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ABSTRACT 
 

Electroencephalographic (EEG) signals 
corresponding to motor imagery (MI) are 
efficient input to the brain-computer interface 
(BCI), but are highly contaminated and have a 
spatial distribution of the activity related 
variation. This work proposes a filtering method 
having the combined advantage of wavelet 
transform and principal component analysis 
(PCA) for pre-processing of the signal. Transform 
domain helps to capture the main features of the signals using matching wavelet function while PCA reduces the feature dimension. Correlation 
structure of noise used here helps in cancelling interferences and to rebuild the signal.  Optimized and subject-specific common spatial pattern 
(CSP) filter design is proposed for extracting the features. Empirical analysis of number of electrodes for building the CSP filter mask leads to 
selection of 21 electrodes from MI region gives the best performance. The method executes weighing of the electrodes and accordingly assigning 
the importance to the electrode while forming the filter. Filter induced optimized variance of the signals acts as the features for two-class support 
vector machine (SVM). Classification accuracy (CA) obtained for subject aa is 90.3%, and for subject al it is 99.2%.  Subject aw having small training 
set gives accuracy to be 96.7% whereas for subject ay it is 96.3%.  

Keywords: Multivariate; Common Spatial Pattern (CSP); Brain Computer Interface (BCI); Electroencephalography (EEG)

INTRODUCTION 
Non-invasive Brain-computer Interface (BCI) uses the variation 

of electroencephalographic (EEG) signal for distinguishing the 
underlying activities. It is the rapidly developing technology as it 
allows users to command the external environment by using 
modulation of their brain wave due to their thoughts. It ultimately 
aims at providing environment control to the individuals suffering 
from motor loss due to accidents and has to depend on others.1 
Steady state visually evoked potential(SSVEP) creates the potential 
BCI but has dependency on the stimuli.2   Movement planning or 
execution comes under Motor Imagery(MI), and it is one of the 

preferred choices for BCI as it provides variation in the signals 
corresponding to the movements.3 The popularity of MI lies in the 
number of possible movements providing the corresponding 
variation in the signals.  

Signals collected by EEG are weak and contaminated, but the 
non-invasive way of collecting the signals is appealing to the 
researchers.4 These weak signals need multi-level signal processing 
for pre-processing the signals, feature extraction, and 
classification.5 Volume conducted EEG signals are vulnerable to 
interference by neighboring EEG signals as well as other 
electrophysiological signals like electrocardiography (ECG) and 
electromyography (EMG). According to this logic, noise and 
artifacts must be eliminated from the signal through pre-
processing. Effective pre-processing of EEG signals used for non-
invasive BCI plays a significant role in improving final results 
mentioned in terms of classification accuracy (CA). Literature 
suggested the surface Laplacian (SL) method which estimates the 
signal in terms of radial current density at particular electrode sites 
thus reducing the interference from neighboring electrodes as well 
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as other sources.6,7 SL is a useful method, but its estimate needs an 
array of the electrode for computation. Another method based on 
SL technique approximates the signal at the electrode by 
subtracting the average value of the adjacent channel from the 
channel of interest8. Independent Component Analysis (ICA) also 
suggested as the pre-processing tool for BCI, shows direct 
improvement in CA.9 Improved signal to noise ratio (SNR) can be 
obtained using common average referencing (CAR) compared to 
the method of standard ear-reference. Deducting the average value 
of all the electrode of the montage from the one channel of interest 
gives reference free signal.10 Small and large laplacian methods 
were used along with the referencing methods like CAR for pre-
processing of the signal.11  

In Motor Imagery (MI) based BCI µ (5-15Hz) and β (12-30Hz) 
are the prominent bands capturing event-related potential. Event-
related desynchronization (ERD) of the µ rhythm and event-related 
synchronization (ERS) of β rhythm serves as a good source for 
feature extraction. These band limited characteristics of signal 
suggested frequency domain methods like Fourier transform (FT) 
for feature extraction. Na Lu et al. (2016) proposes Fourier 
transform and decomposition by wavelet packet for extracting the 
features and passes the features to the deep neural network for 
classification.12 Literature suggested time-frequency methods such 
as short time Fourier transform (STFT) as well wavelet transform 
(WT) for feature extraction due to spanning of MI signals in time 
as well frequency. Jasmin Kevrica et al. (2017) proposes discrete 
mode of wavelet transform (DWT), wavelet packet 
decomposition(WPD) and empirical mode decomposition (EMD) 
for feature extraction by decomposing EEG signal, whereas 
classification uses k nearest neighbor algorithm.13 Xiaofeng Xie et 
al. (2016) suggested symmetric positive-definite (SPD) covariance 
matrices for representing distinguishing information of EEG 
signals for feature extraction whereas preferred algorithm for 
classification is bilinear sub-manifold learning (BSML).14 The 
other trend of literature emphasizes collecting distributed features 
from the signals on neighboring electrodes suggesting spatial 
filtering of the signal. Ioannis Xygonakis et al. (2018) offers Spatial 
features extraction using CSP filters they also suggested selected 
regions of interest (ROIs) for an individual with Ensemble model 
for classification.15 Wei Wu et al. (2015) proposed probabilistic-
CSP (P-CSP) for broad EEG spatiotemporal modeling framework. 
Computationally efficient fisher linear discriminant analysis 
(FLDA) used as a classifier and demonstrated by applying to 
classify three MI datasets.16 Research must be carried out 
combining efficient method for pre-processing taking cognizance 
of time-frequency correlation of signal and feature extraction 
dealing with the spatial domain. 

This work proposes rebuilding of the contamination-free EEG 
signals using the multivariate extension of the wavelet denoising 
algorithm. Adaptive thresholding of approximate coefficient band 
using PCA and detail coefficient band using univariate thresholding 
strategy based on noise covariance matrix helps in reproducing the 
denoised version of the signal keeping the MI related modulation 
intact. This study further used the pre-processed signal for 
implementing optimized CSP filter mask for distinguishing two 
populations of MI in the input EEG. This filter mask, when applied 

on the signal, optimizes the difference between the variance for 
different MI, making them distinguishable. Thus variance as the 
feature when passed to two class SVM classifier utilizing the non-
linear kernel skill provides the best performance in terms of 
classification accuracy (CA). 

METHODS  
I. Pre-processing Method 
The standard methods for signal denoising and filtering uses 

algorithms based on wavelet decomposition. On the other hand, 
PCA is a favorite statistical technique for the reduction of feature 
dimension in a new lower-dimensional subspace and helps to 
capture the main features of the signal. This work proposes a 
combination of wavelet decomposition and PCA for denoising of 
the signal.  

The one-dimensional technique is generalized by the denoising 
process, which considers the noise's correlation structure. It first 
applies a basis modification, then applies a conventional one-
dimensional soft thresholding 1718. By diagonalizing a reliable 
estimate of the noise covariance matrix provided by the Minimum 
Covariance Determinant (MCD) estimator based on the matrix of 
the finest details,19 the basis change is achieved. 

Procedure for multivariate denoising  
Consider a signal matrix X = n × p   with p signals from 

different electrodes and n number of samples where n ≫ p. 
1) Implement wavelet decomposition at the level of  J on 

each column of X.  
2) Estimate a noise covariance matrix ∑є by application of 

MCD estimator to detail coefficients at level D1. Resolve 
∑є into eigenvalues (E) and eigenvector (V) i.e.       ∑є =
VEV′. 

3) Apply eigenvector matrix (V) obtained in step 2 on detail 
coefficients of remaining levels to give the change of 
basis as follows; 
 DjV (1≤ j ≤ J).  

4) Apply p strategies of univariate thresholding on these DjV 

applying the threshold    Ti =  �2λilog (n)  for the ith 
column of DjV where  λi(1 ≤  i ≤  p) are diagonal 
elements of eigenvalue matrix E and n    

            number of samples.  
5) The reconstructed final denoising matrix X1 used 

simplified detail matrices and approximation matrices by 
changing of basis using V′ and taking inverse wavelet 
transform.  

6) Apply PCA on final matrix X1 and select principal 
components using Kaiser’s criteria, selecting the 
components corresponding to eigenvalues greater than the 
mean of all the eigenvalues.  

II. Feature Extraction 
After denoising suggested in section I, the signal without 

interference is available for feature extraction. It is the array of 
signals from selected electrodes with the number of samples and 
each array representing either LHM or RFM. The variations related 
to these motor movement are distributed spatially in this array, and 
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they even have subject specific variations. Thus feature extraction 
method has to follow the approach of extracting subject specific 
patterns for discrimination of underlying movement from high-
dimensional spatio-temporal signals20. This background suggested 
the need for common spatial pattern (CSP) approach proven in 
extracting discriminative spatial pattern. According to probability 
theory, joint variability of two random variables can be measured 
by the covariance of the signal. Simultaneous diagonalization of 
two such covariance matrices corresponding to two distinct 
movements is used to form an optimum spatial filter21. This mask, 
when applied on the signals under test, provides with the time series 
having an optimal variance for discriminating two tasks 
accommodated in the signals.    

Matrix for each trial under every class of EEG data represented 
by E = NxT, where N denotes the number of electrodes and T as 
the sample. Normalized spatial covariance of that matrix can be 
obtained using equation 1 

 

                      
'

'( )
EEC

trace EE
=

                                                  (1) 
This spatial covariance averaged on training trials for left-hand 

movement (LHM) provide us with C�l for all trails. The covariance 
over right foot movement (RFM) averaged over the training trials 
gives  C�R. Cc added the average of covariance C�l and C�R as in 
equation 2. Equation 3 computed eigenvalues and eigenvectors 
from Cc      
                            c l RC C C= +                                                (2)     

                             
'

c c c cC U Uλ=                                                (3)     
Linear transformation called sphering or whitening 

transformation, transforms a signal matrix into a set of new 
variables whose covariance is the identity matrix, thus un-
correlating the variables.   When changing test data into an identity 
covariance matrix for modeling situations, this process is known as 
statistical whitening. The variance of the data along each dimension 
equals one when the data have identity covariance, which indicates 
that all dimensions are statistically independent. Statistical 
independence represents the joint-complex distribution of the data 
in a more straight forward manner.  

Equation 4 computes the eigenvalues λc and eigenvectors Uc, 
which are used to create the whitening transform matrix P. The 
eigenvectors are organized in descending order based on the 
eigenvalues. The variance in the space that Uc spans is equalized by 
the whitening transformation. 

 

                              
1 '

cP Uλ−=                                               (4) 
Whitening of Cc  i.e. PCc P will result in unity eigenvalues. 
Applying this whitening separately on Cl and CR as in equation 5 
and 6 resulted in Sl and  SR respectively. 
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 When Sl and  SR decomposed into eigenvalues and eigenvectors, 

it can be concluded that they share common eigenvectors and thus 

the addition of two diagonal matrices belonging to eigenvalues of 
them will result in identity matrix, i.e. if Sl = BλlB and SR = BλRB 
then I = λl + λR, where I is the identity matrix. Since the sum of 
two corresponding eigenvalues is one, eigenvector with large 
eigenvalue for Sl will corresponds to small eigenvalue of SR and 
vice-versa. This relation helps to conclude that eigenvector matrix 
B is useful for the classification. Whitening of the matrix B formed 
the projection matrix W as in equation 7 when W projected on EEG 
data E it gives  Z as in equation 8. The matrix Z representing the 
decomposition of data matrix E acts as an effective source for 
features extraction. Further features can be constructed using 
equation 9, which is the log variance of Z.22 
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III. Classification Methods 

Decomposing the signal by applying a spatial filter mask 
provides the features accommodating variations in variance 
according to underlying activity. These distributed features in 
feature space need the machine learning algorithm which will 
recognize the pattern and classify the feature according to the 
underlying task. This work uses support vector machine (SVM) a 
robust classifier working on the idea of building hyperplane to 
separate data according to their classes. While dealing with higher 
dimensional feature space, it is required to test for different kernel 
function. Kernel variations used for this work are quadratic, 
Gaussian, cubic along with linear kernels.23,24,25 

MATERIAL AND METHODOLOGY 
I. Database Description and Experimental Setup 

Taken from BCI Competition III, the MI dataset utilized in this 
work is called dataset IVa. It is made up of signals that represent 
five subjects moving their left and right hands and feet, 
respectively. Signal processing in this dataset is hampered by the 
little amount of training data.26  

Five healthy volunteers who were seated comfortably provided 
the data set for this analysis. For 3.5 seconds, they received visual 
cues telling them to move their left and right hands and feet. Target 
cues were spaced out by 1.75 to 2.25 seconds to give the individual 
a chance to unwind. 
a. Format of the Data 

According to the standard 10-20 system electrode montage, 
continuous signals from 118 EEG channels extract the signals. 
Markers and 280 cues indicating the time points are provided for 
each of the five subjects named aa, al, av, aw, ay. Out of available 
280 trials for each subject aa and al are provided with training trails 
168 and 224 respectively, whereas subject av, aw and ay are 
provided with small training sets of 84, 56 and 24 trials as shown 
in table 1. Time slot used for extracting the signal is 3.5s with the 
sampling frequency of 100Hz. 
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 Table 1 Details of Data-Set  

Subject Training trails Testing trails 
aa 168 112 
al 224 56 
av 84 196 
aw 56 224 
ay 28 252 

 
II. Methodology 

Database utilized for this work has variability in terms of LHM 
and RFM and each trial as a matrix of 118x350, with 118 electrodes 
and 350 samples taken for the time slot of 3.5s with the sampling 
frequency of 100Hz. Figure 1 gives the flow of the procedure 
separating the training and testing sessions followed in this work. 
Subject wise change in training and testing trials are taken as 
specified in table 1. Out of available 118 electrodes selected 21 
electrodes covering the MI region of the brain are used to provide 
the signal for processing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Flow of Analytical Methodology 
 
Multivariate de-noising 
Band energy compaction used in previous work for the selection 

of matching wavelet for EEG signal suggested db10 and bior6.8 for 
the wavelet decomposition of the signal required in the de-noising 

process.27 Separation of µ (5-15Hz) and β (12-30Hz) band 
accommodating ERD and ERS is achieved up to decent extend as 
shown in figure 2 by using fifth levels of wavelet decomposition. 
The noise covariance matrix is computed from the detail coefficient 
(D1) and decomposed into eigenvalues and eigenvectors.     

 
 

 
 

Figure 2 Wavelet Decomposition of Signal with Different Sub-bands 
and Frequency Ranges in Hertz 

 
Change of basis for other detail coefficient levels D1-D5 is 

carried out by applying computed eigenvector on it to de-correlate 
p components of noise. Further threshold derived from eigenvalue 
𝜆𝜆i of noise covariance matrix and number of samples is applied to 
the ith column of 𝐷𝐷𝑗𝑗𝑉𝑉 . Above thresholded detail band coefficients 
and approximate coefficients are used for reconstructing the signal 
using inverse wavelet transform. The principal components from 
the reconstructed signals are finally selected using Kaiser criteria to 
represent the signal. Figure 3 indicates the removal of the noise 
overriding four different signals from the database using db10 for 
wavelet decomposition, and figure 4 displays noise removal using 
bior6.8. One can visually notice the removal of overriding high 
frequency noise from the signals, but CA obtained will be the 
proper criteria to judge the noise removal and maintaining task 
related variation.  

 

Figure 3. Comparison of Original and Denoised Signals using db10 
wavelet for decomposition 

 
Common Spatial Filtering 
Signals corresponding to 21 electrodes from motor imagery area 

of the brain are empirically selected to construct the spatial filter. 
Iteration for the different number of electrodes as well the 
combination of the electrode tested for the formation of CSP filter 
and the combination providing more CA is selected. Subject 
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specific training trials mentioned in table 1 for selected 21 
electrodes are used to construct the CSP filter. 

 
Figure 4. Comparison Original and Denoised Signals using bior6.8 
Wavelet for Decomposition 

The designed filter mask, when applied on data, gives the matrix 
of 21x350 corresponding to particular movement and having an 
optimum variation for that movement. Out of 21 rows, eight are 
selected to calculate variance and passed as features to the 
classifier. Selected rows provide an optimum variance for the MI to 
differentiate.  

Classification 
The two-class support vector machine, with different kernel 

functions, is used for classification in this work. Training session 
utilizes the subject-specific trials mentioned in table 1. Five-fold 
cross-validation is done for the classifier using the available 
training trials by randomly partitioning the features into five 
subsets. Four subsets were used for training purpose whereas 
remaining one for classifier testing, and this process was repeated 
five times in such a manner that the classifier tested every subset. 
Classification accuracy(CA) is the most important evaluation 
parameter considered for BCI. It is given as 

 
CA =  Number of Correct Classifications  ×100 

Total Number of Motor Imagery 
 
RESULTS 

Classification Accuracy (CA) 
From BCI point of view as the environment has to be controlled 

by correctly guessing the underlying task, CA is the most important 
evaluation parameter, which represents the correct classifications. 
Results in table 2 & 3 displayed the difference as well improvement 
in task CA for the pre-processed signal. When analyzed for subject 
aa and al referring table 2, it can be concluded that denoising shows 
the visible increment in CA whereas decomposition using bior6.8 
and db10 in denoising process boost the accuracy. Referring to 
table 3 for subject av, aw, and ay, it can be stated that the denoised 
version leads to more CA when db10 is selected compared to 
bior6.8. Subject aw, av, and ay provides CA above 90% though 
having small training data. From the comparison of accuracy within 

the subjects (Figures 5 and 6), it can be concluded that subject al 
gives the highest accuracy for wavelet bior 6.8. as well as for db10. 
 
Table 2. Percent classification accuracy for subject aa 

Classification Accuracy  for Subject aa  
 Pre-processed signal  

SVM kernel bior6.8  db10  Without pre-
processing 

Quadratic  80.4 86.3 59.5 
Cubic 90.3 78.6 57.1 
Med. Gaussian 80.4 83.9 56.5 
Linear 82.1 85.7 54.2 
Cor. Gaussian 81 81 55.4 

 
Table 3 Percent classification accuracy for subject al 

Classification Accuracy for Subject al 
 Pre-processed signal  
SVM kernel bior6.8  db10  Without  

pre-processing 
Quadratic  91.5 92.4 61.8 
Cubic 89.3 92 58.2 
Med. Gaussian 92.4 92 63.9 
Linear 92.9 92.4 60.4 
Cor. Gaussian 95 99.2 62.1 

 
Table 4 Percent classification accuracy for subject av 

Classification Accuracy for Subject av 
 Pre-processed signal  

SVM kernel bior6.8  db10  Without  
pre-processing 

Quadratic  60.7 73.8 61.4 
Cubic 53.6 71.4 53.2 
Med. Gaussian 67.9 69 60.7 
Linear 59.5 77.4 60 
Cor. Gaussian 60.7 73.8 61.4 
 

Table 5 Percent classification accuracy for subject aw 
Classification Accuracy for Subject aw 

 Pre-processed signal  
SVM kernel bior6.8  db10  Without  

pre-processing 
Quadratic  77.5 89.3 76.1 
Cubic 71.1 87.5 71.4 
Med. Gaussian 77.9 92.9 76.1 
Linear 80 96.7 76.8 
Cor. Gaussian 77.5 89.3 76.1 

 
Table 6 Percent classification accuracy for subject ay 

Classification Accuracy for Subject ay 
 Pre-processed signal  

SVM kernel bior6.8  db10  Without  
pre-processing 

Quadratic  88.5 92.9 79.6 
Cubic 88.5 92.1 72.1 
Med. Gaussian 88.5 93.2 78.9 
Linear 91 96.3 80 
Cor. Gaussian 88.5 92.9 79.6 
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Figure 5. Comparison of Classification Accuracy for bior6.8 wavelet 
for decomposition   

Figure 6. Comparison of Classification Accuracy for db10 Wavelet for 
Decomposition 

DISCUSSION 
In Brain-computer Interface Electroencephalographic (EEG) 

signals can be effectively used for classification of the MI task. 
However, the vital requirement is appropriate processing of the 
signals as the modulation due to MI is trivial to get hidden by the 
overriding noise. This paper emphasizes the concerns of noise 
removal by suggesting a multivariate denoising method. This work 
selected wavelet db10 and bior6.8 and five levels of decomposition 
for wavelet transform of the signals.  The eigenvector obtained 
from noise covariance matrix estimated from detail coefficient band 
D1 carrying finest details of the signal is applied on all detail 
coefficient matrix to give change of basis.  Soft thresholding using 
the eigenvalues obtained in previous step is the next strategy to be 
applied on the obtained coefficients. The thresholded detail 
coefficients and approximate coefficients are used to reconstruct 
the signal by inverse laplace transform. Further the Kaisers criteria 
is used to select principal components from the reconstructed 
signals. The efficiency of this filtered signal is proved when it 
responded in terms of improved CA by almost 30%. The significant 
contribution of this work is optimized Common Spatial Pattern 
filtering for feature extraction. Out of 118 electrodes, 21 area 
specific electrodes proposed in this work can form a capable filter. 

These electrodes are selected empirically for forming the filter. This 
work proficiently handles the challenge of small training set 
provided by this database. Results obtained by implementing the 
methodology suggested in this work gives comparable results with 
the state of art methods with the reduction in electrodes.   

CONCLUSION 
This work leads to the conclusion that the strong pre-processing 

method taking care of spatial spread of the signal is the key 
requirement of EEG based BCI.  This paper suggested the efficient 
option which works on combination of wavelet transform and PCA. 
The optimized feature extraction strategy based on CSP filter 
design provided in this work further helps in effective classification 
of MI task.  SVM with different kernel function is suggested as a 
strong classifier in this work which can be tuned according to the 
subject. Though the subject al having largest training data offers 
maximum CA of 99.2%, other subjects aw and ay also gives 
comparably good CA. CA as a performance parameter concluded 
as subject-specific, a subject can be trained to improve the MI 
modulation resulting in high accuracy no matters the number of 
trainings. Other important inference from the results is the 
dependency of accuracy on wavelet selection which is verified 
empirically for every subject.  
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