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ABSTRACT 
 
 

The propagation of deepfake videos has introduced serious concerns, 
particularly in their potential to Circulate misleading details and undermine 
the integrity of digital media. In response to this challenge, we present the 
Generative Convolutional Vision Transformer (GenConVit+) as a robust 
solution for deepfake video detection. GenConVit+ integrates the strengths 
of ConvNeXt and Swin Transformer models with a 3D Convolutional neural 
network (CNN) to extract relevant features. It further harnesses the 
capabilities of Autoencoders and Variational Autoencoders to discern 
patterns in latent data distribution. Our model’s proficiency is validated 
through rigorous training and evaluation on four distinct datasets. DFDC, 
FF++, DeepFakeTIMIT, and Celeb-DF (v2). The results speak volumes, with 
GenConVit+ achieving notably high classification accuracy, F1 Scores, and 
AUC values. It rises to the challenge of generalizability in deepfake detection 
by effectively differentiating a wide spectrum of falsified videos while 
upholding the integrity of digital media. On average, the GenConVit+ model attains an accuracy of 95.6% and an impressive AUC value of 99.3% 
across the datasets we examined. This underscores its capacity to robustly detect deepfake content and maintain the integrity of digital media.  

Keywords: Deep Learning, DeepFake Detection, Computer Vision Transformer, 3D CNN, Hybrid Models.                                                                                                                    

INTRODUCTION 
In the dynamic landscape of today's technological advancements, 
the transformative influence of Artificial Intelligence (AI) has 
emerged as a cornerstone in reshaping our interaction with digital 
content. This paradigm shift is particularly evident in the fusion of 
AI, Machine Learning (ML), and Deep Learning (DL) within the 
domains of image and video editing, ushering in a revolution in the 
way we perceive and manipulate digital media.1 Artificial 
Intelligence, the overarching concept that encapsulates the 
simulation of human intelligence in machines, has found profound 
applications in the realms of Machine Learning and  

 
Deep Learning. Machine Learning,2 a subset of AI, involves the 

development of algorithms that enable machines to learn from data, 
enhancing their ability to perform tasks without explicit 
programming. Deep Learning, on the other hand, delves into the 
construction and training of neural networks, mimicking the human 
brain's intricate architecture to process complex information. The 
integration of AI, ML, and DL into image and video editing 
processes has empowered creators to transcend traditional 
boundaries, translating creative visions into tangible realities. From 
the synthesis of text-to-image to the manipulation of video and 
audio, these technologies have unlocked new dimensions of 
creative expression. This monumental progress, however, comes 
hand in hand with a formidable challenge – the malicious 
exploitation of AI and ML in the creation of deceptive deepfake 
videos.3 Deepfake technology, born from the convergence of AI 
and sophisticated algorithms, has not only been harnessed for 
creative endeavours but has also become a potent tool for 
disseminating misleading and harmful content. Adversarial actors, 
driven by malicious intent, manipulate AI-driven tools to create 
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deepfake videos with the potential to tarnish the reputation of public 
figures. These videos propagate fabricated news or statements, 
attributing them to individuals who never uttered a word. This 
nefarious use of deepfake technology raises critical concerns about 
the authenticity and integrity of digital media in an era where 
discerning reality from manipulation becomes increasingly 
challenging. In response to this growing challenge, we embarked 
on a significant project aimed at countering the proliferation of AI-
generated deepfakes. Our approach is multi-faceted, combining the 
strengths of AI, ML, and DL algorithms with cutting-edge 
technologies such as the Generative Convolutional Vision 
Transformer (GenConVit+) and 3D Convolutional Neural 
Networks (3D CNN). The objective is clear: to develop a robust 
framework for the accurate detection and classification of deepfake 
content. This framework stands as a bulwark against the erosion of 
trust in digital media, safeguarding its integrity and ensuring that 
the public can navigate an information landscape built on 
authenticity and truth. As we delve into the Aspect of our project, 
we delve into the Complex Details of terminologies such as 
Generative Convolutional Vision Transformers and 3D 
Convolutional Neural Networks. The former represents a cutting-
edge model that combines the power of generative models and 
transformer architectures for vision tasks, while the latter extends 
the capabilities of traditional CNNs into the temporal domain, 
enabling the analysis of video data in three dimensions. In essence, 
our project represents the fusion of technological innovation and 
ethical responsibility. By pushing the boundaries of deepfake 
detection, we aim to preserve truth and authenticity in the digital 
age, ensuring that the powerful tool of AI is used responsibly for 
the benefit of society.  

RELATED WORK 
According to numerous surveys and research the most widely 

used techniques for Deepfake detection are Deep learning-based 
models. But for better understanding and analysis different 
approaches are described as a variety of research that we have 
categorized based on the methodologies that have been used. 
 

 

 
 

Figure 1: Various Approaches Used for DeepFake Detection 

Conventional machine learning (ML) techniques are essential for 
understanding the reasoning behind any choice that may be 
explained to a person. Because there is a greater understanding of 
the data and processes, these methodologies are appropriate for the 
Deepfake area. Furthermore, it is far easier to adjust model designs 
and adjust hyper-parameters. The decision process is displayed as 
a tree in tree-based machine learning systems, such as Decision 
Tree, Random Forest, Extremely Randomized Trees, and so forth. 
A tree-based approach thus has no problems with 
explainability.Using GANs, generative models are automatically 
trained to create realistic-looking synthetic faces in photos or 
videos by treating the unsupervised problem as supervised. Some 
machine learning techniques aim to display certain anomalies 
discovered in these GANs that provide false videos and images. 
One of Deepfake's core strategies is to trick viewers by 
manipulating people's faces. There are various methods for 
achieving that. However, most techniques alter specific facial 
features, such as the colour of the eyes or an earring, to deceive 
their users. These one-part (also known as feature) approaches can 
only identify or detect the altered area. To get around this, the 
authors in Ref. 4 suggested a Deepfake method that combines a 
number of these characteristics. To verify the legality of GAN-
generated films or images,5 measures the consistency of biological 
indicators in addition to the spatial and temporal6,7,8 directions to 
employ different landmark 6 points of the face (e.g., eyes, nose, 
mouth, etc.). Approximating the 3D head posture reveals similar 
traits that are also present in Deepfake videos.2 The majority of the 
time, head motions are originally linked to facial expressions. 
Using visual artefacts in the face region,9 used MLP to detect 
Deepfake video with relatively minimal processing power. 
Regarding the performance issue with machine learning-based 
Deepfake techniques, it has been noted that these methods can 
detect Deepfakes with up to 98% accuracy. The kind of dataset, the 
features chosen, and the alignment of the train and test sets, 
however, are all crucial factors that determine performance. When 
the experiment employs a similar dataset and divides it into a given 
degree of ratio, say 80% for a train set and 20% for a test set, the 
study can get a higher result. The performance is arbitrarily 
assumed to be reduced by over 50% when using an unrelated 
dataset.Deep learning-based techniques are widely used in the field 
of image deepfake detection to identify particular artefacts 
produced by the pipeline used in their generation. A GAN simulator 
that replicates collective GAN-image artefacts and feeds them as 
input to a classifier to identify them as Deepfake was introduced by 
Zhang et al.10 A network for extracting standard features from RGB 
data was proposed by10 whereas a similar but generic resolution was 
proposed by11. Additionally, researchers presented a novel 
detection framework based on physiological measurements in 12,13 
such as Heartbeat. The deep learning-based technique for detecting 
Deepfake videos was first put forth in 14. To create their suggested 
network, two inception modules Meso-4 and MesoInception-4 
were used. This method uses the mean squared error (MSE) as the 
training loss function, comparing the actual and expected labels. In 
(Rossler, A. et. al.)15, an improvement to Meso-4 has been 
suggested.The authors demonstrate that deep CNNs 16,17 perform 
better than shallow CNNs in a supervised setting. Certain 
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techniques are used to extract handcrafted features18,19, 
spatiotemporal features3,20 common textures21,22 and 68 face 
landmarks23,24 from the video frames while preserving visual 
artefacts (such as moving lips, eyes, or teeth). These networks were 
fed these features to identify manipulations of Deepfake images. In 
addition to data augmentation,25 localization strategies at the pixel 
level,26 super-resolution reconstruction27 and maximum mean 
discrepancy (MMD) loss15 are employed to identify a more general 
feature.Additional innovations are made possible by adding an 
attention mechanism,28 and the use of the capsule-network (CN) 
architecture yields encouraging results in29,30. When compared to 
extremely deep networks, the CN requires fewer parameters during 
training. To improve the performance of such structures, an 
ensemble learning technique31 is used, which achieves more than 
99% accuracy. We note that numerous methods for applying frame-
by-frame analysis to videos or images in order to track and 
manipulate facial movements in order to improve performance have 
been proposed. For instance, RNN-based networks are suggested 
in32,33  extract features for Deepfake detection at different 
macroscopic and micro levels. Despite these encouraging detection 
results, it is observed that the majority of the techniques tend to 
overfit. To address these issues, autoencoder-based 
architectures34,35 and the optical flow based technique36 are 
presented. Several models are subjected to a pixel-wise mask37 in 
order to obtain a basic representation of the affected area of the face. 
By including a margin-based triplet embedding regularization term 
in their classification loss function, researchers proposed a 
clustering technique in38. Ultimately, the three-class classification 
problem was transformed into a two-class classification problem. 
The authors of 39,40 suggested using CNN techniques for data pre-
processing in order to identify Deepfakes .PPCNNs, or patch and 
pair convolutional neural networks, were proposed by the 
researchers in 41. In n researchers used the richness of the image 
latent patterns to conduct a frequency domain analysis. ID-
revelation42 is a contemporary method that was developed to learn 
temporal facial features from a speaker's movements. Effective 
Deepfake image classification has been proposed using a novel 
feature extraction method.43 In 44, several XeptionNet models are 
combined with a Deepfake detection technique to identify the 
differences between faces and their context. 

A separable convolutional network is employed to identify these 
kinds of modifications. Article 45 uses the triplet loss function of the 
feature extraction process to improve the classification of fake 
faces. In 46, a patch-based classifier was presented with an emphasis 
on local patches as opposed to the global structure. In 47,48 the 
authors used enhanced VGG networks to extract features. In49, a 
hypothesis test was conducted. Understanding the originality of the 
data can be achieved by calculating various statistical measures, 
such as the average normalized cross-correlation scores between 
the original and suspected data. Photo response nonuniformity 
(PRNU) was studied by Koopman et al.50 to identify Deepfakes in 
video frames. A distinct noise pattern known as PRNU appeared in 
digital photos as a result of flaws in the light-sensitive sensors of 
the camera. It is also referred to as the digital photo's fingerprint 
due to its uniqueness. From the input videos, the research creates a 
sequence of frames and stores them in directories that are 

categorized chronologically. To preserve and make clear the 
relevant portion of the PRNU sequence, every video frame is 
clipped using the same pixel range. Eight equal groups are then 
formed from these frames. Next, it uses the second-order FSTV 
method to create the standard PRNU pattern for every frame.51 The 
normalized cross-correlation scores are then measured, and the 
differences between the correlation scores and the mean correlation 
score for each frame are computed, to correlate them. The authors 
run a t-test52 on the data to assess the statistical significance 
between Deepfakes and authentic videos. To model a basic 
generating convolutional structure, the authors in 53 extracted a 
collection of regional features using the Expectation-Maximization 
(EM) algorithm. After the extraction, they apply ad-hoc validation 
to those architectures, such as GDWCT, STARGAN, ATTGAN, 
STYLEGAN, and STYLEGAN2, using preliminary experiments 
naive classifiers. Agarwal et al.54 performed a hypothesis test by 
proposing a statistical framework55 for detecting Deepfakes. Firstly, 
this method defines the shortest path between distributions of 
original and GAN-created images. Based on the results of this 
hypothesis, this distance measures the detection capability. For 
example, Deepfakes can easily be detected when this distance is 
increased. Usually, the distance increases if the GAN provides a 
lesser amount of correctness. Besides, an extremely precise GAN 
is mandatory to create high-resolution manipulated images that are 
harder to detect.Blockchain technology offers a number of features 
that allow for the highly secure, decentralized, and trustworthy 
verification of the origin and validity of digital content. Everyone 
has direct access to every transaction, log, and unchangeable record 
in public blockchain technology. Public Blockchain is regarded as 
one of the best technological options for deepfake detection since it 
allows for the decentralized verification of the authenticity of 
images or videos. When videos or photos are flagged as suspect, 
users typically need to investigate their origins. A Blockchain-
based generic framework was proposed by Hasan and Salah57 to 
track the origin of suspected videos back to their sources. The 
suggested solution is able to track its transaction history despite 
multiple copies of the content.According to the fundamental tenet, 
digital content is deemed authentic when it can be credibly linked 
to a trustworthy source. Public Blockchain technology uses certain 
essential features to verify the legitimacy of video content, thereby 
providing a decentralized method of verifying its authenticity in the 
case of deepfakes. The principal contributions of 56 are to Provide a 
general framework built on Blockchain technology by establishing 
a means of authenticating digital content to its reliable source. 
Outlines the architecture and design of the suggested solution to 
manage and regulate participant interactions and transactions. 
Combines the essential elements of blockchain-based Ethereum 
Name service with the decentralized storage capabilities of IPFS.57 
A decentralized Blockchain-based method for tracking and tracing 
the historical provenance of digital content (such as images, videos, 
etc.) was presented by Chan et al.1 This suggested method uses 
several LSTM networks as a deep encoder to produce 
distinguishing features, which are subsequently compressed and 
used to hash the transaction. The following are this paper's primary 
contributions. Images and videos are hashed and encoded using 
multiple LSTM CNN models. High-dimensional features are  
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maintained as a binary coded structure, and the data is kept in a 
permission-based Blockchain that allows the owner to manage what 
is contained in it. 

Based on the literature review, the most common methodology 
is utilized in approximately 77% of studies. The percentage of 
research on statistical methods and machine learning approaches is 
3% and 18%, respectively. There are 2% of studies on the 
Blockchain-based approach in this analysis. Generally, we classify 
the Deepfake detection techniques into four groups: methods based 
on deep learning, methods based on machine learning, methods 
based on statistics, and methods based on blockchain. Among these, 
techniques based on deep learning are frequently employed to 
identify these Deepfakes. 

GENERATIVE CONVOLUTIONAL VISION TRANSFORMER 
(GENCONVIT+) 

To get started, we'll first discuss the datasets we employed, the 
methods we applied to prepare the data, preprocessing techniques 
and our innovative Generative Convolutional Vision Transformer 
(GenConVit+) designed for detecting Deepfake videos. 
3.1  Preliminaries 

3.1.1  Datasets 
In the course of our study, we harnessed the power of five diverse 

datasets, specifically the DFDC, TrustedMedia (TM), 
DeepfakeTIMIT (TIMIT), Celeb-DF (v2), and FaceForensics++ 
(FF++) collections, to facilitate the training, validation, and 
evaluation of our model. Notably, the DFDC and FF++ datasets 
stand as widely acclaimed benchmarks in the realm of deepfake 
detection. Conversely, the TrustedMedia dataset distinguishes itself 
as a comparatively recent addition, notable for its comprehensive 
portrayal of deepfake manipulation techniques. 

The DFDC dataset is the most extensive publicly accessible 
dataset, comprising more than 100,000 high-resolution videos, 
encompassing both authentic and counterfeit content. This dataset 
was meticulously curated with the collaborative efforts of 3,426 
volunteers, who captured videos in diverse natural environments, 
from various perspectives. Furthermore, the DFDC dataset is the 
result of employing eight distinct deepfake generation methods. 

The FF++ dataset comprises 1,000 original YouTube videos 
manipulated using four facial manipulation techniques, with 
varying compression and resolutions. The TM dataset holds 4,380 
fake and 2,563 real videos, used exclusively for training. Celeb-DF 
(v2) contains 890 genuine and 5,639 deepfake videos. We 
employed all these datasets for model training, validation, and 
testing. 

3.1.2  Video Preprocessing 
The preprocessing stage within the realm of Deep Learning is a 

pivotal phase, essential for the refinement and optimization of raw 
datasets designated for the training, validation, and testing of Deep 
Learning models. Our proposed model places particular emphasis 
on the facial region, a central component in the generation and 
synthesis of Deepfake content. To this end, we employ a sequence 
of image-processing procedures. These procedures encompass the 
following key steps: 

 
 
Frame Extraction: we extracted around 30 frames from each 

video source to ensure diversity. To address the imbalance in fake 
and real videos within the DFDC and TM datasets, more frames 
were extracted from the real videos, resulting in a total of 1,004,810 
images for training. 

Image Standardization: Subsequently, we standardize the input 
images to a uniform 224 × 224 RGB format. Here, the dimensions 
of the input image are represented as H × W × C, where H = 224 
denotes the height, W = 224 denotes the width, and C = 3 signifies 
the three RGB channels. This process often includes using 
techniques like OpenCV, face recognition, and deep learning 
libraries to accurately extract the face from each frame. 

Data splitting:  The division of the dataset into distinct subsets 
for different purposes, such as training, validation, and testing. 80% 
of the curated images are allocated for model training, 15% for 
validation (used to fine-tune the model and make adjustments), and 
the remaining 5% for rigorous testing to evaluate the model's 
performance. 

Quality Assurance: Lastly, we perform a manual quality 
assessment of the extracted facial region images to ensure their 
fidelity and integrity. 
3.2  Hybrid Generative Convolutional Vision Transformer 

The GenConVit+ model is a pivotal tool in deepfake detection, 
unravelling latent information within video frames to distinguish 
real from counterfeit content. It consists of two independently 
trained networks, each encompassing four key modules: 
Autoencoder (AE), Variational Autoencoder (VAE), ConvNeXt 
layer, and Swin Transformer. The first network employs an AE to 
create a Latent Feature (LF) space from input images, optimizing 
class prediction for deepfake detection. The second network uses a 
VAE to reconstruct images while minimizing the loss between the 
original and reconstructed image, further enhancing classification 
accuracy. Both AE and VAE models extract Latent Features to 
capture hidden patterns in deepfake visual elements. These 
networks are complemented by a hybrid model, ConvNeXt-Swin, 
combining Convolutional Neural Networks (CNN) and the Swin 
Transformer to extract global and local features from input images. 
The two GenConVit+ networks work together to learn relationships 
among extracted Latent Features, enhancing the model's deepfake 
detection capabilities. 

3.2.1  Autoencoder and Variational Autoencoder 
An Autoencoder (AE) and a Variational Autoencoder (VAE) 

both consist of two parts: an Encoder and a Decoder. In an AE, the 
Encoder maps an input image to a latent space, and the Decoder 
reconstructs the image from this latent space. The AE Encoder 
involves five convolutional layers, while the Decoder has five 
transposed convolutional layers. The result is a reconstructed 
feature space (IA) with dimensions 224×224×3. 

The Variational Autoencoder (VAE) aims to learn a meaningful 
latent representation of input images while simultaneously 
reconstructing those images by introducing random sampling in the 
latent space and minimizing the reconstruction loss. The VAE's 
Encoder involves four convolutional layers with increasing width, 
followed by Batch Normalization and LeakyReLU non-linearity. 
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The output is a 1-dimensional vector representing the latent 
distributions. The Decoder, on the other hand, uses four transposed 
convolutional layers to reconstruct the image, resulting in a feature 
space (IB) with dimensions of 112×112×3. The choice of 
convolutional layer configurations was influenced by 
computational resources, model accuracy, experimentation, and 
training efficiency. 
 

 
Figure 2 :   GenConViT Architecture 

 
3.2.2   ConvNeXt-Swin Transformer 

The ConvNeXt-Swin Transformer model merges the advantages of 
ConvNeXt's strong performance in image recognition, achieved 
through convolutional layers, and the Swin Transformer's ability to 
extract local and global features using self-attention mechanisms. 
This hybrid architecture is specifically designed for deep fake 
detection tasks, leveraging the strengths of both CNN and 
transformer approaches. 

The GenConVit+ model optimally utilizes both ConvNeXt and 
Swin Transformer architectures. ConvNeXt acts as the feature 
extractor, processing high-level features from input images, while 
a HybridEmbed module condenses these features into a concise 

vector. This vector then undergoes further refinement within the 
Swin Transformer. Pre-trained ConvNeXt and Swin Transformer 
models, initially trained on ImageNet data, are harnessed to bolster 
GenConVit+'s capabilities. 

After ConvNeXt's feature extraction, a HybridEmbed module 
takes these feature maps, flattens them, and projects them to an 
embedding dimension of 768. This is accomplished using a 1 × 1 
convolutional layer, channel dimension reduction, and subsequent 
vectorization. The resulting feature vectors are then forwarded to 
the Swin Transformer for further refinement. Network A uses two 
Hybrid ConvNeXt-Swin models to process Latent Features (LF) 
from the Autoencoder (IA) and input images. The output feature 
spaces of size 1,000 for classification, with a linear mapping layer 
for the two-class task. 

Network B mirrors Network A but employs a Variational 
Autoencoder (VAE). It predicts classes and also generates 
reconstructed images for a dual output capability. 

3.3.3  3D CNN 
After data preprocessing by the GenConVit+ model, the 

processed data, often in the form of video sequences, is fed into the 
3D CNN. The 3D CNN performs the spatiotemporal analysis. 
Spatiotemporal analysis in this context involves simultaneously 
considering spatial patterns within each frame and the temporal 
dynamics between frames in 3D data. This is achieved by applying 
3D convolutional operations, allowing the model to capture both 
static and dynamic features. The model identifies relevant patterns, 
objects, and movements within individual frames and tracks how 
they evolve. Integrating 3D CNN features with ConvNeXt-Swin 
Transformer involves combining spatiotemporal patterns extracted 
by the 3D CNN with spatial features from ConvNeXt-Swin. This 
integration, often through a hybrid model, enables a holistic 
understanding of both spatial and temporal aspects of the data, 
enhancing applications like video analysis and event recognition. 
After feature extraction, the next steps involve feature selection or 
reduction, model building, training, testing, fine-tuning, inference, 
and deployment. These steps are essential for the model to 
understand data, make predictions, and support real-world 
applications. 

RESULTS AND ANALYSIS 
4.1  Experimental Setup  

Network A classified 
real and fake videos using 
cross-entropy loss, while 
Network B, trained for 
classification and image 
reconstruction, used cross-
entropy and MSE loss. The 
"time" library loaded class 
definitions and pre-trained 
weights for ConvNext and 
Swin Transformer models. 
Data augmentation was 
performed using the 
Augmentations library with 
a strong set of techniques. 

   
Figure 3   (a) Confusion Matrix for Celeb-DF                   (b) Confusion Matrix for DeepFake TIMIT 
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Both networks used data normalization and had batch sizes of 32 
for A and 16 for B. They were trained for 30 epochs on combined 
DFDC, FF++, and TM datasets, with a specific distribution of data 
for training, validation, and testing. TensorFlow's  “tf.keras.layers”  
offers 3D convolutional layers for building 3D CNN architectures.  

The examination of deepfake detection outcomes from the 
Celeb-DF and DeepFake TIMIT datasets reveals varying 
performance measures for the detection techniques used. In Celeb-
DF, the model achieved an accuracy of 90.7%, with precision at 
85%, recall reaching 95.4%, and an F1 score of 89.9%. 

This dataset recorded 252 True Negatives (TN), 38 False 
Positives (FP), 11 False Negatives (FN), and 227 True Positives 
(TP).On the other hand, the DeepFake TIMIT dataset exhibited 
notably better performance metrics, showcasing an accuracy of 
97.9%, precision of 96.7%, recall at 99.1%, and a remarkable F1 
score of 97.9%. This dataset contained 355 True Negatives, 12 
False Positives, 3 False Negatives, and 353 True Positives as shown 
in Fig 3(a)(b). These findings suggest that the model performed 
strongly in both datasets but displayed superior accuracy, precision, 
recall, and F1 scores in the DeepFake TIMIT dataset compared to 
Celeb-DF. This difference could stem from various factors within 
the datasets, such as data complexity and diversity. The higher 
accuracy and precision in DeepFake TIMIT indicate the model's 
improved ability to accurately differentiate between genuine and 
fake videos, showcasing its overall stronger performance. Further 
exploration into dataset intricacies could offer insights into 
enhancing the model's capabilities and adaptability across a wider 
range of deep fake scenarios 

Discussion 
GenConVit+'s performance was assessed using key metrics like 

accuracy, F1 score, ROC curve, and AUC. It was evaluated on 
diverse datasets, trained with augmented data, and tested on videos. 
The results consistently showed GenConVit+'s strong performance 
in deepfake detection. 

4.2.1 The Confusion matrix 
This matrix helps to measure various performance metrics such 

as accuracy, precision, recall (sensitivity), and F1 score, essential 
in evaluating the model's effectiveness in correctly identifying both 
positive and negative instances. It provides crucial insights into the 
model's strengths and weaknesses, aiding in its refinement and 
improvement for more accurate predictions in real-world scenarios. 

In the FF++ dataset, our detection analysis revealed 186 True 
Negatives (TN), 6 False Positives (FP), 13 False Negatives (FN), 
and 201 True Positives (TP). This resulted in an accuracy of 95.3%, 
precision of 97.1%, recall of 93.9%, and an F1 score of 95.5%.On 
the other hand, our analysis of the DFDC dataset uncovered 211 
True Negatives, 4 False Positives, 1 False Negative, and 183 True 
Positives, resulting in an accuracy of 98.7%. The precision was 
calculated as 97.8%, recall reached 99.4%, and the F1 score stood 
at 98.6% as shown in Fig 4(a)(b). These findings demonstrate 
strong performance in both FF++ and DFDC datasets, showcasing 
high accuracy, precision, recall, and F1 scores. The results affirm 
the effectiveness of our detection methods in accurately identifying 
genuine and manipulated videos within this dataset. 

 

 
Figure 4  (a)  Confusion Matrix for FF++  (b) Confusion Matrix for 
DFDC 

 
4.2.2 Accuracy  
GenConVit+'s classification accuracy was individually assessed 

for each dataset to gauge its performance. 
 

DFDC  | █████████  98.7%                          
TIMIT  | ████████  97.9%                                         
FF++  | ██████  95.3%                                 

Celeb-DF  | ████ 90.7% 

 

 
Figure 5: Accuracy for Different Datasets 

 
GenConVit+'s classification accuracy was meticulously 

evaluated across multiple datasets, demonstrating its performance 
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in distinct scenarios as shown in Figure 5. In the DFDC dataset, 
GenConVit+ showcased an impressive accuracy of 98.7%, 
signifying its robustness in identifying manipulated content. 
Similarly, within the FF++ dataset, GenConVit+ exhibited a high 
accuracy level of 95.3%, indicating its effectiveness in 
distinguishing between genuine and altered videos. The TIMIT 
dataset analysis revealed GenConVit+ achieving a commendable 
accuracy rate of 97.9%, further validating its capability in diverse 
settings. In the Celeb-DF dataset, GenConVit+ displayed a 
respectable accuracy of 90.7%, although comparatively lower than 
in other datasets, affirming its ability to perform reasonably well 
across varying data complexities. These outcomes underscore 
GenConVit+'s consistent and promising performance in detecting 
deepfake content across multiple datasets, demonstrating its 
potential for reliable and robust deepfake identification. 

 
4.2.3  F1 scores for GenConVit+ 

The F1 score is a key metric used to assess the overall performance 
of a machine-learning model, taking into account both precision 
and recall. Here's an analysis of GenConVit+'s F1 scores across 
various datasets. DFDC: GenConVit+ achieved an F1 score of 
98.6% in the DFDC dataset, showcasing its remarkable balance 
between precision and recall in identifying manipulated 
content.FF++: In the FF++ dataset, GenConVit+ attained an F1 
score of 95.5%, reflecting its ability to maintain a high level of 
accuracy in distinguishing between genuine and altered 
videos.TIMIT: GenConVit+ displayed a strong F1 score of 97.9% 
in the TIMIT dataset, indicating its consistency and reliability in 
diverse settings.Celeb-DF: Despite a slightly lower accuracy in the 
Celeb-DF dataset, GenConVit+ maintained a respectable F1 score 
of 89.9%, demonstrating its capacity to maintain a good balance 
between precision and recall in this particular dataset as shown in 
Fig 6. These F1 scores confirm GenConVit+'s overall robustness 
and efficacy in detecting deep fake content across multiple datasets, 
illustrating its ability to achieve a harmonious trade-off between 
precision and recall in various scenarios. 
 

 
Figure 6:  F1 Scores for Different Datasets 

 

4.2.4. GenConVit+ AUC values for each dataset 
Dataset |         AUC (%) 
------------------|--------------------------- 
DFDC  |           99.9 
FF++  |           99.3 
TIMIT  |           99.7 
Celeb-DF  |           98.3 

 
ROC curve for each dataset: 

 
Figure 7: ROC Curve for Different Datasets 

 
Our GenConVit+ model achieved remarkable AUC(%) scores: 
99% for DFDC, 99% for FF++, 99% for DeepfakeTIMIT, and 98% 
for Celeb-DF. On average, the model exhibited an impressive 
accuracy of 95.6% and an exceptional AUC value of 99.3% across 
all tested datasets. These results underscore the model's robustness 
in identifying deepfake videos, making it a promising tool for 
practical applications in the field. 

CONCLUSION 
 GenConVit+ is a sophisticated method designed to detect and 

analyze Deepfake videos effectively. GenConVit+, an 
amalgamation of advanced technologies such as ConvNext and 
Swin Transformer, serves as a powerful tool to scrutinize and 
understand both local and global features within videos. Our 
method underwent thorough testing across various datasets 
including DFDC, FF++, and Celeb-DF, where it consistently 
demonstrated impressive accuracy and robustness in identifying 
Deepfake content. The fusion of GenConVit+ with these datasets 
resulted in high-performance metrics, showcasing its ability to 
distinguish manipulated videos from genuine ones. The 
significance of our findings lies in GenConVit+'s potential as a 
reliable solution against the proliferation of deceptive media 
content. By effectively analyzing visual cues and data patterns, our 
method offers a promising means to combat the challenges posed 
by Deepfake videos across diverse datasets. Our study contributes 
to the ongoing efforts to enhance the detection of falsified media 
content, thereby safeguarding the integrity of digital information. 
GenConVit+'s consistent and reliable performance underscores its 
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viability as an effective tool in mitigating the risks associated with 
the spread of deceptive videos. As technology evolves and the 
complexity of Deepfake videos increases, our method presents a 
promising avenue for continued research and development. By 
continually refining and improving approaches like GenConVit+, 
we strive to stay ahead in the ongoing battle against the 
dissemination of misleading digital content, ensuring a safer and 
more reliable digital landscape for all. 
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