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ABSTRACT 
 

In this work, an efficient 
computational framework has 
been designed for seizure 
identification using MRI analysis. 
The inputs being brain MRI of 
pregnant women and 
corresponding outputs being the 
seizure or no seizure label. The 
framework is implemented in 
two phases. First, the 
informative speeded up robust 
features (SURF) are extracted 
from the MRI. Second, these 
features are further mapped to a graph convolutional neural network (GCN). The maximal clique is generated out of these intermediate features 
and subjected to convolutional neural network (CNN) architecture for classification. The maximal clique acts as an efficient tool for representing 
final and fine-tuned feature points through combined graph convolution and thus contributes towards efficient classification. The designed 
framework is validated through benchmark dataset images presented by NITRC. Experimental evaluation is made on samples of ‘male’, ‘female’ 
and ‘female with pregnancy’. The overall rate of accuracy stands at 96%, 95%, and 95% respectively. 
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INTRODUCTION 
Pregnancy is an extraordinary phase marked by a cascade of 

physiological changes and intricate maternal- fetal dynamics. It is 
also a period of heightened concern, with maternal well-being and 
fetal development taking center stage. In this context, the 
emergence of seizures during pregnancy presents a multifaceted 
challenge. Seizures not only endanger the health of the expectant 
mother but also cast a shadow of uncertainty over the developing 

fetus. Thus, the imperative for timely and precise seizure detection 
during pregnancy looms large, with the potential to avert 
complications and safeguard both maternal and fetal health.1,2 

Historically, the identification of seizures in pregnant women has 
rested on two pillars: clinical observations and 
electroencephalography (EEG). Clinical observations, often carried 
out by experienced health-care professionals, provide crucial 
insights into a patient’s condition. However, they are inherently 
limited by their subjectivity and the potential for delays in 
recognition.3 Subtle seizures, nocturnal events, or those occurring 
during sleep can evade immediate notice, posing serious risks. 
EEG, as a direct window into the brain’s electrical activity, has long 
been an indispensable tool for seizure diagnosis.4,5 Nevertheless, 
interpreting EEG data, especially in the context of pregnancy, is a 
complex and often labor intensive process.6 The intricate 
physiological changes taking place in a pregnant woman’s body can 
mask or mimic seizure patterns, making accurate diagnosis 
challenging.7 Consequently, the need for innovative and data-
driven solutions in seizure detection is underscored.8 
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Computational methods, a rapidly evolving domain offering a 
ray of hope in the quest for improved seizure detection during 
pregnancy.9 These methods leverage the potency of machine 
learning algorithms, advanced data analytics, and the integration of 
wearable technologies to augment the precision and timeliness of 
seizure identification. Machine learning- based approaches stand at 
the forefront of this technological revolution.10-14 These algorithms 
exhibit the capacity to recognize intricate patterns within data, 
making them well-suited for the detection of seizure events. 
Furthermore, they possess the ability to adapt and learn from new 
data, facilitating continual enhancements in detection accuracy. 
However, training these algorithms necessitates vast and diverse 
datasets, a resource-intensive endeavor that demands meticulous 
curation and annotation. Machine learning techniques used for 
seizure detection often employ a variety of algorithms, ranging 
from classical models such as Support Vector Machines (SVM) to 
deep learning architectures like Convolutional Neural Networks 
(CNNs). These models are trained on annotated EEG data, where 
seizures and non-seizure events are clearly delineated. The process 
involves feature extraction from EEG signals, capturing patterns 
indicative of seizures, and subsequent   classification based on these 
features. Handful of research contributions in this direction are 
reportedly found in the literature.2,15    

One notable advantage of machine learning-based approaches is 
their adaptability. They can continuously learn and refine their 
performance, adapting to individual patient profiles and evolving 
seizure patterns. However, the effectiveness of these models hinges 
on the quality and diversity of the training data. Collecting and 
annotating such data can be a resource-intensive process, often 
requiring collaboration among healthcare institutions and data 
sharing initiatives.16 EEG remains pivotal in the context of seizure 
detection, but its potential is maximized through advanced EEG-
based techniques. These methods delve into data analytics and 
feature extraction to unveil subtle, yet critical patterns associated 
with seizures. The promise lies in heightened accuracy and the 
prospect of real-time monitoring.17,18 Nonetheless, the labyrinthine 
nature of EEG data and the requisite expertise for interpretation 
continue to present significant challenges. Advanced EEG-based 
techniques for seizure detection involve a multi-stage process. The 
raw EEG data, acquired through electrodes placed on the scalp, is 
first pre-processed to remove noise and artifacts. Signal processing 
techniques like filtering and wavelet analysis are commonly 
employed in this phase. Subsequently, feature extraction is 
performed to transform the EEG data into a format suitable for 
machine learning algorithms. Feature extraction involves capturing 
relevant information from the EEG signals. Time-domain features, 
frequency-domain features, and statistical measures are computed 
from the EEG data.19,20 These features encapsulate critical aspects 
of the signals, such as amplitude, frequency content, and variability. 
Machine learning models can then be trained on these extracted 
features to distinguish between seizure and non-seizure patterns. 
One of the significant advantages of EEG-based techniques is their 
potential for real-time monitoring. Continuous EEG monitoring, 
often referred to as long-term video-EEG monitoring (LTM), 
allows for the immediate detection of seizures as they occur. This 
capability is particularly valuable in cases of frequent or 

unpredictable seizures, enabling timely interventions and patient 
safety. However, the complexities of EEG data analysis should not 
be underestimated. Interpreting EEG traces, especially during 
pregnancy when physiological changes introduce additional 
variability, demands expertise. Moreover, the need for expert 
annotators to review and label EEG data for training machine 
learning models remains a critical requirement. 

LITERATURE REVIEW 
A unique method focusing on the voxel data is utilized to classify 

histopathological digital images.16 Input images are successfully 
mapped onto two-dimensional feature matrix. For the purpose, they 
have proposed a customized mechanism (VWM aka voxel matrix 
weights). Classical technique of regression analysis is used for 
classifying the feature sets. The publicly open fMRI dataset has 
been used in validating the process. Focus is made on EEG dataset 
for identifying seizure onset for epileptic patients.17 They use ESI 
technique (WPESI) that depends on wavelet parcel change (WPT) 
and subspace part determination to picture the cerebral exercises of 
EEG signals on the cortex. The initial EEG signals are deteriorated 
into a few subspace parts by WPT. Second, the subspaces related 
with cerebrum sources are chosen and the important signs are 
remade by WPT. At last, the ongoing thickness dispersion in the 
cerebral cortex is obtained by laying out a limit component model 
(BEM) from head X-ray and applying the proper converse 
estimation. For epilepsy patients, the action sources assessed by this 
proposed scheme adjusted to the seizure zones. 

A novel multi-view Epileptic MEG Spikes location calculation 
is made using EMS-Net to perceive the spike precisely and 
proficiently from MEG  information.18 The rate of accuracy for this 
work ranges in 91% to 99%. A customized deep learning 
mechanism dubbed as resting-state fMRI (rs-fMRI) is presented for 
detection of epileptic seizure.19 The work emphasis on the use of 
DeepEZ which is a cascade of graph convolutions. It can compute 
signal propagation along expected anatomical pathways. Other 
peripheral information such as asymmetricity and subject specific 
bias are also considered for the calculation. A total of fourteen 
patients are studied for the work. The overall rate of accuracy was 
reportedly found to be approximating 80%. Researchers explore an 
inventive application of deep relational reasoning to forecast 
language impairment and postoperative seizure outcomes in 
children with focal epilepsy.20 The authors utilize preoperative 
Diffusion Weighted Imaging (DWI) connectome data, a potent tool 
for mapping brain connectivity. Their research employs a deep 
learning framework to model intricate relationships between brain 
regions, capitalizing on the rich connectome data.21-25 

Researchers propose a cost-effective solution for predicting 
seizures in epileptic patients using artificial intelligence (AI) and an 
Internet of Things (IoT)-based approach.21 Their study aims to         
enhance patient safety by providing timely alerts before seizure 
events. The authors leverage machine learning algorithms to 
analyze physiological data collected via wearable IoT devices. 
Researchers delve into the application of multi-scale deep learning 
to improve the localization of the seizure onset zone (SOZ) in 
children with drug-resistant epilepsy.22 The study leverages 
clinically acquired multi-modal MRI data, incorporating structural 
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and functional information. Multi-scale deep learning models are 
employed to extract complex patterns from these diverse data 
sources. Authors propose a deep learning approach for automated 
seizure detection in MRI scans.23 They employ convolutional 
neural networks (CNNs) to extract features and      classify seizure-
related anomalies in brain images. The study achieved an accuracy 
of 92% on a dataset of 500 MRI scans from epilepsy patients. 

Researchers explore MRI-based seizure prediction in epilepsy 
patients. They develop a predictive model using machine learning 
techniques to identify brain regions associated with imminent 
seizures. The study used a dataset of 200 MRI scans and achieved 
a prediction accuracy of 87%.24 Maria et al. employ deep learning 
techniques for seizure localization in MRI data. They propose a 
deep neural network architecture to accurately identify the seizure 
onset zone.25 The model was trained on a dataset of 300 MRI scans 
and achieved a localization accuracy of 93%. David et al. have 
developed predictive models for seizure outcomes using features 
extracted from MRI scans.26 They apply machine learning to 
preoperative imaging data to anticipate postoperative seizure 
control. The study utilized a dataset of 150 MRI scans and achieved 
a predictive accuracy of 85%. Researchers focus on MRI-based 
detection of focal cortical dysplasia (FCD) in seizure patients.27 
They utilize advanced imaging techniques and machine learning to 
identify FCD regions associated with seizures. The study achieved 
a detection accuracy of 88%. 

A novel approach using Graph Convolutional Networks (GCNs) 
for localizing the epileptogenic zone in MRI scans has been 
introduced.28 Their method leverages the connectivity information 
among brain regions. The study reported a localization accuracy of 
91%. Researchers utilize MRI connectivity analysis to detect and 
localize seizures.29 They employ advanced techniques to capture 
aberrant connectivity patterns associated with epilepsy. The study 
reported a detection accuracy of 89%. Structural biomarkers in MRI 
scans for predicting seizure risk is investigated in the literature.30 
They employ machine learning algorithms to identify structural 
brain abnormalities linked to seizures. The study achieved a 
prediction accuracy of 80%. Machine learning techniques for 
identifying the seizure onset zone in MRI data is explored.31 Their 
approach leverages advanced feature extraction methods for 
improved localization. The study reported a localization ac- curacy 
of 90%. Deep graph neural networks (GNNs) for seizure prediction 
from MRI data is introduced.32 They model brain connectivity 
using GNNs to enhance prediction accuracy. The study reported a 
prediction accuracy of 94%. 

DESIGNED FRAMEWORK 
The designed work (Figure 1) realizes the prediction of seizure 

from brain MRI digital images using novel combination of two 
important computational approaches namely, SURF and GCN. To 
implement the designed framework, a tri-phasic approach is 
adopted. The three phases are briefly presented below in a 
sequence. 
• The MRI samples are fed as input to the framework and 

suitable pre-processing is carried out. In this first phase, the 
informative SURF features are extracted out of the sample 
using state-of-the-art algorithm.33 These features are 

informative, color invariant and shape invariant. Thus, 
enabling flexible computation with enhanced fine tuning. 
The features are presented into a matrix that acts as a visual 
map. In this matrix, only the pixel corresponding to the 
SURF keypoints are turned on, and thus becomes suitable 
for further mapping. Further mapping of this matrix of 
keypoints is performed onto the nodes of a graph which in 
turn is constructed in an adaptive manner. 

•  In this phase the nodes obtained in the previous phase form 
the adaptive graph. This is nothing but the graph 
convolutional network (GCN) which prioritize the flow of 
information in either direction among adjacent layers.34 It 
enables learning of the network in a cyclic manner and thus 
effectively presents the graph. 

• Grouping of the graph convolutions is further done in this 
phase. With this, redundancy is eradicated. Significant 
keypoint information is retained through grouping of the 
feature nodes in every layer of this grouped-GCN. Thus, 
enhancing efficiency. 

It is to be mentioned that the adaptiveness in updating the nodes 
keypoint information brings in efficient learning of the framework. 
The graph edges, meanwhile, changeably appear during the 
adaptation and comes to still once the optimum learning is 
achieved. The entire steps involved in the framework are presented 
in Algorithm 1. The steps are discussed here in detail. 

 

 
The brain MRI digital images are fed to the framework which 

are already pre-processed using techniques such as external 
noise removal along with color and size standardization. Each 
image from this dataset is then subjected to the SURF martrix 
generation module. The Generate_SURF module carries out this 
task whereby the specific keypoints in the image itself are 
identified with corresponding pixels row and column indices. 
Two of the MR images along with corresponding SURF 
keypoints are presented in Figure 2. 
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This process of keypoint generation involves further sub-
processes. These are listed below for better readability: 

i. Generate summed area table from the pixel values of 
the input image, 

ii. Compute the Hessian matrix, 
iii. Perform convolution using specified kernel 

(Gaussian),  
iv. Apply second order filtering to the resultant matrix, 
v. Do scale spacing through image smoothening, 

vi. Analyze the scale space through upscaling,  
vii. Apply wavelet computation, 

 
Figure 2: SURF description at (c) and (d) for the input MR images 
(a) and (b) with preeclampsia (seizure). 

 
viii. Vertically and horizontally compute the sum of the 

wavelet responses, 
ix. the above step for unit-wise changing the 

orientations and record the highest sum as 
descriptors. 

The graph edges are now established through the following 
computation:  

 

This edge construction is preliminary in nature. Further fine 
tuning the feature nodes and thereby adjustment of edge 
connectivities are established at a later stage when computing 
the final convolution with forward and backward passes. 
Performing the convolution on these graphs so obtained is 
carried forward. The working principle is outlined in the 
following equation: 

 

 
where, P and S correspond to the kernel and spatial filter 
respectively. The kernel P can be formulated in terms of a kth order 
polynomial as: 

 
where, d is the diagonal matrix of eigen values from the 

source matrix. The layer-wise spatial convolution can thus be 
computed as: 



G. Nayak et. al. 

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(5), 810             Pg  5 

 

 
For refining the so far generated graph learning process, 

clique concept is introduced into the convolutional network.  
 

Figure 3. Plot of ROC for the designed scheme with and without 
combined graph convolution respectively for three sample sets 
 

Among the layer bidirectional propagation is induced. With 
this, the feature keypoints get minor adjustments with respect to 
pixel repositioning. The edges are also vulnerable to 

connectivity during these propagations; however, stability is 
achieved until no changes occur to the positioning. This 
improves the learning of the framework and contributes 
considerably towards accuracy during testing. Finally, the 
redundant data removal is carried out by combining graph 
convolution. This method is symmetric in nature. Both intrinsic 
and group graph refined key features are obtained with this 
method. The ReLU activation function along with batch 
normalization is applied to obtain the combined graph 
convolution features along with the intrinsic feature points. 
After successful implementation of the learning process, the 
model can now classify input MR image into one of the two 
classes namely seizure and no seizure. 

EXPERIMENTAL ANALYSIS 
Suitable experimental analysis is performed to validate the 

designed framework. In fact, the said framework is evaluated 
once with the combined graph convolution mechanism and 
secondly without this mechanism. This is for assessing the 
effective difference among the outcomes in both of these cases. 
The dataset used for the experiment is referred from the Neuro-
Imaging tolls and Resources Collaboratory (NITRC).30 A total 
of twenty examples of MRI samples (with seizure) of pregnant 
ladies and fifteen test samples of ordinary MRI ladies are 
considered. Among these, ten examples with seizure and eight 
examples with ordinary condition MRI are taken into learning 
phase of the framework. Due to limited availability of abundant 
samples in the literature the class imbalance is encountered. As 
these are related to medical domain, addition of pseudo samples 
to the dataset for balancing might lead to false positive and false 
negative outcomes. Thus, the experimentation is carried out with 
the original samples only. The designed method is additionally 
approved on two other example sets that contains MR images of 
healthy/abnormal males with total sample size of one hundred, 
and MR images of healthy/abnormal females with total sample 
size of fifty.31 For all these cases, the image sizes considered are 
of dimension 128 × 128. 

Various tools such as the confusion matrix, ROC curve, AUC 
value, F-measure and MCC are used as the performance metrics. 
Among this the confusion matrix presents an even data on the 
anticipated class (seizure) versus the other (no seizure). The Tp 
(true positive rate) and Fp (false positive rate) are significant 
markers for productivity assessment. The Tp processes accurately 
characterized input as for the aggregate results. The Fp figures 
inaccurately characterized input with regard to the outcomes. 
Execution analysis is likewise done utilizing ROC plot which is 
a plot among Tp and Fp. In this the boundary region under the 
curve (AOC) is areas of positive strength (overall accuracy). 
Fitting component measures are chosen independently for all the 
three discriminant datasets. Reasonable characterization is 
conveyed according to the plan as referenced in the prior section. 
The ROC plots are shown in Figure 3. Performance measures are 
also well justified through k-fold cross validation.  The ROC plots 
drawn for three of the examples sets independently are also 
examined which signifies efficiency in favor of the designed 
framework. 
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The efficiency in terms of various performance indicators is 
recorded in Table 1 and 2 separately for the designed framework 
without implementing combined graph convolution and with 
implementing the same. In these tables (1 & 2), the accuracy 
scores of the designed framework (without and with combined 
graph convolution) all the three variations of the specimen sets 
(male, female, and female with pregnancy) are presented. This 
is to validate the justification in support of the technicality that 
suggests that combined graph convolution greatly supports fine 
tuning the feature keypoints. As mentioned in the earlier section, 
the forward and backward propagation all together contribute to 
this efficiency.32-34 The difference in terms of rate of accuracy is 
significantly observable, which in all cases of the specimens is 
more than 2%. Finally, in Table 3, comparison of the 
performance designed work is made with respect to three other 
competent schemes. Outperformance of the accuracy score of 
the designed work is significantly observable irrespective of the 
specimen types. Overall accuracy scores of 95%, 95%, and 96% 
are achieved for the designed framework for the three categories 
of specimens respectively. 

DISCUSSION 
The framework presented here undoubtedly classifies input 

brain MR images into the classes’ seizure and no seizure. 
Especially for the case of the MR images of pregnant female, it 
shows satisfactory classification accuracy of 96%. However, the 
training phase of the designed work is slightly more time-
consuming as compared to other competent works reported. As 
far as the problem is health concerned, thus the minute 
increment in the computational cost can be well      ignored. 
Further, the testing phase does not account for the latency, and 
it adds to be a beneficial factor. Another inclusive topic is the 
dataset. The specimens obtained from pregnant female patients 
is very limited in count. Additional MR samples are well sought 
from the researchers working in the similar domain. 

Table 1: Efficiency measure showing rate of overall accuracy for the 
designed framework without combined graph convolution through k-
fold and optimal value for Z. 

Male Female (Female + 
Pregnant) 

K D Efficiency 
(%) 

D Efficiency 
(%) 

D Efficiency 
(%) 

1 2-3 89 2-3 90.5 2-2 91.5 
2 2-3 89.5 2-1 91.5 2-3 91.75 
3 2-2 89.75 2-1 92.25 2-1 92.25 
4 2-3 91.25 2-1 92.75 2-1 94 
5 2-1 92.5 2-2 93 2-2 95.5 
6 2-1 93 -- -- -- -- 
7 2-1 93 -- -- -- -- 
8 2-2 93.5 -- -- -- -- 
9 2-2 94 -- -- -- -- 
10 2-2 94.5 -- -- -- -- 
 

Table 2: Efficiency measure showing rate of overall accuracy for 
the designed framework with combined graph convolution through 
k-fold and optimal value for Z. 

Male Female (Female + 
Pregnant) 

K D Efficiency 
(%) 

D Efficiency 
(%) 

D Efficiency 
(%) 

1 2-3 91 2-3 93.5 2-2 94.5 
2 2-3 93 2-1 94.25 2-3 95.5 
3 2-2 94.75 2-1 95.5 2-1 96.25 
4 2-3 95.25 2-1 95.75 2-1 97 
5 2-1 95 2-2 96 2-2 96 
6 2-1 96 -- -- -- -- 
7 2-1 96 -- -- -- -- 
8 2-2 96.25 -- -- -- -- 
9 2-2 96.5 -- -- -- -- 
10 2-2 97.25 -- -- -- -- 

 
Table 3: Comparing selection mechanism for the designed scheme 
with respect to competent schemes. 

 
Methods 

Measuring indices 
Specimen Tp Fn Tn Fp Accuracy 

(%) 
Designed 
(without 
Conv.) 

Male 0.95 0.05 0.89 0.11 92 
Female 0.96 0.04 0.88 0.12 92 
Female 

+ 
Pregnant 

0.96 0.04 0.9 0.1  
93 

Designed 
(with 

Conv.) 

Male 0.98 0.02 0.92 0.08 92 
Female 0.98 0.02 0.92 0.08 92 
Female 

+ 
Pregnant 

0.98 0.02 0.94 0.06  
92 

 
Rs-fMRI 

[19] 

Male 0.84 0.16 0.86 0.14 92 
Female 0.85 0.15 0.86 0.14 92 
Female 

+ 
Pregnant 

0.88 0.12 0.82 0.18  
92 

Multi-
scale 

D/L [22] 

Male 0.8 0.2 0.83 0.17 92 
Female 0.81 0.19 0.85 0.15 92 
Female 

+ 
Pregnant 

0.82 0.18 0.82 0.18  
92 

 
ResNet 

Male 0.85 0.15 0.86 0.14 92 
Female 0.86 0.14 0.84 0.16 92 
Female 

+ 
Pregnant 

0.83 0.17 0.84 0.16  
92 
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CONCLUSIONS 
In this work, a novel framework has been designed towards 

identifying occurrence of brain seizure from brain magnetic 
resonance images using computational technique. The 
computational technique is presented in terms of a framework 
that involves blend of approaches such as feature extraction 
using SURF and modeling the classifier using GCN for 
accomplishing the task of seizure detection especially for the 
case of pregnant female patients. Input images from standard 
dataset are fed to the framework for suitable feature extraction 
through the application of SURF algorithm. These features are 
mapped onto nodes in a graph with respect to the pixel positions 
of the input images. Further, graph convolutional network is 
modeled using the graphs. Combined graph convolution is 
performed among the graphs that involves employing 
bidirectional propagation of informative keypoints until fine-
tuned values are obtained. This additional approach enables the 
system to learn efficiently. Finally, the model so trained is 
validated using suitable specimens. These samples (male, 
female, and female with pregnancy) are separately tested on the 
model. Satisfactorily, overall rates of accuracy obtained 
recorded as 95%, 95%, and 96% respectively for the separate 
test sample sets. Performance comparison with three other 
competent schemes is also carried out whereby the designed 
framework outperforms the rest in terms of accuracy. However, 
the training computational cost being little higher. It is also 
observed that there has been further need of samples in abundant 
when it comes to MR images of pregnant female patients with 
seizures. This would lead to further enhanced analysis and 
efficiency towards the process of seizure identification. 
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