly train the CIDS 
model flows, making IDSs more scalable and global in scope. This 
research uses in a restricted multi-objective optimization 
framework with the goal of decreasing the model alteration 
between clients of the same SDN and increasing the detection 
accuracy. Pareto optimality is reached for fairness constraint 
maximization performance by the method's two-stage gradient 
optimization of a surrogate maximum function comprising all the 
goals. In addition, the training model is analyzed in this paper and 
compared to state-of-the-art techniques using two publicly 
available datasets. The experimental findings show that the 
suggested perfect is superior to the current methods since it protects 
the privacy of local data and shows excellent accuracy and 
efficiency in identifying assaults. 

Research Gap 
Anomaly detection systems are used extensively in disciplines 

like artificial detection, pattern recognition, and machine learning 
due to their ability to identify unexpected attacks. The feature 
extraction and feature selection processes used by conventional 
machine learning methods, which are widely used in IDS, are 
tedious and time-consuming. In addition, the prevailing 
classification technique relies on a very basic form of machine 
learning. In a practical network setting, shallow methods can reduce 
the detection rate by analysing high-dimensional inputs. 

Finally, there are important differences between network traffic 
and host call sequences, the two primary types of data that IDS 
systems must process. The sequence of host calls is more akin to a 
sequence problem than it is to data from a network. The detection 
algorithms used in traditional approaches, notably those used in 
hybrid data source detection systems and state-of-the-art detection 
systems, are not flexible enough to adapt to new situations. This 
means that prior detection methods are useless. 

DESIGNED SYSTEM 
The suggested IDS is a hierarchical structure that uses a subclass 

division paradigm. Furthermore, a designed model has been  

 

Figure 1: Workflow of the Work 
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reviewed to prove the effectiveness of this framework. Pioneering 
and more contemporary efforts have been compared to the 
suggested model to measure its performance. The following 
sections detail the dataset, the experimental design, the outcomes 
of the experiments, and a comparison of the results. The workflow 
of the designed model is given in Figure 1. 

Dataset Description and Preprocessing 
Eleven features/attributes and four forms of attacks are included 

in the Car Hacking dataset.24 Modern VANET models, like CAN, 
include high levels of network connection. In order to compile the 
dataset, we first classified CAN traffic including malicious 
messages put into actual automobiles. Every 30–40 minutes of 
CAN traffic was disrupted for 3–5 seconds. The characteristics of 
Normal and attack classes are summarized in Table 1. 
 
Table 1. Characteristics and Sum of Trials in the Car   
Hacking Dataset 

Attack 
Names Timestamp CAN ID 

Sum of 
Statistic
s Bytes 

Data 
[0–7] Outpu

t 
Class 

Quantit
y of 

Sample
s 

DoS Every 0.3 
milliseconds 

Domina
nt value 
“0000” 

0–8 (but 
altogeth
er are 8) 

Data 
degre

e 

R 587,521 

Normal -- Chance 
hex 

value 

0–8 (but 
altogeth
er are 8) 

Data 
degre

e 

T 988,872 

Spoofin
g 

Every 1 
millisecond 

Chance 
hex 

value 

0–8 (but 
altogeth
er are 8) 

Data 
degre

e 

R 654,897 

Gear 
attack 

Every 1 
milliseco

nd 

Chance 
hex 

value 

0–8 (but 
altogether 

are 8) 

Data 
degre

e 
R 597,252 

 
For each category in the dataset, there are 5.csv files. The Normal 

class's.csv file contains just Normal class data, whereas the attack 
class's.csv files contain data for both the attack class (labelled "R") 
and the Normal class (labelled "T"). Data for Normal, DoS, Gear, 
RPM, and Fuzzy totaled 988,872, 587,521, 597,252, 654,897, and 
491,847 samples, respectively, after preprocessing. This was 
achieved by taking the entire.csv file containing Normal data and 
only the "R" labelled data from the remaining four attack.csv files. 
There were only numeric values for attributes. Scaling was done on 
numeric properties to make them fit within the range of 0–1. One-
hot encoding was utilised for the transformation of output levels in 
both the main and secondary class models. In this method, the 
obtainable samples were divided into training and test sets to 
guarantee fair datasets. For classes with large sample sizes, about 
80% of the data was used as a training set, while 20% was set aside 
as test samples. The diversity of attacks within the dataset was 
preserved, as can be seen in the next description of the confusion 
matrix. 

Specifically, Data [0-7] in the 8-byte data representation. For 
examples of the DoS, Gear, and RPM classes, these 8 bytes are 
always assigned to the same value. Variations may be found in both 

Fuzzy and Normal data samples, with minimum and maximum 
values of 0 and 255, respectively. All 8-byte characteristics in the 
Fuzzy data tend to average around 127, but in the Normal data they 
tend to average out to different numbers. 

According to the data, classes fixed values in the 8-byte 
characteristics, suggesting that they are free of noise and variance. 
Neither the Fuzzy nor the Normal data are free from noise, although 
the allowed range of values (0–255) is rather large. Comparatively, 
the fluctuating averages in Normal data may show noise, whereas 
the stable average of 127 across all characteristics in Fuzzy data 
implies coherence. The deviations appear to fall within expected 
thresholds and display patterns rather than being completely at 
random, giving the impression that the dataset is rather clean at first 
glance. 

Data Preprocessing 
Data preprocessing is a crucial step in preparing raw data for 

analysis or machine learning tasks. It involves several steps aimed 
at cleaning, transforming, and organizing the data to make it 
suitable for further analysis or modeling. The dataset is making it 
more suitable for a classifier. 

Removal of Socket Material 
To prevent overfitting training towards socket information, it is 

required to remove the IP addresses of the source and dataset. The 
classifier should be trained on the properties of the packets 
themselves, rather than the socket data, to ensure that any host with 
matching packet characteristics is blocked. 

Remove White Spaces 
White space can be used when making labels for many classes. 

These blanks cause new classes to form since the actual value is the 
same class. 

Label Encoding 
The dataset's multi-class labels, which contain the names of 

assaults, are all labelled with string values. It is required to 
numerically encode these values to train the classifier as to which 
class each tuple belongs to. Since the zero-one establishment 
necessary for this operation, the multi-class labels are utilised 
instead. 

Data Normalization 
Training the classifier might be difficult due to the dataset's high 

degree of numerical variation. This implies that zero and one should 
be used for the values of each feature. The classifier benefits from 
the more consistent values, and the relevance of each attribute's 
values is preserved. 

Feature Selection using DSFLA 
Introduction to SFLA 
In SFLA, each potential answer corresponds to the location of a 

digital frog, and the population of answers is represented by a 
collection of these frogs. Once the starting populace P has been 
generated, the subsequent steps—are continued indefinitely or until 
some limiting disorder is reached. 
𝑥𝑥𝑤𝑤′ = 𝑥𝑥𝑤𝑤 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × (𝑥𝑥𝑏𝑏 − 𝑥𝑥𝑤𝑤) (1) 
𝑥𝑥𝑤𝑤′ = 𝑥𝑥𝑤𝑤 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × �𝑥𝑥𝑔𝑔 − 𝑥𝑥𝑤𝑤� (2) 
where rand is a accidental amount subsequent in [0.1]. 

By mixing up the order of all the developed memeplexes, a new 
population P is built. As mentioned above, the search technique and 
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parameters used to generate memeplexes are generally the same,25 
and the concept of differentiated search within memeplexes is 
seldom taken into account. Introducing unique search operators and 
parameters strengthens the search capability and allows for the 
efficient avoidance of local optima, considerably enhancing the 
search efficiency. In this research, DSFLA is introduced as a means 
of selecting relevant characteristics from raw data. The diversified 
search is incorporated into DSFLA's second phase. 

Initialization, Population Separation, and the First Stage 
In this study, a solution of the problematic is characterized as 

�𝑀𝑀𝜃𝜃1 ,𝑀𝑀𝜃𝜃2 , … . ,𝑀𝑀𝜃𝜃𝑛𝑛� and a string [𝑞𝑞1, 𝑞𝑞2,· · · , 𝑞𝑞𝑛𝑛], where 𝑀𝑀𝜃𝜃𝑗𝑗 is the 
allocated features for job 𝐽𝐽𝑗𝑗 , 𝑗𝑗 =  1, 2,· · · ,𝑟𝑟, and 𝑞𝑞l is agrees to 𝐽𝐽l. 
Each of these two strings functions separately. What follows is a 
breakdown of the decoding procedure. Each job's machine is 
selected first using the machine Mk, all jobs are run simultaneously. 
𝐽𝐽𝑖𝑖 , 𝐽𝐽𝑖𝑖+1,· · · , 𝐽𝐽𝑗𝑗 allocated on 𝑀𝑀k—that is, 𝑀𝑀𝜃𝜃𝑖𝑖 = 𝑀𝑀𝜃𝜃𝑖𝑖+1 ,· · · , = 𝑀𝑀𝜃𝜃𝑗𝑗 =
 𝑀𝑀𝑘𝑘. The dispensation order of 𝑞𝑞𝑙𝑙, 𝑙𝑙 ∈ [𝑖𝑖, 𝑗𝑗], 𝑖𝑖 <  𝑗𝑗, and 𝑀𝑀k 
sequentially. 

Following the random generation of the preliminary population 
P, the population is divided as follows. Select the top s solutions 
from set P and arrange them from best to worst according to their 
effectiveness. Then, the memeplexes are given a portion of the 
original response to work with. We'll call the first answer M_1, the 
second M_2, and so on. Assigning other solutions to memeplexes 
is then done using binary tournament selection, where two solutions 
are chosen at random and compared to see which is superior. Then, 
we incorporate x_i (x_j) into M_1. If there are multiple keys with 
the same goal, then randomly select one of them and include it into 
M_1. Unselected options are returned to population P. The same 
procedure for settling on a solution for ℳ2,ℳ3, … . ,ℳ𝑠𝑠 and then 
recurrence the above way pending all keys are allocated. 
Obviously, 𝑁𝑁 = 𝑠𝑠 × 𝜃𝜃, where 𝜃𝜃 symbolizes memeplex. 
Global search is only employed in the initial stage because of its 
superior exploratory capabilities. Differentiated search procedures 
based on memeplex quality assessments are employed in the second 
stage. 
 The Second Phase 

In SFLA, assessing memeplex quality is rarely taken into 
account. The quality of memeplexes is measured by how well they 
solve problems and how well they evolve. Meant Memeplexly ℳ𝑙𝑙 , 
its quality 𝑀𝑀eql is defined by 

𝑀𝑀eql = 𝑟𝑟1 × 𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑠𝑠𝑞𝑞1
𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛

+ 𝑟𝑟2 × 𝑚𝑚𝑚𝑚𝑚𝑚1−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛

 (3) 

where 𝑟𝑟1, 𝑟𝑟2 are real number, 𝑚𝑚𝑠𝑠𝑞𝑞l and 𝑚𝑚𝑚𝑚𝑞𝑞l indicate solution 
quality of ℳ𝑙𝑙 , respectively, 𝑚𝑚𝑠𝑠𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 =
 

𝑚𝑚𝑟𝑟𝑥𝑥
𝑙𝑙 = 1,2,··· , 𝑠𝑠 {𝑚𝑚𝑠𝑠𝑞𝑞𝑙𝑙},𝑚𝑚𝑠𝑠𝑞𝑞𝑚𝑚𝑖𝑖𝑛𝑛  =  𝑚𝑚𝑖𝑖𝑟𝑟

𝑙𝑙 = 1,2,··· , 𝑠𝑠 {𝑚𝑚𝑠𝑠𝑞𝑞𝑙𝑙},  𝑚𝑚𝑚𝑚𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 

and 𝑚𝑚𝑚𝑚𝑞𝑞min represent all memeplexes, separately. 
After entirely solutions in ℳ𝑙𝑙  are organized in the make span, let 
𝐻𝐻1 indicate primary 𝜃𝜃/2 solutions except 𝑥𝑥b and 𝐻𝐻2 is the set of the 
endured 𝜃𝜃/2 keys in ℳ𝑙𝑙 , 
𝑚𝑚𝑠𝑠𝑞𝑞𝑙𝑙 = 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑏𝑏) + 𝛽𝛽1 × 𝐶𝐶�̅�𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1) + 𝛽𝛽2 × 𝐶𝐶�̅�𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2) (4) 
where 𝐶𝐶�̅�𝑚𝑚𝑚𝑚𝑚(𝐻𝐻𝑖𝑖) is the regular makespan of all keys in 𝐻𝐻i, i = 1, 2, 
𝛽𝛽𝑖𝑖 . 𝑖𝑖 =  1, 2 is a 
real number. Solutions of 𝐻𝐻1 are better than those of 𝐻𝐻2; 

consequently, we set 𝛽𝛽1 > 𝛽𝛽2 to reflect this feature. 𝛽𝛽1 = 0.4 and 𝛽𝛽2 
= 0.1 are gotten by trials. 
Let 𝐼𝐼𝑚𝑚x designate the improved sum of x group. When 𝑥𝑥 ∈ 𝑀𝑀𝑙𝑙  is 
selected 𝑥𝑥w, in general SFLA, if than x, then 𝐼𝐼𝑚𝑚𝑚𝑚 =  𝐼𝐼𝑚𝑚𝑚𝑚 +  1. 𝑆𝑆𝑆𝑆x 
is the total primary generation. 
𝑚𝑚𝑚𝑚𝑞𝑞1 = ∑ 𝐼𝐼𝑚𝑚𝑚𝑚/∑ 𝑆𝑆𝑆𝑆x𝑚𝑚∈𝑀𝑀𝑙𝑙𝑚𝑚∈𝑀𝑀𝑙𝑙  (5) 
For solution 𝑥𝑥i, its 𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚𝑖𝑖 is used to assess is figured by 
𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚𝑖𝑖 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑖𝑖/𝑆𝑆𝑆𝑆x𝑖𝑖 (6) 
The second phase is exposed as shadows. 

(1) Perform populace separation, calculate 𝑀𝑀𝑆𝑆𝑞𝑞l for 
completely in descending order of 𝑀𝑀𝑆𝑆𝑞𝑞l, and construct set 
Θ = {𝑀𝑀𝑙𝑙|𝑚𝑚𝑆𝑆𝑞𝑞𝑙𝑙 > 𝑀𝑀𝑆𝑆𝑞𝑞������, 𝑙𝑙 ≤ 𝜂𝜂 × 𝜃𝜃}. 

(2) For correspondingly memeplex 𝑀𝑀𝑙𝑙, 𝑀𝑀𝑙𝑙 ∉ Θ, recurrence 
the subsequent steps 𝑅𝑅1 aeras if |𝜏𝜏| >  0, 
execute global search among xb and chosen y 2 T ; else 
achieve global 
search among 𝑥𝑥b and a key 𝑦𝑦 | ∈ 𝑀𝑀𝑙𝑙 with 𝑟𝑟𝑎𝑎𝑎𝑎𝑦𝑦 ≥  𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚 
for all 𝑥𝑥 ∈ 𝑀𝑀𝑙𝑙. 

(3) For each memeplex 𝑀𝑀𝑙𝑙 ∈ Θ, 
1. sort all keys in 𝑀𝑀𝑙𝑙 in the suppose 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥1)  ≤

 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥2)  ≤ · · · ≤  𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝜃𝜃), and hypothesis 
a set 𝜑𝜑 = �𝑥𝑥𝑖𝑖|𝑟𝑟𝑖𝑖𝑠𝑠𝑎𝑎𝑚𝑚𝑖𝑖 < 𝑟𝑟𝑑𝑑𝑠𝑠𝑎𝑎�����, 𝑖𝑖 ≤ 𝜃𝜃/2�. 

2. Recurrence the subsequent ladders 𝑅𝑅2 times, 
key 𝑥𝑥𝑖𝑖 ∈ 𝑀𝑀𝑙𝑙/𝜑𝜑 if 𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚𝑖𝑖 > 0.5, then select a 
solution 𝑦𝑦 ∈ 𝜑𝜑 by roulette assortment based on 
𝑃𝑃𝑟𝑟y, execute global search among 𝑥𝑥i and y, and 
inform memory T ; else search among 𝑥𝑥i and a 
solution z with 𝑟𝑟𝑎𝑎𝑎𝑎𝑧𝑧 ≥  𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚𝑖𝑖 for all 𝑥𝑥𝑖𝑖 ∈ 𝑀𝑀𝑙𝑙 and 
T . 

(4) Execute hunts on each key 𝑥𝑥 ∈ 𝜑𝜑. 
(5) Perform novel populace shuffling. 

where 𝑟𝑟𝑖𝑖𝑠𝑠𝑎𝑎𝑚𝑚𝑖𝑖 = |𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑖𝑖)  −  𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑏𝑏)| is distinct for each key 
𝑥𝑥𝑖𝑖 ∈ 𝑀𝑀𝑙𝑙 and 𝑟𝑟𝑑𝑑𝑠𝑠𝑎𝑎����� is the 
regular value of all 𝑟𝑟𝑖𝑖𝑠𝑠𝑎𝑎xi  in 𝑀𝑀𝑙𝑙. 𝜂𝜂 is a real sum and set to be 0.4 by 
trials, 𝑀𝑀𝑆𝑆𝑞𝑞������ 
designates the average excellence, Θ is the set of 𝑃𝑃𝑟𝑟y 
is a probability and distinct by 

𝑃𝑃𝑟𝑟y =
|𝜑𝜑|−𝑟𝑟𝑚𝑚𝑛𝑛𝑘𝑘𝑦𝑦

|𝜑𝜑|
× 𝐼𝐼𝑚𝑚𝑦𝑦

∑ 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚∈𝜑𝜑
 (7) 

where 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑦𝑦 is an numeral and obvious by ranking rendering to 
initial phase of step (3) in the above Procedure. 
In the second phase, after altogether in the descendant order of 
Meql, 
suppose 𝑀𝑀𝑆𝑆𝑞𝑞1 ≥  𝑀𝑀𝑆𝑆𝑞𝑞2 ≥ · · ·  𝑀𝑀𝑆𝑆𝑞𝑞𝑠𝑠. 
Memory 𝑇𝑇 is used to store keys. The maximum extent |𝑇𝑇|max is 
given in early payment. We set |𝑇𝑇|max to be 200 by trials. When the 
sum of keys exceeds |𝑇𝑇|max, a key x can be supplementary into 
better than one. 
Six neighborhood constructions are used. 𝑁𝑁1 is exposed below. 
Arbitrarily first-class a job from the machine 𝑀𝑀k with the largest 
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘  and machine 𝑀𝑀g with the smallest 𝐶𝐶max

𝑔𝑔 , where 𝐶𝐶max𝑘𝑘  and 𝐶𝐶max
𝑔𝑔  

are last treated job on 𝑀𝑀k and 𝑀𝑀g, individually. 𝑁𝑁2 is achieved in 
the subsequent way. Decide on a machine 𝑀𝑀k with the major 𝐶𝐶max𝑘𝑘  
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and a job 𝐽𝐽i with the major processing time 𝑝𝑝ki on 𝑀𝑀k, arbitrarily 
pick a machine 𝑀𝑀g, g≠k and a job 𝐽𝐽j with the largest 𝑝𝑝gj and 
conversation 𝐽𝐽i and 𝐽𝐽j among 𝑀𝑀k and Mg. 
𝑁𝑁3 is described as shadows. Arbitrarily choice two machines 𝑀𝑀k 
and 𝑀𝑀g and talk a job 𝐽𝐽i with the largest 𝑝𝑝ki and a job 𝐽𝐽j with the 
major pgj among these two machines. 𝑁𝑁1,𝑁𝑁2,𝑁𝑁3 only act on the 
string. 
𝑁𝑁4,𝑁𝑁5,𝑁𝑁6 are operations on a string whereby two genes are 
exchanged, one gene is inserted into a new location that is also 
decided at random, and the genes are inverted amid two positions 
𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟1  <  𝑟𝑟2. 
Multiple key 𝑥𝑥, let 𝑢𝑢 = 1, recurrence the subsequent ladders 𝑉𝑉 
times: yield a key 𝑧𝑧 ∈ 𝑁𝑁𝑢𝑢(𝑥𝑥), u=u+1, let 𝑢𝑢 = 1 if 𝑢𝑢 = 7, and 𝐼𝐼𝑚𝑚𝑚𝑚 =
 𝐼𝐼𝑚𝑚𝑚𝑚 + 1.  
The procedure for the second phase of the global search is identical 
to the first. 
Using the s developed memeplexes, the current SFLA25 builds a 
new population P. In this research, we reshuffle the population in 
the following ways: The most successful memeplexes from both the 
original population (T) and the new population (P) are included into 
the new population. Using experimental methods, we establish 𝛾𝛾 = 
0.1 ×|𝑇𝑇|𝑚𝑚𝑚𝑚𝑚𝑚. 
In other words, memeplex search or shuffling can be used to 
enhance some of P's worse solutions. 
A global search of optimisation object x is applied in accordance 
with act_x, and then manifold neighbourhood search is performed 
on the keys in to find a good memeplex, which is the focus of the 
second phase. For other memeplexes, just a global search is 
performed; additionally, several parameters, 𝑅𝑅1,𝑅𝑅2,𝑅𝑅1 ≠ 𝑅𝑅2, are 
used, and, as a consequence, distinguished search is applied. 

Algorithm Explanation 
The comprehensive stepladders of DSFLA are exposed 

underneath. 
1. Initiation, 1. Let T start out empty and randomly 

generate N solutions for P. 
2. Divvying up the people, number two. carry out the 

search procedure inside of every memeplex. 
3. Three, reorganise the people. 
4. (If the first phase's termination condition is not 

fulfilled, proceed to the second stage. 
5. Carry on with the second stage until the termination 

disorder is reached. 

The computational difficulty is 𝑂𝑂(𝑁𝑁 × 𝑅𝑅1 × 𝐿𝐿), where L is the 
recurrent sum of phases 2–3. 

DSFLA differs from the original SFLA in the ways listed below. 
(1) Memeplexes are sorted into two groups, good and other, based 
on an evaluation of their quality that takes into account both their 
solution quality and their evolution quality. (2) The distinguished 
search is put into action by employing various search algorithms 
and limits for two types of memeplexes, which increases 
exploration capabilities and drastically reduces the likelihood of 
settling into local optimums. 

 
 
Classification using Designed Methodology 

Here, we provide an overview of the SA-CVAE procedure that 
has been proposed. The network architecture is composed of a 
discriminator, a value-added extractor, and a classifier. If the input 
tasters are genuine or virtual, the discriminator's module can tell 
you. The encoder and generator make up the VAE module. To 
create synthetic data, the generator takes actual samples and utilises 
the encoder's latent vectors in combination with random latent 
vectors. Input actual and synthetic samples are sorted by the 
classifier module. 

Discriminator 
It is the discriminator's module, as seen in Figure 2. There are 

four convolutional layers in total. The kernel size is 3 3 for each 
layer. The self-attention layer is used after the initial two 
convolution layers have already been applied. The information is 
transformed into a feature vector after the last layer. Reference26 
suggests that the model's stability can be improved by feeding the 
label information into the discriminator. The label is transformed 
into a vector and then appended to the feature vector through a 
complete connection layer. Then, the dimension is shrunk by 
applying a complete connecting layer. The function is then used to 
the data to verify their veracity. 
Here is the loss discriminator D: 
𝐿𝐿𝐷𝐷 =  𝐿𝐿𝐷𝐷𝐺𝐺𝐺𝐺 + 𝐿𝐿𝐷𝐷𝐺𝐺(𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑟𝑟𝑚𝑚|𝑦𝑦) (8) 

Loss in WGAN-GP among x and G(z|y) can improve perfect 
stability, and loss in the discriminator determines whether a 
feature is retained or dropped. 𝐺𝐺(𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑜𝑜𝑚𝑚|𝑦𝑦) is false. 
Among them: 
𝐿𝐿𝐷𝐷𝐺𝐺𝐺𝐺 = 𝐸𝐸𝑧𝑧~𝑃𝑃𝑧𝑧[𝐷𝐷(𝐺𝐺(𝑧𝑧|𝑦𝑦)|𝑦𝑦)] − 𝐸𝐸𝑚𝑚~𝑃𝑃(𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙)[𝐷𝐷(𝑥𝑥|𝑦𝑦)] +

𝜆𝜆𝐸𝐸𝑧𝑧~𝑃𝑃𝑧𝑧 ���∇𝐺𝐺�𝑧𝑧�𝑦𝑦�𝐷𝐷(𝐺𝐺(𝑧𝑧|𝑦𝑦)|𝑦𝑦)�
2
− 1�

2
� (9) 

𝐿𝐿𝐷𝐷𝑚𝑚𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑟𝑟𝑚𝑚 = −𝐸𝐸𝑧𝑧~𝑃𝑃𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑟𝑟𝑚𝑚
[𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷(𝐺𝐺(𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑜𝑜𝑚𝑚|𝑦𝑦)|𝑦𝑦)] (10) 

where z characterizes the latent vector produced by the encoder, 
𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑜𝑜𝑚𝑚 characterizes the arbitrarily, 𝑥𝑥real embodies real tasters, 
G(z|y) characterizes the produced by the generator rendering 
consistent label, 𝐺𝐺(𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑜𝑜𝑚𝑚|𝑦𝑦) characterizes the virtual taster 
produced by the producer rendering to 𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑜𝑜𝑚𝑚 and the 
consistent label, and y characterizes the tag. 
 

 
Figure 2 The assembly of the discriminator D. 
 
Variational Auto-Encoder 

The encoder and generator are the two main components of the 
VAE module. After the genuine samples have been encoded into 
generator G may utilise that information to create a synthetic 
sample. To vector m and the covariance e of the space, the encoder 
E is split into extraction networks. The network architecture is the 
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same for all feature extraction networks. It is made up of networks 
for extracting features both in space and in time. The network for 
extracting spectral features has four 1-dimensional convolution 
layers, each with a 5 by 1 kernel. Both the initial and secondary 
levels incorporate self-awareness. There are four 2-D convolution 
layers in the spatial feature network, each with in the first two 
layers. Following a network for extracting both spectral and spatial 
features, we combine the two into a single unified feature and apply 
a complete connection layer for dimensionality reduction. Using 
the vector e, we can calculate the latent vector l using the following 
equation.: 
z =  µ +  r ∗  exp(ϵ) (11) 

The purpose of generator G is to simulate data distributions 
based on learned models. Specifically, G is made up of layers, and 
a final hidden layer. The latent vector and its associated label are 
first obtained, and then the vector is reshaped using two complete 
connection layers. The vector is then transformed into a cube of 
three-dimensional data and sent along to the transposed convolution 
layers. The transposed convolution layer has a kernel size of 3 x 3. 
At long last, a digital sample is within reach. 
The loss function of VAE is as shadows: 
𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉 =  𝐿𝐿𝑘𝑘𝑙𝑙 + 𝐿𝐿𝐺𝐺 + 𝐿𝐿𝑚𝑚𝑚𝑚𝑒𝑒𝐷𝐷 + 𝐿𝐿𝑚𝑚𝑚𝑚𝑒𝑒𝐶𝐶 (12) 

KL divergence is the initial term, and it is used to close the gap 
between the observed and expected latent vector distributions. 
Renovation loss among x and G(z|y) is l_2, thus that's the second 
term. The third term is the total of the loss in determining whether 
or not G(z_random |y)|y is true, as well as the loss in matching 
among x and G(z|y) in the discriminator D. The last term is the 
addition of the loss from the classification result of classifier C and 
the loss among x and G(z|y).. 
Among them: 
𝐿𝐿𝑘𝑘𝑙𝑙 = 1

2
(𝜇𝜇𝑇𝑇𝜇𝜇 + 𝑠𝑠𝑢𝑢𝑚𝑚(exp(𝜖𝜖) − 𝜖𝜖 − 1)) (13) 

𝐿𝐿𝐺𝐺 = 1
2

(‖𝑥𝑥 − 𝐺𝐺(𝑧𝑧|𝑦𝑦)‖22) (14) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑒𝑒𝐷𝐷 = ‖𝑓𝑓𝐷𝐷(𝑥𝑥) − 𝑓𝑓𝐷𝐷(𝐺𝐺(𝑧𝑧|𝑦𝑦))‖22 + 𝐸𝐸[log (1 −
𝐷𝐷(𝐺𝐺(𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑜𝑜𝑚𝑚|𝑦𝑦)))] (15) 
𝐿𝐿𝑚𝑚𝑚𝑚𝑒𝑒𝐶𝐶 = ‖𝑓𝑓𝐶𝐶(𝑥𝑥) − 𝑓𝑓𝐶𝐶(𝐺𝐺(𝑧𝑧|𝑦𝑦))‖22 −
𝐸𝐸[log 𝑃𝑃(𝑦𝑦|𝐺𝐺(𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑜𝑜𝑚𝑚|𝑦𝑦)))] (16) 

where 𝜇𝜇 and 𝜖𝜖 characterize encoder, respectively; 𝑓𝑓D 
characterizes the features discriminator D; 𝑓𝑓C represents the 
topographies of samples is embodied as 𝑥𝑥real; the rendering to the 
latent vector produced by the encoder is 𝐺𝐺(𝑧𝑧|𝑦𝑦); the produced 
vector is 𝐺𝐺(𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑜𝑜𝑚𝑚|𝑦𝑦); and y characterizes the label. 

 
Classifier 
The outputs of classifier C are used for this purpose. Also, 

spectral-spatial feature extraction networks are part of classifier C. 
Five 1 layers with a 1 5 kernel make up network, while five 2-D 
layers with a 3 3 kernel make up the spatial chin extraction network. 
In the end, we combine the spectral and spatial information and feed 
them into two complete connection layers. Here is how the LC loss 
function is calculated: The unit exposed in Figure 3. 

 
Figure 3: Structure of classifier 

 
𝐿𝐿𝐶𝐶 = 𝐿𝐿𝐶𝐶𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙 + 𝜆𝜆1𝐿𝐿𝐶𝐶𝑚𝑚𝑧𝑧 + 𝜆𝜆1𝐿𝐿𝐶𝐶𝑚𝑚𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑟𝑟𝑚𝑚  (17) 

where the first term represents a reduction in the classification of 
x's outcome. The second tenure is the total loss from matching 
features among x and G(z|y). The final word represents a failure to 
preserve the outcome of classifying G(zrandom|y). the relative 
strengths of l1 and l2 in 𝐿𝐿𝐶𝐶𝑚𝑚𝑧𝑧  and 𝐿𝐿𝐶𝐶𝑚𝑚𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑟𝑟𝑚𝑚  loss, separately. 

𝐿𝐿𝐶𝐶𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙 = −𝐸𝐸[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑎𝑎|𝑥𝑥𝑟𝑟𝑒𝑒𝑚𝑚𝑙𝑙)] (18) 

𝐿𝐿𝐶𝐶𝑚𝑚𝑧𝑧 = ‖𝑓𝑓𝐶𝐶(𝑥𝑥𝑟𝑟𝑒𝑒𝑚𝑚𝑙𝑙) − 𝑓𝑓𝐶𝐶(𝑥𝑥𝑧𝑧)‖22 (19) 

𝐿𝐿𝐶𝐶𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑟𝑟𝑚𝑚 = −𝐸𝐸�𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑦𝑦|𝑥𝑥𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑟𝑟𝑚𝑚)� (20) 

where 𝑓𝑓𝐶𝐶 represents the features of classifier, 𝑥𝑥real characterizes the 
real tasters, 𝑥𝑥z characterizes the virtual dormant vector z produced 
by, 𝑥𝑥𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑟𝑟𝑚𝑚 characterizes the virtual taster generated by entering 
the arbitrarily vector 𝑧𝑧𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑜𝑜𝑚𝑚 into the producer, and y embodies the 
label. The parameters are tuned by using improved AEF algorithm 
that is described as follows.  
Hyper-parameter tuning using Opposition-based optimization 
approach 

Slow finest key are problems for the fundamental artificial 
electric field. There may be superior alternatives that are far from 
the present solution, however upgrading certain solutions towards 
the local best solution causes these drawbacks. By looking at other 
approaches, the OAEF sidesteps these problems. When the search 
capabilities of the normal version of AEF are combined with those 
of OBL, the search space may be explored more efficiently. Since 
the addition of OBL has no effect on the AEF setup, the suggested 
method requires less parameters to be set, and its best solution is 
more accurate when compared to other methods. Since OAEF can 
search a larger space, a smaller initial population may be used, 
which improves optimum solution convergence. 

The suggested technique improves AEF in two phases. First, 
OBL is used to seed the population, which searches the whole 
search space for solutions to boost convergence speed and avoid 
becoming stuck on the local best one. Second, it's put to use when 
determining if a solution that goes in the other way improves upon 
the present population solution. Both procedures are elaborated 
about below. 

A). Initialization stage 
A random populace of X (of size N) is first generated so that the 

site vector of the preliminary solution may be written as  𝑋𝑋𝑖𝑖 =
[𝑋𝑋𝑖𝑖1,𝑋𝑋𝑖𝑖2, … ,𝑋𝑋𝑖𝑖𝐷𝐷]where 𝑖𝑖 = 1,2, … ,𝑁𝑁 and 𝑟𝑟 = 1,2, … ,𝐷𝐷. After that, 
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OBL computes the conflicting populace of X is produced. The best 
N sum of keys is designated based on X and 𝑋𝑋�.  

 Keys of X populace are arbitrarily prepared. 
 The opposite populace 𝑋𝑋�(𝑋𝑋�𝑖𝑖𝑟𝑟 = 𝑢𝑢𝑟𝑟 + 𝑙𝑙𝑟𝑟 − 𝑋𝑋𝑖𝑖𝑟𝑟 , 𝑖𝑖 =

1,2, . . ,𝑁𝑁 and d=1,2,..,D) is intended l is search space, 𝑋𝑋𝑖𝑖𝑟𝑟 
and 𝑋𝑋�𝑖𝑖𝑟𝑟, denote the locations of the d-th and i-th 
parameters of the i-th and x-th solutions, respectively, in 
populace X. 

 The top N answers derived from all of these variables are: 
𝑋𝑋 ∪ 𝑋𝑋� are selected to make a new populace. 
 

B). Updating stage 
The optimal solution X_best is found after selecting the top N 

solutions from a fresh population. In order to determine the fitness 
functions of the updated solutions in the X population, AEF is 
applied. Additionally, fitness functions for the OBL-obtained X 
population and its counterpart are determined. 

For the purpose of evaluating OAEF's efficacy, we used the 
Sphere, Ackley, Egg Crate, and Easom benchmark functions. The 
definitions of adopted test functions are summarised in Table 2.27 
We settled on 50 for the population size and 500 for the maximum 
sum of iterations. Twenty iterations of the OAEF procedure 
proposal were tested. 

Table 2: Approximately benchmark purposes. 
Test Function Function Description Dimension Range Global Optimum 
Sphere 

𝐹𝐹1(𝑋𝑋) = �𝑋𝑋𝑖𝑖2
𝐷𝐷

𝑖𝑖=1

 
D=30 -100≤ 𝑥𝑥𝑖𝑖 ≤ 100 0 

Rosenbrock 
𝐹𝐹2(𝑋𝑋) = ��100�𝑋𝑋𝑖𝑖+1 − 𝑋𝑋𝑖𝑖2� + (𝑋𝑋𝑖𝑖

𝐷𝐷−1

𝑖𝑖=1
− 1)2� 

D=30 -30≤ 𝑥𝑥𝑖𝑖 ≤ 30 0 

Schwefel 
𝐹𝐹3(𝑋𝑋) = −�𝑋𝑋𝑖𝑖𝑠𝑠𝑖𝑖𝑟𝑟 ��|𝑋𝑋𝑖𝑖|�

𝐷𝐷

𝑖𝑖=1

 
D=30 -50≤ 𝑥𝑥𝑖𝑖 ≤ 500 -12569.487 

Ackley 𝐹𝐹4(𝑋𝑋) = 𝑋𝑋12 + 𝑋𝑋22 + 25[𝑠𝑠𝑖𝑖𝑟𝑟2(𝑥𝑥1)
+ 𝑠𝑠𝑖𝑖𝑟𝑟2(𝑥𝑥2)] 

D=30 -32≤ 𝑥𝑥𝑖𝑖 ≤ 32 0 

Egg Crate 𝐹𝐹5(𝑋𝑋) = 𝑋𝑋12 + 𝑋𝑋22 + 25[𝑠𝑠𝑖𝑖𝑟𝑟2(𝑥𝑥1) +
𝑠𝑠𝑖𝑖𝑟𝑟2(𝑥𝑥2)] 

D=2 -5≤ 𝑥𝑥𝑖𝑖 ≤ 5 0 

Easom 𝐹𝐹6(𝑋𝑋) = −cos (𝑥𝑥1)cos (𝑥𝑥2)𝑆𝑆𝑥𝑥𝑝𝑝(−(𝑥𝑥1
− 𝜋𝜋)2 − (𝑥𝑥2 − 𝜋𝜋)2) 

D=2 -100≤ 𝑥𝑥𝑖𝑖 ≤ 100 -1 

 

RESULTS AND DISCUSSION 
During the trial, Python and the Anaconda integrated 

development environment were utilized. The experimental 
computer used the following specifications: NVIDIA GeForce 
GTX 1070Ti, 8 GB GPU, with Intel® CoreTM i5-7400 CPU, 3.50 
GHz. Each model was trained for 300 iterations using the suggested 
optimizer. 

Performance Metrics 
For the determination of measuring the efficacy of transfer 

learning with learning, we employed the following metrics to assess 
the CNN models used in the process:  
𝑟𝑟𝑎𝑎𝑎𝑎𝑢𝑢𝑟𝑟𝑟𝑟𝑎𝑎𝑦𝑦 = 𝑇𝑇𝑃𝑃+𝑇𝑇𝑇𝑇

𝑇𝑇𝑃𝑃+𝐹𝐹𝑃𝑃+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇
 (21) 

𝑃𝑃𝑟𝑟𝑆𝑆𝑎𝑎𝑖𝑖𝑠𝑠𝑖𝑖𝑙𝑙𝑟𝑟 = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝑃𝑃

 (22) 

𝑟𝑟𝑆𝑆𝑎𝑎𝑟𝑟𝑙𝑙𝑙𝑙 = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝑇𝑇

 (23) 

𝑆𝑆𝑝𝑝𝑆𝑆𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑦𝑦 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑃𝑃

 (24) 

𝑟𝑟𝑆𝑆𝑙𝑙𝑟𝑟𝑎𝑎𝑖𝑖𝑚𝑚𝑆𝑆 𝑝𝑝𝑟𝑟𝑆𝑆𝑟𝑟𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖𝑚𝑚𝑆𝑆 𝑚𝑚𝑟𝑟𝑙𝑙𝑢𝑢𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (25) 

𝐹𝐹1𝑠𝑠𝑎𝑎𝑙𝑙𝑟𝑟𝑆𝑆 = 2 𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝𝑖𝑖𝑠𝑠𝑖𝑖𝑜𝑜𝑛𝑛×𝑟𝑟𝑒𝑒𝑝𝑝𝑚𝑚𝑙𝑙𝑙𝑙
𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝𝑖𝑖𝑠𝑠𝑖𝑖𝑜𝑜𝑛𝑛+𝑟𝑟𝑒𝑒𝑝𝑝𝑚𝑚𝑙𝑙𝑙𝑙

 (26) 

𝐹𝐹𝑟𝑟𝑙𝑙𝑠𝑠𝑆𝑆 𝑝𝑝𝑙𝑙𝑠𝑠𝑖𝑖𝑎𝑎𝑖𝑖𝑚𝑚𝑆𝑆𝑠𝑠 (𝐹𝐹𝑃𝑃) 𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑟𝑟𝑙𝑙𝑠𝑠𝑆𝑆 𝑟𝑟𝑆𝑆𝑙𝑙𝑟𝑟𝑎𝑎𝑖𝑖𝑚𝑚𝑆𝑆𝑠𝑠 (𝐹𝐹𝑁𝑁) are the 
inverse of the 𝑎𝑎𝑟𝑟𝑢𝑢𝑆𝑆 𝑝𝑝𝑙𝑙𝑠𝑠𝑖𝑖𝑎𝑎𝑖𝑖𝑚𝑚𝑆𝑆𝑠𝑠 (𝑇𝑇𝑃𝑃) and true negatives (TN). 
The AUC and ROC curve were also determined. 
 
Table 3: Comparative analysis of Feature Selection 

Metrics/Models SFLA GWO ACO DSFLA 

Recall (%) 93.98 87.86 89.33 96.24 

F-measure (%) 93.79 86.55 88.74 95.91 

Accuracy (%) 93.88 88.35 90.61 96.72 

Precision (%) 93.97 85.27 87.92 95.85 

 
In above Table 3 characterise that the Comparative investigation 

of Feature Selection. In the analysis of Accuracy (%) of GWO 
model attained as 88.35 and ACO model attained the 90.61and 
SFLA model attained the value as 93.88 and lastly DFLA model 
attained the value as 96.72 correspondingly. Then the Precision (%) 
of GWO model attained as 85.27 and ACO model attained the 
87.92 and SFLA model attained the value as 93.97 and lastly DFLA 
model attained the value as 95.85 correspondingly. Then the Recall 
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(%) of GWO model attained as 87.86 and ACO model attained the 
89.33 and SFLA model attained the value as 93.98 and lastly DFLA 
model attained the value as 96.24 correspondingly. Then the F-
measure (%) of GWO model attained as 86.55 and ACO model 
attained the 88.74 and SFLA model attained the value as 93.79 and 
lastly DFLA model attained the value as 95.91 correspondingly. 
Figure 4 presents the visual analysis of the designed model.  

 

 
Figure 4: Graphical Description of different feature selection 
techniques 
 
Table 4: Analysis of Various Classifiers on K=10 

Models F1 
Score 

Precisi
on 

Reca
ll 

Specific
ity 

mpv Accura
cy 

AUC 
Score 

AE 0.847
5 

0.8929 0.80
65 

0.8824 0.78
95 

0.8407 0.9064 

VAE 0.847
5 

0.8929 0.80
65 

0.8824 0.78
95 

0.8407 0.9089 

SVM 0.78
95 

0.865
4 

0.72
58 

0.862
7 

0.721
3 

0.78
76 

0.90
89 

DBN 0.85
00 

0.879
3 

0.82
26 

0.862
7 

0.800
0 

0.84
07 

0.92
03 

SACVAE
GAN 

0.82
81 

0.803
0 

0.85
48 

0.745
1 

0.808
5 

0.80
53 

0.87
86 

 
In above Table 4 characterise that the Investigation of Various 

Classifiers on K=10. In the analysis of SVM model accomplished 
the accuracy obtained as 0.7876 then precision as 0.8654 besides 
the recall range of 0.7258 besides the specificity as 0.8627 and the 
mpy range of 0.7213 besides F1-score as 0.7895 and to conclude 
the AUC as 0.9089 congruently. Then the DBN model 
accomplished the accuracy of 0.8407 and precision accomplished 
as 0.8793 besides the recall range of 0.8226 and the specificity as 
0.8627 and the mpy range of 0.8000 and F1-score as 0.8500 and 
lastly the AUC slash as 0.9203 correspondingly. Then the AE 
model attained the accuracy obtained as 0.8407 and precision as 
0.8929 and the recall range of 0.8065 and the specificity as 0.8824 
and lastly the AUC score as 0.7895 and the mpy range of 0.8475 
and F1-score as 0.9064 congruently. Then the VAE model attained 
as 0.8929 besides the recall range of 0.8065 and the specificity as 
0.8824 and lastly the AUC score as 0.7895 and the mpy range of 
0.8475 and F1-score as 0.9089 correspondingly. Then the 
SACVAEGAN prototypical accomplished the accuracy of 0.8053 

besides precision as 0.8030 then the recall range of 0.8548 then the 
specificity as 0.7451 formerly the mpy range of 0.8085 besides F1-
score obtained as 0.8281 and lastly the AUC groove as 0.8786 
consistently, where it is graphically seen in Figure 5.  

 

 
 
Figure 5: Graphical Description of different models on two K-fold 
analysis 
 
Table 5: Comparison of different models on K=20 

Models Precisi
on 

Reca
ll 

Specific
ity 

mpv F1 
Score 

AUC 
Score 

Accura
cy 

AE 0.8966 0.83
87 

0.8824 0.81
82 

0.866
7 

0.9330 0.8584 

VAE 0.9016 0.88
71 

0.8824 0.86
54 

0.894
3 

0.9374 0.8850 

SVM 0.866
7 

0.83
87 

0.843
1 

0.811
3 

0.85
25 

0.91
90 

0.84
07 

DBN 0.927
3 

0.82
26 

0.921
6 

0.810
3 

0.87
18 

0.92
19 

0.86
73 

SACVAE
GAN 

0.859
4 

0.88
71 

0.823
5 

0.857
1 

0.87
30 

0.92
82 

0.85
84 

 
Table 5 describes the comparison of various models on a K=20 

basis. In the analysis of the SVM model, the accuracy was 0.8407, 
precision was 0.8667, recall range was 0.8387, specificity was 
0.8431, mpy range was 0.8113, F1-score was 0.8525, and lastly the 
AUC score was 0.9190. The DBN model then achieved the 
corresponding accuracy of 0.8673, precision of 0.9273, specificity 
of 0.8226, mpy range of 0.9216, 0.8103, and 8718, and AUC score 
of 0.9219. The AE model then achieved the following results in that 
order: accuracy obtained as 0.8584, precision of 0.8966, recall 
range of 0.8387, specificity of 0.8824, mpy range of 0.8182, F1-
score of 0.8667, and lastly the AUC notch of 0.9330. The VAE 
prototypical then achieved accuracy of 0.8850, precision 
accomplished as 0.9016, recall range of 0.8871, specificity of 
0.8824, mpy range of 0.8654, F1-score obtained as 0.8943, and 
lastly an AUC score of 0.9374, all in that order. The SACVAEGAN 
model then obtained the corresponding accuracy of 0.8584, 
precision accomplished as 0.8594, recall range of 0.8871, 
specificity of 0.8235, mpy range of 0.8571, F1-score obtained as 
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0.8730, and lastly AUC notch of 0.9282, where Figure 6 shows the 
comparison of two different K values of designed model with 
existing techniques.   
 

 
Figure 6: Analysis of various classifiers in terms of different metrics 
 
Table 6: Validation Analysis of different Classifiers 

Models Accuracy Train 
Time(s) 

Test 
Time(s) 

SVM 93.00% 6.503 0.01505 

DBN 95.00% 10.083 0.01506 

AE 90.70% 1.632 0.01512 

VAE 82.20% 2.207 0.01702 

SACVAEGAN 98.67% 16.146 0.01553 

 
In above Table 6 signifies that the Validation Investigation of 

different Classifiers. In the investigation of SVM model attained 
accuracy rate as 93.00% and train time as 6.503 and test time as 
0.01505 correspondingly. Then the DBN model attained accuracy 
rate as 95.00% and train time as 10.083 and test time as 0.01506 
correspondingly. Then the AE model attained accuracy rate as 
90.70% and train time as 1.632 and test time as 0.01512 
correspondingly. Then the VAE model attained accuracy rate as 
82.20% and train time as 2.207 and test time as 0.01702 
correspondingly. Then the SACVAEGAN model attained accuracy 
rate as 98.67% and train time as 16.146 and test time as 0.01553 
correspondingly.  Study A utilized a qualitative approach to explore 
the impact of social media on adolescent mental health. Through 
interviews and thematic analysis, it identified key stressors and 
coping mechanisms. 

CONCLUSION 
This work presents a deep learning-based IDS for VANETs, 

efficiently dividing assaults into subclasses without incorrectly 
labeling any attacks as belonging to the Normal class. In this study, 
we introduce a SACVAEGAN for classifying VANET IDS. To 
further improve performance, we employ CVAEGAN, capable of 
producing more high-quality training data. Additionally, our 
suggested SACVAEGAN utilizes the self-attention mechanism to 

enhance feature extraction. The entire training procedure is 
stabilized by employing a unique loss function. On input datasets, 
SACVAEGAN outperformed state-of-the-art tactics, including 
GAN-based algorithms, in terms of classification accuracy. The 
suggested approach achieves the required outcomes, as shown by 
experiments conducted on the Car Hacking dataset. This finding 
opens up a number of avenues for further investigation. To begin, 
the suggested framework relies heavily on NNs, but alternative 
methods, such as the game theoretic approach, could achieve better 
results. Adopting this IDS for use in a real-time situation in a safety 
scheme is another potential direction for future development. The 
lack of a robust and endangered scheme in VANETs makes it 
interesting that the concept of statistics increases and cascaded 
outlines will be appropriate for similar situation belongings like 
handling security issues and preventing an attacker from entering 
the system. 

FUTURE SCOPE  
Future research on the deep learning-based IDS for VANETs can 

explore alternative methods like game theory, implement real-time 
applications through edge computing, and enhance robustness 
against adversarial attacks. Additionally, applying this IDS 
framework to other networks, such as IoT, and collaborating with 
industry for real-world deployment and standardization are 
promising directions. 
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