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ABSTRACT 
 

In healthcare systems, minimizing storage needs, transmission 
bandwidth, and processing expenses requires effective medical picture 
compression. This paper provides a thorough analysis of the many 
methods and strategies used in medical image compression. The 
difficulties of precisely compressing medical picture data are examined, 
particularly the requirement to preserve diagnostic quality at high 
compression ratios. More modern strategies like deep learning-based 
compression techniques are contrasted with more established ones like 
JPEG and JPEG2000 compression. The usage of neural networks, 
autoencoders, and generative adversarial networks (GANs) as well as other lossless and lossy compression techniques are also explored in this 
research. The suggested method makes use of CNN-RNN-AE to learn a condensed version of the original image, which had structural information. 
Multilayer perceptron’s (MLPs) were utilized for lossless image compression, while autoencoders and generative adversarial networks (GANs) 
were employed for lossy compression. The original image was then recovered by decoding the encoded image using a high-quality reconstruction 
approach. The optimal compression technique that has been provided fits in with the current image codec standards. A variety of experiment 
outcomes were compared with JPEG, JPEG2000, binary tree, and optimal truncation in terms of space saving (SS), reconstructed image quality, 
and compression efficiency. The results support the effectiveness of the designed strategy.  
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INTRODUCTION 
In data storage and transit, image compression is crucial, 

particularly in light of the data explosion that is happening at a rate 
much faster than Moore's Law.1 Finding and recovering the pixels 
is a difficult undertaking because of the extremely intricate 
unknown relationships between them. In order to successfully 
recover a picture from a well-compressed representation, either 
losslessly or with some loss, we want to build and test networks that 
can do so. 5G connects various items in the world and allows them 
to communicate with one another through the Internet with little to 
no human intervention.2 Mobility management is specifically 

utilized to enable every mobile node to connect to the internet 
independent of location or movement. Increased expectations for 
creative applications that break through and outpace current 
constraints are a result of the 5G era. Additionally, in order for 
smart home networks to allow anytime, anywhere remote access to 
applications and sensors (home IoT), mobility management is 
required. The DMM is used by 5G networks' smart homes to enable 
mobile nodes, and remote access also manages the related nodes. 
Critical threats that can be readily managed and access smart home 
gadgets are the primary problems with remote access. Therefore, it 
is crucial to protect and transfer user data via an optimum way; as 
a result, safe routing is more crucial in smart homes. By automating 
machinery, businesses are able to use cutting-edge software 
platforms for monitoring, controlling, and making subsequent 
production process evolution more stunning. Image sensors make 
up the majority of sensor networks used in manufacturing 
automation. Picture sensors are essential in security and safety 
applications because they can recognize and transmit the data that 
makes up a picture.  
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The difficulties involved in medical diagnosis and therapy 
highlight how urgently improvements in medical image 
compression are needed.2 For patients to receive appropriate care in 
the current healthcare environment, fast and reliable diagnostic 
information must be available. Nonetheless, storage capabilities, 
unequal access to cutting-edge imaging technologies, and restricted 
bandwidth for data transmission are common challenges faced by 
healthcare facilities. In contexts with little resources and distant 
locations with little medical infrastructure, these difficulties are 
especially noticeable. Utilizing picture compression methods, the 
study seeks to lessen these challenges. In order to maintain 
diagnostic integrity while maximizing the storage and transfer of 
enormous volumes of medical imaging data, image compression is 
an essential technique. The research aims to improve patient 
outcomes by facilitating seamless medical data sharing across 
healthcare networks, improving accessibility to diagnostic 
resources, and developing efficient compression algorithms that are 
tailored to the unique requirements of medical imaging. As a result, 
picture compression is shown to be a key component in resolving 
the complex issues associated with medical diagnosis and 
treatment, providing a route towards more effective and fair 
healthcare delivery.3 

Figure 1 shows the IoT application used for 5G which includes 
Internet of Vehicles (IoV), smart health care, smart home and smart 
city.  The central processing system receives several images from 
each image sensor at any given time. Industrial automation 
equipment frequently comes with sophisticated, excellent cameras 
that can record images at the required resolution. Images can be 
supplied in low quality so that proper processing cannot be done on 
them in order to decrease the transfer rate. Utilizing a compression 
technique is a way to lower the size of an image without 
compromising its quality. 

 

 
Figure 1. Security in 5G 

 
There are unique challenges associated with incorporating AI 

into 5G networks. It is necessary to create efficient processes for 
obtaining, classifying, and analysing the enormous volumes of data 
that artificial intelligence has amassed. Therefore, early adopters of 
AI who find solutions to these challenges will become obvious 
leaders when 5G networks get connected. For a very long time, 
people have thought of satellite communication as a separate 

technology from mobile networking. Next-generation satellites, 
based on 5G architecture, will let networks control connectivity to 
cars, planes, and other IoT devices in remote and rural locations. 
Thanks to 5G, service providers will be able to offer a range of 
services and the satellite industry will be able to grow beyond its 
existing specialty. 

Because 5G networks and smart home applications have 
different requirements and features, the suggested picture 
compression algorithms are especially important. It becomes 
critical to transmit data efficiently when using 5G networks, which 
offer previously unheard-of levels of speed, bandwidth, and 
latency. Big data transfers, particularly real-time transfers of high-
resolution medical images, are made possible by 5G networks' 
enormous throughput capabilities. But in order to properly utilize 
5G networks, bandwidth efficiency is essential, particularly in 
situations where network congestion or bandwidth limitations can 
emerge. To improve bandwidth usage and overall data transmission 
efficiency over 5G networks, the suggested image compression 
algorithms offer a solution by minimizing the size of medical image 
files while preserving diagnostic quality.3 

Furthermore, effective image data handling is critical in smart 
home applications where medical imaging is increasingly 
integrated for telehealth and remote monitoring purposes. A large 
quantity of data is generated by smart home devices, such as 
wearable health trackers and home-based diagnostic tools, and this 
data needs to be quickly processed and transferred. Smart home 
devices can reduce medical picture data size without sacrificing 
diagnostic quality by putting the suggested image compression 
techniques into practice.4 This would increase transmission 
efficiency and lower storage needs for the smart home ecosystem. 
This improves the overall efficacy of smart home healthcare 
solutions while also preserving resources by enabling quicker 
processing and analysis of medical imaging data. It also facilitates 
prompt healthcare actions. The suggested image compression 
methods, in essence, provide a mutually beneficial match for 5G 
networks and smart home applications by meeting their unique 
needs for effective data processing, storage, and transmission. This 
will ultimately help to advance telemedicine, remote patient 
monitoring, and customized healthcare delivery. 

The main contributions of this paper are: 
• This study's first contribution is the use of predictive 

coding via multilayer perceptron (MLP) for lossless compression. 
This is the first time that MLP has been used to compress images. 
Additionally, this article discusses the MLP algorithm's 
performance in contrast to other approaches. 

• The second contribution is the use of autoencoders and 
GANs for lossy compression.  

• The application of our strategy in the 5G is the subject of 
the second contribution. There hasn't been any research on 5G 
sensor picture compression to date. The dataset utilized in this study 
was supplied in a genuine smart greenhouse and is very applicable 
to industrial areas. 

• The final but not least contribution is that our solution has 
been tried and developed for both RGB and grayscale photos. 
However, only grayscale images have been examined in the 
aforementioned literatures. We should use RGB images because 
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some image cameras are RGB and require RGB code analysis. 
Grayscale photos are also analyzed in order to compare the 
performance of the K-Means++ method to that of the other 
algorithms. 

LITERATURE SURVEY 
A variety of deep learning techniques and neural networks have 

been applied to image compression. enumerates the majority of 
neural network techniques for image compression put forth prior to 
1999. Nevertheless, no effective deep learning algorithms existed 
during that time. For picture compression, Toderici et al.5 presented 
one of the most effective deep learning methods. They 
outperformed JPEG by a small margin thanks to their use of 
recurrent neural network (RNN) architecture. They tackled the 
issue of JPEG compression for small photos with minimal amounts 
of redundant data. A network that adheres to the traditional three-
stage compression process—encoding, quantization, and 
decoding—was proposed by Santurkar et al.6 Two distinct RNN 
architectures—Long Short Term Memory (LSTM) and 
convolutional/deconvolutional LSTMs—are used successively for 
encoding and decoding. This method's drawback is that it takes a 
lot of time because encoding and decoding must be done 
repeatedly, but its benefit is that the compression ratio may be 
gradually increased. Recently, a team used GANs to build a 
compression network that produced higher compression rates and 
more aesthetically beautiful images. Nonetheless, their recreated 
representations differ from the originals in that they are generally 
interpreted as a distinct individual or entity. According to Theis et 
al.7 proposal, compressive autoencoders use an entropy coding 
technique in which values in images are assigned a bit 
representation based on how frequently they appear in the image. 
The derivative of the rounding function becomes undefined when 
the quantization (rounding to the closest integer) approach is used 
for encoding, as Shirsat et al.8 described. This issue is only resolved 
by a smooth approximation in the backward pass. According to 
Johnston et al.9, the structural similarity index metric (SSIM) and 
peak signal to noise ratio (PSNR) are employed as performance 
indicators while implementing convolutional autoencoders. Using 
standard image codecs (such as JPEG and JPEG2000), the current 
bits for each non-zero quantized transform coefficient are spread 
across the file. When compression performance increases, the use 
of high quantization steps will result in a drop in bits per pixel 
(BPP), which will lead to noise in the reconstructed image. In order 
to overcome these issues, Ghanbari et al.10 present certain research 
that used the denoising approach to improve the quality of the 
reconstructed image. Zhai et al.11 suggested an efficient deblocking 
technique for JPEG pictures that involves post-filtering in shifted 
windows of image blocks. Foi et al.12 developed an image 
deblocking filtering method using shape-adaptive DCT. However, 
there was also a noticeable acceleration in the development of 
picture compression techniques.  According to Zhang et al.13, deep 
learning models have been applied lately to efficiently represent 
images in order to achieve better results. Convolution neural 
networks have been employed for image super-resolution (SR) to 
effectively train deeper networks, particularly when residual 
learning and gradient-based optimization techniques14–16 are used. 
It is possible to improve performance by using an entropy loss 
rather than an MLP loss, but doing so is more difficult because 
entropy calculations need the entropy of the error picture. In order 
to estimate the entropy that can be utilized for density estimation, 
Erdogmus et al.17 provided instructions. For GAN networks, we 

employed two components as the loss function: an adversarial loss 
to enhance the realism and sharpness of the images, and a first 
element to measure the similarity between the original and rebuilt 
images. As an alternative to the Euclidean distance, we might 
investigate other metrics for measuring similarity. To minimize the 
Euclidean error in a feature space rather than the original space, a 
third component can also be included. Alexnet18 or VGG19 are two 
examples of well-known networks that can build the feature space. 
To obtain better photos for super resolution applications, this 
technique is employed.20 Moreover, we can reduce the quantity of 
redundant data we stored by using the entropy of the compressed 
representations in the loss function. Since the derivative of the 
entropy function is zero everywhere but at integers, we can use a 
smooth approximation of it. We can backpropagate the loss using 
this approximation.21 Finally, to encode and decode the images, we 
employed deterministic autoencoder in each of our networks. Due 
to their generating capacity, variational autoencoders have been the 
subject of some investigations, even though we think deterministic 
autoencoders are more suitable for our situation.6,22 We can 
investigate SVD method to compess medical images based on 
region of intrest.23 This work proposed to encrypt medical images 
to enhance the security.24 The denied conflict with spurious node 
(TVDCSN) approach was created for wireless communication 
technologies by block chain-driven Transaction Verification 
mechanism work to identify malicious nodes and prevent assaults.24 
Kiran P et al.25,26 proposed region of interest medical image 
encryption utilizing several maps and a block cypher. The main tool 
used to extract Region of Interest (ROI) regions is a Laplacian edge 
detection operator. Special encryption techniques and approaches 
are usually needed to hide the information in medical photographs. 

METHODOLOGY 
The following section explained about proposed different image 

compression using machine learning models. Which includes 
lossless and lossy compression techniques. 

LOSSLESS IMAGE COMPRESSION  
Lossless image compression is crucial for fields like astronomy 

and medicine that depend on accurate imaging. In this work, we 
looked into using MLP networks for predictive coding. 

PREDICTIVE CODING WITH MLP 
Predictive coding (PC) is at the core of most current lossless 

image compression methods, such as JPEG-LS. Assuming that 
some of the neighboring pixels are known, the PC attempts to 
estimate the new pixel value in the image. We are reading the image 
in raster scan format (first row, second row, etc.) for this project. 
Thus, we can presume that the green-colored pixels in Figure 2 are 
known, and the value of "x" is being estimated. To ensure lossless 
compression, we must store the estimation error in that pixel after 
the estimation stage. Consequently, we only need to keep a few 
beginning pixel values to begin the procedure and create the error 
image, and PC codes the entire image pixel by pixel. The error 
image will be the same size as the original, but according to 
information theory, it will contain less entropy. Thus, by employing 
variable length coding (VLC) techniques, we can reduce the error 
image's size. We employed Huffman coding for VLC. 

PCs have utilized MLP-based networks; however, since the 
publication of that study, several extensions (such as deeper 
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networks and rectified linear units, or ReLUs) have been shown to 
be successful in MLP networks. Thus, we attempted to use cutting-
edge methods to the implementation of an MLP network for PC. 
We present our completed network in Figure 3. ReLUs were 
employed to add nonlinearity after each layer. Be aware that this 
network is a regression one. We are quantizing the prediction to the 
closest integer value at the end. We are constructing image-specific 
weights using this approach, but we can save the network weights 
without significantly increasing the file size because our layers are 
short. 
 

 
Figure 2. Pixel analysis of Predictive coding for lossless image 
compression. 
 

 
Figure 3. Number of layers used in the multilayer perceptron for 
image compression 

LOSSY IMAGE COMPRESSION 
Since the human eye cannot distinguish even minute variations 

in pixel values, a number of picture compression methods have 
been developed in an attempt to further reduce image size while 
preserving as much information as possible. The majority of cutting 
edge compression algorithms use block based techniques since the 
human eye is less sensitive to local information in images. A basic 
example of picture patching is shown in Figure 4. Additionally, we 
experimented with block-based compression in this work, 
employing 32x32 blocks and several autoencoders with a GAN 
architecture for lossy compression. 

 
Figure 4. Illustration for block based methods 

 

 
Figure 5. Autoencoder illustration 

COMPRESSION USING AUTOENCODERS  
Networks known as autoencoders (AEs) attempt to represent an 

image with less information than the original signal. 
Dimensionality reduction can be used to accomplish this operation, 
but we need to ensure that, with only a tiny inaccuracy, we can 
recover the original signals from the reduced dimension.  

Consequently, AE consists of two networks: an encoding 
network and a decoding network. Latent representation of the 
original signal is another term for the encoded signal. Figure 5 
shows the general layout of the autoencoders. We first looked into 
MLP-based autoencoders for lossy compression, utilizing 
vectorized pictures as the autoencoders' inputs. However, we were 
unable to obtain satisfactory results. This was mostly caused by the 
absence of spatial information in the image vector representation. 
Next, we experimented with CNN-AE, or fully convolutional 
autoencoders. Here, the primary goal is to use max pooling 
procedures to reduce the image's size. The decoder network is 
where things become tough. For that section, we have to utilize the 
deconvolution operator; however, since the convolution operator is 
not injective, there is no inverse operator. On the other hand, Long 
and colleagues presented a deconvolutional neural network 
approximation. 

We adopted their strategy, using an interpolation function for 
deconvolution and a convolution operator afterward. The general 
design of our convolutional autoencoder, optimized based on our 
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studies, is depicted in Figure 6. We attempted two more 
improvements to the CNN-AE baseline approach for autoencoder 
architectures. The first one is predicated on the really basic notion 
of appending a recurrence relation to the network, as stated in [7]. 
Since lossy compression is our goal, some inaccuracy will be there 
in the final product. We attempted to reduce this error by using a 
recurrent convolutional autoencoder (CNN-RNN-AE), which 
compresses the error by treating it after each step as a new picture 
and applying CNN-AE once again. Figure 7 depicts this concept. 
With this method, the compression ratio and image quality are 
subject to trade-offs. We employed block-based compression in the 
test images and trained all of the networks on a database of 32x32 
images. We came to understand that our issue is distinct from 
traditional machine learning challenges, which seek to determine 
the unknown outcome given a set of inputs. In this case, the input 
and output are the identical, well-known image from the start. 
Therefore, while compressing the image, we might be able to use 
some unique information. Using the patches from the current image 
to fine-tune the entire network is one straightforward concept. That 
will, however, provide network weights unique to each image, 
which we must keep alongside the image. This method does not 
appear to be practical because deep neural networks have an 
excessive number of weights. Rather, we choose to fine-tune just 
the decoder for the provided image, using a very limited decoder 
architecture. In this manner, we can retain the image-specific data 
without significantly enlarging the file size. Figure 8 depicts this 
concept. 

 
Figure 6. Convolutional autoencoder for encoding and decoding of 
image. 
 

 
Figure 7. Recurrent CNN-AE for introducing a trade-off between 
image quality and compression ratio. 

COMPRESSION USING GAN 
We then posed another query after taking into account the 

compressed image as an alternative representation of the original 
image in the latent space. In order to extract more useful 

information, how can we build the latent representations more 
effectively? This issue in our situation relates to creating an 
improved loss function for mapping and inverse mapping the 
photos. Given that GANs8 are renowned for producing realistic-
looking images, they are an attractive choice for our purpose. To 
avoid creating a different, rather than realistic, image, we must 
preserve the necessary information at the same time. The GAN 
generator that is utilized as a decoder is shown in Figure 9. 

 

 
Figure 8. Fine-Tuning approach used for images specific 
compression 

 
Figure 9. Generator of GANs being using as a decoder 

 
The GANs' generator component can function as a compression 

decoder. As a result, we chose our latent representations as the 
image's downsampled version first. To perform reconstruction, we 
merged the adversarial loss with the mean squared error. The loss 
function selected for the initial GAN compression network is 
provided by Equation (1) and is as follows: 

 
𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥, 𝑥𝑥′) = 𝜆𝜆1𝐿𝐿𝑒𝑒𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟(𝑥𝑥, 𝑥𝑥′) + 𝜆𝜆2𝐿𝐿𝑡𝑡𝑎𝑎𝑎𝑎𝑒𝑒𝑟𝑟𝑎𝑎𝑡𝑡𝑟𝑟𝑎𝑎𝑡𝑡𝑡𝑡(𝑥𝑥, 𝑥𝑥′,𝑤𝑤,𝜃𝜃)      (1) 

where the weights of the generator and discriminator are denoted 
by θ and w, respectively. Our adversarial loss function of choice 
was the Wasserstein loss (WGAN loss) function. Since the classical 
GAN loss minimizes the Jensen-Shannon distance, which is 
undefined when the probability densities are in a low-dimensional 
manifold as they are in our situation, it is unstable. The error 
function produced by the Wasserstein loss is more stable and 
convergent, making interpretation simpler and maybe yielding 
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better outcomes. Regarding the application, we cut the weights, 
deleted the sigmoid layer, and removed the logarithm from the loss 
function. The reader is advised to read for further information. 

The second method is to obtain the compressed form by 
substituting an encoder output for the downsampled images. By 
including an encoder-decoder scheme, the system can choose its 
own latent representations. As seen in Figure 10, the autoencoder 
and the GAN structure can be trained simultaneously or 
sequentially. We put the simultaneous training into practice. We 
assessed the network using the L1 or L2 norm as the second term 
and the classical GAN or WGAN loss as the first. To determine a 
suitable weighted balance between these two terms, we validated 
the network. Figure 11 depicts the CNN-AE-FT decoder and 
encoder network. 

 

 
 

(a) 
 

 
(b) 

Figure 10. Compression achieved using combination of both auto 
encoder (a) and GAN (b) 

 
Figure 11. Decoder network for CNN-AE-FT. Encoder part is same 
with CNN-AE 

DATASET AND METRIC 
We used three test photographs for training and testing in our 

research, following a methodical methodology that was customized 
for our image-specific lossless compression method. Bits per pixel 
(bpp) is a trustworthy statistic for evaluating lossless compression 

performance, and we used it to evaluate the efficacy of our method. 
We used the CIFAR dataset, which is well-known for having a large 
collection of 50,000 32x32 RGB images, to train our model for 
lossy compression. This dataset is noteworthy since it includes 
50,000 samples in the training set and 10,000 samples in the test 
set, providing extensive coverage for training. In addition, we went 
beyond CIFAR to include a dataset similar to CIFAR-10, but with 
100 different classes, each with 600 photos. With the addition of 
new difficulties such as noise, orientation, and image dimensions, 
this enlarged dataset provided a more thorough evaluation 
framework. We carried out preprocessing actions targeted at 
normalizing image sizes in order to guarantee fair comparisons 
across various compression techniques. In order to achieve 
consistent processing, the original 32 × 32 images were enhanced 
by adding four zero pixels on each side. Then, to replicate real-
world situations where photos may experience varying degrees of 
compression during transmission or storage, the enhanced images 
were subjected to random compression with a chance of 0.5. These 
painstaking methods were necessary to confirm the stability and 
effectiveness of the compression strategies we suggested. 

The following three factors led us to select this dataset: It is 
reasonable to employ patch-based compression on high resolution 
(HR) images to preserve local relationships in the pixel values 
because (i) it contains a large number of samples; (ii) it consists of 
small images, therefore training a network on CIFAR does not take 
days. 

We also tested the actual performance of our approaches using 
some HR photos. Our algorithms were trained on the CIFAR 
dataset for the HR images, and the resulting weights were then 
applied to the HR image patches. Two distinct metrics were 
employed in our comparisons. Equation (2) can be used to 
formulate the peak signal to noise ratio (PSNR), which is the first 
one. Decibels (dB) are used to measure peak signal-to-noise ratio 
(PSNR), which is used to evaluate reconstruction error. Equation 
(3) provides the mean square error (MSE), which defines it as 
follows. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 20 log10 �
255
√𝑀𝑀𝑃𝑃𝑀𝑀

�     (2) 

Reconstruction of an image or signal is best when the 
reconstruction errors are small (around zero). Therefore, during 
signal/image reconstruction, MSE minimization (PSNR 
maximization) is crucial. 

𝑀𝑀𝑃𝑃𝑀𝑀 =
1
𝑚𝑚𝑚𝑚

� �[𝐼𝐼(𝑖𝑖, 𝑗𝑗) − 𝐼𝐼′(𝑖𝑖, 𝑗𝑗)]2     (3)
𝑛𝑛−1

𝑗𝑗=0

𝑚𝑚−1

𝑎𝑎=0

 

After applying the encoder and decoder, I is the reconstructed 
image. I is also the input image. Keep in mind that higher PSNR 
values indicate greater algorithm performance. Nevertheless, they 
demonstrated that because PSNR does not account for HVS, it is 
not a useful comparison statistic for images [12]. The structural 
similarity index (SSIM), a novel metric, was put out by them. 
Equation (4) can be used to formulate it. 
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𝑃𝑃𝑃𝑃𝐼𝐼𝑀𝑀(𝑥𝑥,𝑦𝑦) = � (2𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇+𝐶𝐶1) (2𝜎𝜎𝜇𝜇𝜇𝜇+𝐶𝐶2)
(𝜇𝜇𝜇𝜇2+𝜇𝜇𝜇𝜇2+𝐶𝐶1) (𝜎𝜎𝜇𝜇2+𝜎𝜎𝜇𝜇2+𝐶𝐶2)

�     (4) 

where L is the dynamic range of pixel values (255 for 8 bit 
unsigned integers), k1 = 0.01 and k2 = 0.03 by default, μ X is the 
mean value of X, σ X is the standard deviation of X, and σ XY is 
the covariance of X and Y. After calculating SSIM on small image 
windows, the average is applied to the entire image. The decimal 
value that emerges is between -1 and 1. Since SSIM=1 indicates 
that all of the images are identical, we want it to be as near to 1. 

EXPERIMENTS 
MULTI LAYER PERCEPTRON (MLP) 

Using the approach depicted in Figure 12, we coded the error 
images for the lossless compression using Huffman coding. The 
size of the prediction block is one of the key variables in predictive 
coding. It becomes more difficult to predict the new pixel value and 
employ a deep network for tiny box sizes when we expand it too 
much, as the pixels become uncorrelated with the subsequent pixel. 
Following various experiments, we selected 60 pixels as the 
prediction size. We employed a straightforward MSE loss as the 
loss function. 

 

 
Figure 12. Architecture of multilayer perceptron network 

 
An output layer, one or more hidden layers, and at least one input 

layer are the three distinct functions that make up a feed forward 
neural network, or MLP. Both the hidden and output layers contain 
a large number of neurons with activation functions. Neural 
Networks can be meticulously designed to simulate intricate non-
linear interactions between input parameters and the result. 
Selecting the activation function and the quantity of hidden layers 
and neurons in each layer are a few examples of this. Creating a 
good NN architecture for a given task is not simple. Tests are 
typically employed to determine the optimal configuration for a 
neural network because there is no standard technique for 
calculating the optimal number of neurons and layers.  

AUTOENCODERS 
All of our fully convolutional models are effective autoencoders. 

In our research, we consistently employed a 16:1 compression ratio 
for consistency and ease of comparison with JPEG. The most 
crucial aspect of autoencoders is that, because we will be storing 
this representation as a compressed image, we cannot employ an 
excessive amount of filters in the final layer prior to the latent space. 
Due to this difficulty, we had to employ asymmetric autoencoders 

instead of symmetric ones. The performance of really deep 
networks is not very good because our input images are 32x32.  
Following a series of trials, we determined that the network shown 
in Figure 6 was optimal for CNN-AE and CNN-RNN-AE. We 
employed three recursive phases in CNN-RNN-AE. Although 
CNN-AE-FT includes about 1300 weights of 32-bit floating 
integers in the decoder, we can use the same architecture for it as 
well. However, storing them with the compressed picture will be 
inefficient. Therefore, we made the decision to fine-tune our 
technique using a shallower decoder. We employed the Adam 
optimizer in all AE variants, using MSE as the loss function and a 
learning rate of 10-5. 

GENERATIVE ADVERSARIAL NETWORKS (GANS) 
A discriminator network plus a decoder network make up the 

first GAN network. We took inspiration for the decoder network 
from Resnet [13], however instead of making it as deep as possible 
because our images are 32 by 32, we wanted to manipulate the 
parameters more readily and have a shorter training time because 
of time restrictions. The residual, up sampling, batch normalization 
layer, relu, conv2d, and conv2d transpose blocks make up the 
decoder (generator). We upsample twice to return to the original 
size of the convolutional layers in the decoder section, which 
include paddings and a stride size of 1. All that makes up a 
discriminator are convolutional layers. To reduce the saturation of 
the activation units in convolutional layers, we employed Xavier 
initialization.14. 

As recommended in the paper [9], we utilized RMSProp, clipped 
weights between [A-0.01, 0.01] interval, and took 2.10 −5 as the 
learning rate for the Wasserstein loss function. With λ1 = 1 and λ2 
= 10, the SSIM findings are optimal. Since that term minimizes 
MSE directly, the MSE error reduced as expected when we 
increased λ2. We utilized an ADAM optimizer with beta = 0.5 and 
a learning rate of 2.10−4 for the DCGAN loss. 

A discriminator plus an auto-encoder make up the second GAN 
network. For each loss function, the same learning rate and 
coefficients were employed. Convolutional networks with max 
pooling and upscaling layers are used as encoders and decoders to 
regulate the image's size. 

RESULTS AND COMPARISON 
Although there are many different compression methods that 

claim to be superior to JPEG, the most of them don't include 
implementation details, and JPEG is still the most used algorithm 
for both lossy and lossless compression. Therefore, we shall 
compare our findings with JPEG and JPEG-2000 in this study. 

Medical image compression techniques are investigated in this 
work. Hence, the most prevalent types of medical images—such as 
CT, MRI, ultrasound, and PET scans—are selected to serve as 
simulation examples.27 All of these simulated samples' key features 
are listed in Table 1. 

Table 2 compares the bit-per-pixel (bpp) of JPEG, JPEG-2000, 
and our network. Thus, our network performs significantly better 
than JPEG and approaches JPEG-2000 in terms of performance. 
Also take note of the fact that modern smartphones and PCs can 
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operate this MLP network in real time. Figure 13 shows the sample 
medical images used for experimental anlysis. 
 

 
Figure 13. Sample Medical images used in the proposed work 

 
Table 1. Provide examples of simulation image sample. 

Image ID Image Type Body part Image Size 

1 Ultrasound Fetus 256*256 

2 MRI Brain 256*256 

3 X-ray Hand 256*256 

4 X-ray Leg 256*256 

5 X-ray Knee 512*512 

6 X-ray foot 512*512 

 
Table 2. Comparison of average bpp rates for different lossless 
compression algorithms on the test images. 

Algorithm Bits per Pixel 

JPEG 6.3 

JPEG-2000 3.75 

MLP 4.53 

 

We compared our findings for the lossy compression utilizing 
patch-based compression on both CIFAR test data and HR test 
photos. We displayed the findings for our top-performing CNN-AE 
and GAN networks in Tables 3 and 4. Every outcome is 
documented with a compression ratio of 16:1. We would want to 
notify the reader that because we did not incorporate entropy coding 
into our algorithms, these comparisons are not entirely fair. All of 
our methods beat JPEG on the CIFAR test data, with the exception 

of GAN-AE with L1+DC loss. Our best-performing network is 
GAN-AE with L2+Wloss. It is evident that WGAN outperforms 
DCGAN, and that performance is further enhanced by the addition 
of L2 loss. With L1 loss, we were unable to perform well. The 
outputs got sharper and more attractive as we increased the weight 
of the adversarial loss, but we ran into some color-related issues. 
The network occasionally deteriorated and needed more rounds to 
achieve the same color with the original image. However, these 
issues are reduced after appropriate network parameters are 
identified, and the reconstructed image is crisper and of higher 
quality. Additionally, CNN-AE and CNN-RNN-AE both had 
excellent performances. 

 
Table 3. Result of various architecture on CIFAR dataset. 

CIFAR 

Methods PSNR 

JPEG-2000 42.5 

GAN-AE (L2,W) 35.78 

GAN-AE (L2, DC) 20.54 

CNN-RNN-AE 30.4 

GAN WGAN 29.96 

CNN-AE 29.5 

GAN-DC 29.45 

GAN-AE (L1,W) 29.04 

JPEG 29.24 

GAN-AE (L1,DC) 29.23 

Table 4. Result of various architecture on HR dataset. 
HR Images 

Methods PSNR SSIM 

JPEG-2000 35.1 0.992 

GAN-AE-FT 33.7 0.99 

GAN-AE (Best) 32.51 0.985 

JPEG 32.4 0.976 

CNN-RNN-AE 29.3 0.971 

CNN-AE 28.6 0.963 

 
    None of our methods perform at a level that is equivalent to JPEG-
2000 in the CIFAR data. On the HR image set, patch-based comparison 
methods allow us to obtain results that are comparable when using 
JPEG-2000. Table 3 has the results for HR images. Once more, GAN-
AE performed incredibly well. Here, we have simply presented the top-
performing GAN-AE network using the Wasserstein metric and L2 
loss. SSIM indicates that CNN-AE-FT outperforms GAN-AE network 
and appears to be highly successful, with an index that is quite near to 
JPEG-2000. It demonstrates the huge promise of image-specific 
compression through fine-tuning. Observe also the improvement in 
JPEG performance between CIFAR and HR pictures.   
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   In order to evaluate the visual image quality, the effectiveness of the 
suggested model is lastly tested on several frames in terms of PSNR. 
The comparative findings are shown in Figure 14. 
 

 
Figure 14: Comparative analysis of proposed work in terms of PSNR. 

CONCLUSION AND FUTURE WORK 
We have shown many networks in this study to compress 

medical images with and without good resolution. Our findings are 
based on the network configurations and settings that we 
experimented with. While the majority of our results show promise, 
they also suggest numerous routes and possible changes. We 
attempted a very basic architecture for the lossless compression and 
concentrated on the lossy compression problem in our article. We 
used MSE loss to train the MLP network. It is possible to improve 
performance by using an entropy loss rather than an MLP loss, but 
doing so is more difficult because entropy calculations need the 
entropy of the error picture. We can utilize density estimation 
techniques like Parzen windowing to estimate the entropy. For the 
GAN, we employed two elements as the loss function. As an 
alternative to the Euclidean distance, we might investigate other 
metrics for measuring similarity. To minimize the Euclidean error 
in a feature space rather than the original space, a third component 
can also be included. Since the proposed DWT–CNN paradigm 
may be employed with current image coding standards like JPEG, 
JPEG2000, or BPG, it is highly suitable for a variety of procedures. 
The testing results across many performance indicators confirmed 
the superiority of the proposed model over state-of-the-art methods. 
Additional sources, like the representation in a feature space, can 
be employed to retain more data. Additionally, we can compress 
depending on the class information and condition on the classes, 
which might produce better outcomes. One option is to employ a 
fine-tuning strategy. The storing of the decoder weights is minimal 
in videos since images can share the decoder weights for the 
successive collection of frames. GAN fine-tuning is another option. 
Beyond real-time hardware execution, the suggested method can be 
used to any other applications in the future. Various deep learning 
approaches could be applied in the future to spare data processing 
complexity and reduce band redundancy for 5G network 
transmission and storage. Future performance of the proposed 
model can be enhanced by modifying the CNN model's 
hyperparameters, which include the number of hidden layers, 
learning rate, epoch size, and other variables. 

CONFLICT OF INTEREST STATEMENT 
Authors declare that there is no conflict of interest for 

publication of this work. 

REFERENCES AND NOTES 
1.  C.E. Leiserson, N.C. Thompson, J.S. Emer, et al. There’s plenty of room at 

the top: What will drive computer performance after Moore’s law? Science 
(80-. ). 2020, 368 (6495), 9744. 

2.  M. Nanavati, M. Shah. Performance comparison of different Wavelet based 
image fusion techniques for Lumbar Spine Images. J. Integr. Sci. Technol. 
2024, 12 (1 SE-Biomedical and Pharmaceutical Sciences), 703. 

3.  C. Perera, C.H. Liu, S. Jayawardena. The Emerging Internet of Things 
Marketplace from an Industrial Perspective: A Survey. IEEE Trans. Emerg. 
Top. Comput. 2015, 3 (4), 585–598. 

4.  B. Kalva, M.C. Mohan. Effective image retrieval based on an optimized 
algorithm utilizing a novel WOA-based convolutional neural network 
classifier. J. Integr. Sci. Technol. 2023, 11 (3), 523. 

5.  G. Toderici, D. Vincent, N. Johnston, et al. Full resolution image 
compression with recurrent neural networks. In Proceedings - 30th IEEE 
Conference on Computer Vision and Pattern Recognition, CVPR 2017; 
2017; Vol. 2017-Janua, pp 5435–5443. 

6.  S. Santurkar, D. Budden, N. Shavit. Generative Compression. In 2018 
Picture Coding Symposium, PCS 2018 - Proceedings; IEEE, 2018; pp 258–
262. 

7.  Y. Yang, S. Mandt, L. Theis. An Introduction to Neural Data Compression. 
Found. Trends Comput. Graph. Vis. 2023, 15 (2), 113–200. 

8.  T.G. Shirsat, V.K. Bairagi. Lossless medical image compression by IWT 
and predictive coding. 2013 Int. Conf. Energy Effic. Technol. Sustain. 
ICEETS 2013 2013, 2013, 1279–1283. 

9.  N. Johnston, D. Vincent, D. Minnen, et al. Improved Lossy Image 
Compression with Priming and Spatially Adaptive Bit Rates for Recurrent 
Networks. In Proceedings of the IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition; 2018; pp 4385–4393. 

10.  M. Ghanbari. Standard codecs: Image compression to advanced video 
coding (3rd edition). Standard Codecs: Image Compression to Advanced 
Video Coding. Iet 2011, pp 1–482. 

11.  G. Zhai, W. Zhang, X. Yang, W. Lin, Y. Xu. Efficient image deblocking 
based on postfiltering in shifted windows. IEEE Trans. Circuits Syst. Video 
Technol. 2008, 18 (1), 122–126. 

12.  A. Foi, V. Katkovnik, K. Egiazarian. Pointwise shape-adaptive DCT for 
high-quality deblocking of compressed color images. Eur. Signal Process. 
Conf. 2006, 16 (5), 1395–1411. 

13.  K. He, X. Zhang, S. Ren, J. Sun. Deep residual learning for image 
recognition. In Proceedings of the IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition; IEEE Computer Society, Las 
Vegas, NV, USA, 2016; Vol. 2016-Decem, pp 770–778. 

14.  J. Duchi, E. Hazan, Y. Singer. Adaptive subgradient methods for online 
learning and stochastic optimization. COLT 2010 - 23rd Conf. Learn. 
Theory 2010, 12 (7), 257–269. 

15.  T. Takase, S. Oyama, M. Kurihara. Effective neural network training with 
adaptive learning rate based on training loss. Neural Networks 2018, 101, 
68–78. 

16.  D.P. Kingma, J.L. Ba. Adam: A method for stochastic optimization. 3rd 
International Conference on Learning Representations, ICLR 2015 - 
Conference Track Proceedings. 2015. 

17.  D. Erdogmus, J.C. Principe. Entropy minimization algorithm for multilayer 



Bharath K.N. et. al. 

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(5), 821             Pg  10 

perceptrons. Proc. Int. Jt. Conf. Neural Networks 2001, 4 (01CH37222), 
vol. 4), 3003–3008. 

18.  A. Krizhevsky, I. Sutskever, G.E. Hinton. ImageNet classification with 
deep convolutional neural networks. Commun. ACM 2017, 60 (6), 84–90. 

19.  K. Simonyan, A. Zisserman. Very deep convolutional networks for large-
scale image recognition. 3rd International Conference on Learning 
Representations, ICLR 2015 - Conference Track Proceedings. 2015. 

20.  C. Ledig, L. Theis, F. Huszár, et al. Photo-realistic single image super-
resolution using a generative adversarial network. In Proceedings - 30th 
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 
2017; 2017; Vol. 2017-Janua, pp 105–114. 

21.  S. Fraihat, M.A. Al-Betar. A novel lossy image compression algorithm 
using multi-models stacked AutoEncoders. Array 2023, 19, 100314. 

22.  K. Gregor, F. Besse, D.J. Rezende, I. Danihelka, D. Wierstra. Towards 
conceptual compression. In Advances in Neural Information Processing 
Systems; 2016; pp 3556–3564. 

23.  Kiran, B.D. Parameshachari, D.S. Sunil Kumar, P.S. Prafulla, J. 
Yashwanth. Singular Value Decomposition (SVD) Based Optimal Image 

Compression Technique. In 2023 International Conference on 
Evolutionary Algorithms and Soft Computing Techniques, EASCT 2023; 
IEEE, 2023; pp 1–6. 

24.  K. Prabhavathi, M.B. Anandaraju, Kiran. An efficient medical image 
encryption algorithm for telemedicine applications. Microprocess. 
Microsyst. 2023, 101, 104907. 

25.  Kiran, B.D. Parameshachari, H.T. Panduranga. Medical Image Encryption 
Using SCAN Technique and Chaotic Tent Map System. In Recent 
Advances in Artificial Intelligence and Data Engineering; Springer, 
Berlin/Heidelberg, Germany, 2022; pp 181–193. 

26.  P. Kiran, B.D. Parameshachari. Resource Optimized Selective Image 
Encryption of Medical Images Using Multiple Chaotic Systems. 
Microprocess. Microsyst. 2022, 91, 104546. 

27.  A.S. Chauhan, J. Singh, S. Kumar, et al. Design and assessment of 
improved Convolutional Neural Network based brain tumor segmentation 
and classification system. J. Integr. Sci. Technol. 2024, 12 (4 SE-Computer 
Sciences and Mathematics), 793. 

 

 
 

 
 
 
 
 


	Received on: 11-Dec-2023, Accepted and Published on: 27-Mar-2024
	ABSTRACT
	Introduction
	Figure 1. Security in 5G
	Literature Survey
	Methodology
	Lossless Image Compression
	Predictive Coding with MLP
	Figure 2. Pixel analysis of Predictive coding for lossless image compression.
	Figure 3. Number of layers used in the multilayer perceptron for image compression
	Lossy image compression
	Figure 5. Autoencoder illustration
	Compression using autoencoders
	Figure 6. Convolutional autoencoder for encoding and decoding of image.
	Compression using GAN
	Figure 9. Generator of GANs being using as a decoder
	Dataset and Metric
	Experiments
	Multi Layer Perceptron (MLP)
	Autoencoders
	Generative Adversarial Networks (GANs)
	Results and Comparison
	Conclusion and Future work
	Conflict of interest statement
	References and notes


