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ABSTRACT 
 

The IoT is transforming healthcare by 
enabling extensive connectivity between 
medical professionals, equipment, staff, and 
patients, facilitating real-time monitoring. 
While the network's scale and diversity offer 
advantages for data exchange, they also 
pose challenges for privacy and security, 
particularly with sensitive medical information. To address this, deep learning-based cryptographic and biometric systems are utilized for 
authentication and anomaly detection in medical systems. However, power constraints on network sensors necessitate efficient security 
schemes. Thus, the authors propose a novel framework, the deep Inception-ResNetV2 with privacy preservation, to secure data transmission 
while minimizing encryption and decryption time. Implementing this method reduces the network's burden, saving time and costs in 
communication. Compared to alternatives like private biometric-based authentication, this model demonstrates superior performance. 

Keywords: Healthcare; Patient data; Security; Inception-ResnetV2; Cryptographic Techniques; Internet of Things.

INTRODUCTION 
A patient's medical history is documented in a patient health 

record (PHR), containing essential information. Health records are 
often sent and received via the digital healthcare system. However, 
current digital healthcare systems rely on central servers, which are 
susceptible to hacking.1 Due to its versatility and enhanced security, 
blockchain technology stands out as the most obvious choice for 
integrating the digital healthcare system. Additionally, blockchain 
enables P2P and decentralized network architectures.2 Private 
blockchains, public blockchains, and consortium blockchains are 
the three main types. Since all network participants are known to 
one another in permissioned blockchains administered by a 

consortium, everyone involved feels safer and more confident. 
Hyperledger Fabric allows developers of contracts and network 
applications to use languages like Java, Go, Node.js, etc. 

Organizations can meet their Information and Communication 
Technology (ICT) needs at a lower cost with cloud services, 
avoiding investments in costly and time-consuming in-house IT 
infrastructure or software installations.3 Medical institutions now 
have access to automatic computer-assisted diagnostic (CAD) 
systems thanks to recent advancements in Machine Learning (ML) 
for computer vision.4 Deep Learning (DL), a branch of ML, notably 
delivers superior results to human experts in picture categorization. 
However, training DL models requires state-of-the-art hardware 
and a large amount of processing resources. By utilizing cloud-
computing services, healthcare organizations access cutting-edge 
technology, speeding up the training process and allowing DL 
models to scale efficiently at lower capital costs.5 Additionally, a 
large amount of sample data is needed for DL model training, which 
can be difficult and expensive to gather in fields like medicine.6 A 
community cloud, where services are shared by organizations with 
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common interests, can help healthcare organizations address this 
problem.7 When multiple companies need to collaborate on a 
project, they can use cloud storage services as a centralized data 
repository. However, data leakage is always a possibility, and 
there's a need for significant bandwidth when outsourcing data for 
cloud services.8 

In an Internet of Things (IoT) setting, patient data privacy and 
security are paramount.9 Secure data storage and transit ensure the 
integrity, authenticity, and validity of data, while data privacy is 
ensured by restricting access to authorized users. Reasonable 
precautionary measures can be formulated based on requirements, 
goals, and necessities.10 While widespread usage of IoT devices has 
the potential to improve patient care, it's crucial to ensure the safety 
of sensitive personal data.11 Attacks on next-generation schemes 
have increased, making IoT devices vulnerable to both new and old 
threats. The data that travels from the Internet of Things to the cloud 
and visualization domains undergo numerous transformations 
along the way. Data compression and encryption meet the 
challenges of sending information across public networks with 
limited capacity. Compression reduces the number of bits needed 
to save the image by condensing its representation. Lossless and 
lossy compression implementations exist for this purpose. Lossless 
compression maintains or improves the original picture quality 
during restoration, while lossy compression degrades the image 
quality.12 Lossy compression provides cost savings, but quality loss 
isn't always acceptable, especially in fields like medicine, where 
accurate diagnoses depend on detailed data preservation. Popular 
methods for achieving this include lossless compression of the 
diagnostically-relevant region-of-interest (ROI) and lossy 
compression of the remaining data. However, these techniques 
require picture segmentation, which is computationally costly and 
ideally suited for cloud-based computing power. Consequently, 
region-of-interest (ROI)-based approaches aren't optimal for 
quickly sharing picture data. When picture data is encrypted, it 
becomes incoherent and can only be retrieved through the 
corresponding decryption procedure. Encryption techniques based 
on number theory and chaos theory are effective in protecting 
picture data, but they're only suitable for encrypting raw photos, as 
they conduct stream values.13 

Since new types of threats constantly emerge, traditional 
solutions relying on signature or machine-learning methods are 
inadequate.14 Deep neural networks (DNNs) can identify 
malfunctions in virtualized communication networks with greater 
precision by learning to recognize typical data flows and rebuilding 
them.15 However, a significant challenge with these models is that 
sophisticated DNNs in the core clouds require more time to train 
than currently available classical approaches. Therefore, finding 
new ways to reduce training time without sacrificing detection 
precision is essential. 

The paper's original contributions include: 
• Constructing a standardized framework for patient data 

processing using deep learning (Inception-ResNet) to 
further reduce network traffic. 

• Public key (PK) and master key (MK) generation using 
ciphertext-policy attribute-based privacy preservation 
(CPABPP). 

• Validating the efficacy of the CPABPP model across 
various criteria, including MRI data verification. 

RELATED WORK 
Kumar et al.16 proposed a Blockchain-directed Deep learning 

tactic (henceforth "BDSDT") for secure data transfer in an IoT-
enabled healthcare system. To ensure data integrity and safe 
transmission of information, we first propose a novel, scalable 
blockchain design that employs the Zero Knowledge Proof (ZKP) 
method. Then, an Ethereum smart contract and the off-chain 
storage IPFS are included in BDSDT to address issues with data 
storage costs and data security. An intrusion detection system for 
HS networks is then built using the verified data. The latter utilizes 
Bidirectional Long Short-Term Memory (BiLSTM) in conjunction 
with Deep Sparse AutoEncoder (DSAE) to provide a highly 
effective intrusion detection solution. Experiments conducted on 
two publicly accessible data sources (CICIDS-2017 and ToN-IoT) 
demonstrate that the proposed BDSDT achieves an accuracy close 
to 99% in both non-blockchain and blockchain situations. 

Consultative Transaction Key Generation and Management 
(CTKGM) is a method proposed by Selvarajan and Mouratidis17 to 
facilitate safe exchange of medical records. Using random values, 
multiplication, and timestamps, it creates a unique key pair. The 
blockchain system then securely stores the patient information in 
encrypted blocks of hash values. The Quantum Trust 
Reconciliation Agreement Model (QTRAM) enables safe and 
trustworthy data transmission by calculating the trust score based 
on feedback data. The suggested framework is novel because it 
promotes secure patient-healthcare provider communication via 
feedback analysis and trust value utilization. Furthermore, nonce 
verification messages are authenticated during communication 
using the Tuna Swarm Optimization (TSO) technique. QTRAM's 
nonce message verification feature aids in authenticating senders 
and receivers in transit. After analyzing a number of evaluation 
metrics to assess the performance of this security model, it has been 
shown that the proposed scheme is effective by comparing the 
acquired findings with other existing state-of-the-art 
representations. 

The deep framework is presented by Lakhan et al.18 as a potential 
new solution to the aforementioned problems. Healthcare 
applications benefit from DRLBTS's secure and time-efficient 
scheduling. After initial validation, it transfers valid and secure data 
across connected network nodes. Statistical evidence demonstrates 
that DRLBTS is adaptable and satisfies the security, privacy, and 
makespan criteria of healthcare requests running on a dispersed 
network. 

Energy-Efficient Networks is an issue that Mohammed et al.19 
have researched for medical use cases. This research offers the 
Energy-Efficient Distributed Federated Learning Offloading and 
Scheduling (EDFOS) system for blockchain-based networks as a 
potential solution to the aforementioned issue. EDFOS comprises 
many energy-efficient offloading and scheduling mechanisms that 
work together to ensure all running applications receive the 
necessary quality of service (QoS). Simulation findings reveal that 
compared to conventional healthcare systems, EDFOS significantly 
decreases energy usage (39%), training and testing time (29%), and 
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resource leakage and deadlines (36%). When it comes to healthcare 
applications, the challenges of power consumption and data 
protection, the EDFOS platform provides an efficient answer. 

To protect healthcare networks against poisoning assaults, 
Kalapaaking et al.20 suggest using blockchain technology to provide 
federated learning, with SMPC model verification. We begin by 
removing any compromised machine learning models from the FL 
participants using a secure inference method. After each 
participant's local model has been validated, it is transmitted to the 
blockchain node where it is aggregated securely. To test the 
efficacy of our suggested approach, we ran a series of experiments 
on various medical datasets. 

A method called Lionised Golden Eagle Homomorphic Elapid 
Security (LGE-HES) was proposed by Miriam et al.21 to ensure the 
safety of blockchains used in healthcare networks. The hash 
function performed by the blockchain algorithm keeps the medical 
picture secure. The MATLAB program is used to carry out the 
research. Simulation findings using Computed Tumour (CT) 
images and MRI image datasets confirmed the usefulness of the 
proposed system. Overall, the simulation resulted in a successful 
recognition and identification of 94.9% of malicious transmissions. 
Root measures are used to contrast the proposed model's 
performance with those of conventional methods. 

To combat the coronavirus pandemic, Ahmed et al.22 proposed a 
smart blockchain and AI-enabled solution for the healthcare 
industry. A new deep learning-based architecture is being 
developed to detect the virus in x-ray pictures, further using 
Blockchain technology. This means the proposed system has the 
potential to provide trustworthy data-gathering solutions, ensuring 
the superior quality of COVID-19 data analytics. Using a reference 
dataset, we developed a multi-layered sequential deep learning 
architecture. We also applied the Gradient-based color 
visualization technique to all experiments to make the proposed 
deep learning accessible and interpretable. Therefore, the design 
achieves a 96% accuracy in categorization, which is quite 
satisfying. 

DESIGNED MODEL 
The designed non-invasive technique for cancer diagnosis works 

in tandem with current diagnostic tools and mechanisms to improve 
the accuracy and precision of cancer diagnoses. This dataset will be 
used in the current study23 and comprises 4,800 verified MRI 
pictures. Normal MRI scans of a patient seem different than those 
in which a tumour is visible. Figure 1 shows how the cancer appears 
in MRI scans with varying degrees of colour intensity. 

Both training pictures and test images have been prepared. All 
radiographs were inspected for quality control before MRI analysis 
began, and those of poor quality or those could not be read were 
omitted. After that, the photographs were evaluated by two experts 
before being added to the AI database. Finally, a third specialist 
checked the evaluation pool to make sure there were no problems 
with the grades. 

The purpose of this suggested endeavour is to differentiate 
between healthy individuals and those with cancer by classifying 
them into distinct groups. This sorting is arrived at by evaluating 
how well classifications work. Magnetic resonance imaging (MRI)  

 
Figure 1:(a-d) Normal patient imageries (e-h) Cancer duplicate patient. 

 
scans are used to collect the information. Different MRI scans have 
different pixel dimensions, denoted by the letters A and B. 

Image Preprocessing: Preprocessing photos is a vital step in 
achieving high image quality. Image categorization is made 
possible by the preprocessing stage. Data augmentation was the 
first and primary method employed. This process performs many 
transformations on the input, which adds to the overall volume 
growth of the dataset. Translation, symmetry, and rotation were 
among the many transformations used to create a copy of the input. 
The steps of preprocessing and enhancement are outlined below. 

Translation: Both the picture size and orientation were adjusted 
to meet the requirements. Centering Each picture has its rows and 
columns cropped out of the borders. This means that it's possible to 
get photographs in a range of sizes. The total number of pictures is 
then counted after the row and column widths have been cut. 

Segmentation: It is necessary for picture extraction and 
classification. Segmenting the high-resolution photos led to 
spectrum confusion, poor delineation, and blurrier final images. In 
addition, this was improved by using the object-oriented picture 
segmentation method, which employed object structure and 
spectral signatures to eliminate salt and noise from the image and 
boost its precision. 

Feature extraction: To obtain features, we use the built-in 
filters of each layer. Low-level features are retrieved using the 
filters in the initial layers (convolution and pooling), whereas high-
level features are extracted using the filters in the top convolutional 
layer. 
• Distinct feature vectors (𝑍𝑍.𝑉𝑉𝑉𝑉) for each X-ray image were 
made: 𝑍𝑍.𝑉𝑉 =  𝑍𝑍1,𝑍𝑍2,𝑍𝑍3  · · ·  𝑍𝑍14. 
• Only vectors representing MRI scan statistics are included in 
the given matrix (Z.Vs). Equation 19 demonstrates that it is 
possible to describe such characteristics inside a single dataset. 

⎝

⎜
⎛
𝑍𝑍.𝑉𝑉1 = 𝑍𝑍1,𝑍𝑍2,𝑍𝑍3 … .𝑍𝑍14
𝑍𝑍.𝑉𝑉2 = 𝑍𝑍1,𝑍𝑍2,𝑍𝑍3 … .𝑍𝑍14
𝑍𝑍.𝑉𝑉3 = 𝑍𝑍1,𝑍𝑍2,𝑍𝑍3 … .𝑍𝑍14

⋮
𝑍𝑍.𝑉𝑉𝑛𝑛 = 𝑍𝑍1,𝑍𝑍2,𝑍𝑍3 … .𝑍𝑍14⎠

⎟
⎞

                (1) 
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• Using fully connected layers, the classifier received the 
recovered characteristics and made a determination based on 
them. 
3.2. Prediction of Disease using Inception-ResnetV2 Model 

Szegedy combined Inception and Resnet for the Inception-
Resnet24 design for network backbones. By performing numerous 
convolution or pooling operations in parallel on the input picture, 
the Inception topology. It doesn't employ just one size of 
convolution kernel, but rather many sizes at once, and combines the 
outputs of these kernels to create a more nuanced feature map. 
Using such to your advantage can enhance your image 
representations. Kaiming, He designed Resnet,25 a 152-layer 
residual neural network architecture, for use in the ImageNet 
challenge. In the neural network, he implemented a time-saving 
shortcut design. This is done by include the transfer and 
convolution outputs from the input layer, which mitigates common 
neural network issues such gradient dispersion at high depth. 

To improve its picture identification performance, the Inception-
ResnetV2 network, seen in Figure 2, adjusts the 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 299 299 3. 

.  

 
Figure 2. The construction of Inception-ResnetV2. 

 
The Stem architecture takes the InceptionV326 model's notion of 

a parallel structure and decomposition to cut down on computation 
while maintaining high accuracy. Dimensionality reduction is 
achieved with the help of the built-in 1 1 convolution kernel. All 
three of the InceptionResnet variants (InceptionResnet-A, 
InceptionResnet-B, and InceptionResnet-C) use the Inception 
design, but with ever more layers, channels, and complexity in their 
topologies and feature maps. To cut down on computation and 
feature map size, we have three designs at our disposal: Reduction-
A, Reduction-B, and Reduction-C. By combining the strengths of 
network structure, the Inception-ResnetV2 model not only has the 
potential to expand the network's depth and breadth, but also to 
prevent the gradients' disappearance. Inception-Resnet-A's 
architecture is seen in Figure 3; the similarity between the networks 
ends there. 

 
Figure 3. The construction of Inception-Resnet-A. 
 
3.2.1. The CBAM Attention Mechanism 

In order to increase neural networks' feature extraction 
capabilities while minimising costs and maximising efficiency, the 
attention mechanism has emerged as a powerful tool. It can 
automatically tune out irrelevant data and concentrate on the 
relevant data. In the Inception-ResnetV2 network, mechanism 
module to improve defect feature extraction and classification 
accuracy in 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝐴𝐴, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 −
𝐵𝐵, 𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝐶𝐶. Figure 4 depicts the detailed 
architecture. 

 
Figure 4. The constructions of Inception-ResnetV2. 

 
Figure 5 shows that CBAM is made up of two distinct parts: 

Channel and spatial attention are employed to highlight relevant  
 

 
Figure 5. The construction of the CBAM component. 
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elements while downplaying irrelevant ones, hence enhancing the 
target detection effect. As a result, not only are limitations and 
processing power conserved,27 but the module may be simply 
plugged into the preexisting network structure. 

The CAM computation procedure is depicted in Figure 6a. 
Length (H), width (W), and number of channels (C) describe the 
input feature map. Using this formula, we can determine how much 
emphasis should be placed on each channel. 
𝑀𝑀𝑐𝑐(𝐹𝐹) = 𝜎𝜎�𝑀𝑀𝑀𝑀𝑀𝑀�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐹𝐹)� + 𝑀𝑀𝑀𝑀𝑃𝑃(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐹𝐹))� =
𝜎𝜎 �𝑊𝑊1 �𝑊𝑊0�𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐 �� + 𝑊𝑊1(𝑊𝑊0�𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐 �)� (2) 

 

 
Figure 6. The constructions of the CAM and SAM components. (a) 
SAM component. (b) CAM unit. 

 
Apiece channel of pooling 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐  and regular pooling 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐  at the 
same period, and then passes through a Multilayer Perceptron 
(MLP). The MLP's output feature vector is then element-wise 
added, and function s is applied. By following these steps, we may 
capture the focus of the relevant channel. 

The steps involved in determining SAM are depicted in Figure 
6b. The CAM module's output feature map is used as input for a 
series of max pooling and average pooling operations, followed by 
a convolution on the resulting intermediate vector. The spatial 
attention is obtained by passing the results of the convolution 
through a sigmoid activation function s, as given in Equation (3). 

 
𝑀𝑀𝑠𝑠(𝐹𝐹) = 𝜎𝜎�𝑓𝑓7×7�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐹𝐹)�; (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐹𝐹))� =
𝜎𝜎�𝑓𝑓7×7(𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐 ;𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐 )� (3) 
3.2.2. Optimization of Model Parameters 

(1) We simplified the model by reducing 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 −
𝐴𝐴,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝐵𝐵, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝐶𝐶 from six parameters, 
respectively. The last layer is a Softmax layer, although the size of 
the output is problem-dependent. This article presents two methods 
for predicting cancer using MRI scans.  

(2) The cost function we choose is the cross-entropy loss 
function.28 From what has been said, however, it is clear that illness 
similarities are rather high and are frequently not visible, making 
overfitting during training a common occurrence. To prevent this 
and make the model more stable in a healthcare setting, we blended 
L1 and L2 regularisation into the loss function. 
Loss function optimisation the formula for 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐻𝐻(𝑝𝑝, 𝑞𝑞) = −∑ 𝑝𝑝(𝑥𝑥)1𝑛𝑛𝑛𝑛(𝑥𝑥)𝑥𝑥  (4) 
𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∑ (𝛼𝛼|𝑤𝑤𝑖𝑖| + (1 − 𝛼𝛼)𝑤𝑤𝑖𝑖2)𝑖𝑖  (5) 

where p is the true probability of x, q is the circulation based on 
the model's predictions, 𝑤𝑤𝑖𝑖  are the model's weights, and is the 
regularisation parameter. Overfitting is mitigated using L1 and L2 
mixed regularisation, after which the batch-average cross entropy 
is used to derive 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. 

For the purposes of dataset was split in half. The model was 
trained using the suggested methodology, and the training data set 
contained both healthy and pneumonia-infected individuals. 
Almost 80% of training purposes, including both clean and dirty 
examples. There is some flexibility in how much data is used for 
each purpose (training vs. testing). 

To further enhance the precision of the projected model, we 
employed transfer learning and fine-tuning. After some tweaking, 
we found that the model was 98% accurate. The proposed model's 
accuracy was further increased to 99.7 percent with the use of K-
fold analysis and voting methods. 
3.3. K-Fold Analysis 

The suggested model is put through its paces using the K-fold 
validation purpose with several values validation approach selects 
various training data from the entire dataset to teach the model. If 
K is set to 10, for instance, ten iterations will be run, each time 
selecting 10% of the data set for evaluation. That is, we will only 
utilise the top 10% of the dataset for our initial round of testing. In 
the same way, the second 1/10th of the data will be utilised for 
testing in the next iteration, while the training. It has a mathematical 
expression of: 

�
𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑇𝑇 = 5000
𝑇𝑇𝑇𝑇𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − (5000)

 (6) 

When K = 10, the dataset must be split into ten parts so that the 
model may be evaluated. Each section will serve as a test dataset in 
each cycle. The probabilities of each class occuring may be 
calculated using Equations 7–10. 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝐶𝐶)  = 𝑃𝑃𝑃𝑃(𝐶𝐶)1+ 𝑃𝑃𝑃𝑃(𝐶𝐶)2+ · · · + 𝑃𝑃𝑃𝑃(𝐶𝐶)𝑁𝑁

𝑁𝑁
(7) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑁𝑁) = (𝑁𝑁)1+𝑃𝑃𝑃𝑃(𝑁𝑁)2+⋯+𝑃𝑃𝑃𝑃(𝑁𝑁)𝑁𝑁
𝑁𝑁

 (8) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶) = 0.70+0.45+0.55+0.65+0.40
4

× 100 = 55 (9) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑁𝑁) = 0.30+0.55+0.45+0.35+0.60
5

× 100 = 45% (10) 

3.4. System Model for Security 
After an illness has been predicted, the information will be saved 

in the cloud. Medical record datasets are secure and patient and 
hospital privacy is protected prior to uploading to the cloud. A 
trusted authority (TA), users (patients), a server, and hospitals 
staffed by medical experts make up this paradigm.  

Each entity's function in the modelled system is explained in 
further detail below. 

• Parameters are generated by TA, and registration is 
handled by TA as well. 

• The medical records of their patients are provided to 
the databases by the hospitals. 
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• The patient sends a query to the physicians with their 
starting and ending locations. 

• Part of the clinical route is generated through server 
interaction and then returned to the user. By allowing 
many exchanges to take place amongst themselves 
rather than the hospital and the user, we can 
significantly cut down on the local communiqué 
overhead and processing cost. Patient information such 
as name, age, gender, costs, other indices, medicine, 
and appointment time are included in the medical 
datasets in this model. The ciphertext-policy attribute-
based privacy preservation technique is used to 
exchange and secure these facts. The server builds the 
network in a way that respects these privacy settings. 

3.4.1. Key Generation on Ciphertext-Policy Attribute-Based 
Privacy Protection (CPABPP) 

The data owner initiates the three-stage setup procedure. 
 

Step 1: Input security settings are used to run the CP-ABE setup 
algorithm, which produces both a public key (PK) and a master key 
(MK). 
Step 2: A functional master key (MKF) are generated using a 
minimal amount of security inputs using the functional encryption 
setup procedure. 
Step 3: A functional SK[f(i)] is generated using the functional 
encryption key-generation algorithm KeyGen(MK,S), where f(i) is 
defined as fi(S) = ssi(KeyGen(MK,S)), where ssi(s) is a purpose 
secrets. After the initialization process completes its run, the data 
owner sends the PKF and SK [fi] to authority, correspondingly, 
through the secure channel. A high number of precomputed 
subkeys are employed in this method for both encryption and 
decryption. P1, P2,..., P18 are all subkeys in the P-array, which 
spans 18 to 32 bits. 

 
Algorithm 1 for making subkeys: 

Algorithm 1 Procedure for generating subkeys 
1: 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼— 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
3: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥)  =  𝑃𝑃1,𝑃𝑃2,𝑃𝑃3 . . .𝑃𝑃𝑃𝑃 
5: 𝐴𝐴 =  𝑃𝑃1(𝑋𝑋𝑋𝑋𝑋𝑋) 𝑃𝑃2 
6: (𝑛𝑛 =  𝑃𝑃1;  𝑛𝑛 +  1 >  𝑃𝑃1) 
7: 𝐵𝐵 =  𝑃𝑃2(𝑋𝑋𝑋𝑋𝑋𝑋) 𝑃𝑃3 
8: (P2 = n; P2 < n + 1) 
9: 𝐶𝐶 =  𝑃𝑃3(𝑋𝑋𝑋𝑋𝑋𝑋) 𝑃𝑃4 
10: (𝑛𝑛 =  𝑃𝑃1;  𝑛𝑛 +  1 >  𝑃𝑃1) 
11: 𝑁𝑁 =  𝑃𝑃𝑃𝑃(𝑋𝑋𝑋𝑋𝑋𝑋) 𝑃𝑃𝑃𝑃 
12: (𝑃𝑃1 =  𝑛𝑛;  𝑃𝑃1 <  𝑛𝑛 +  1) 
13: 𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 
14: 𝑌𝑌 ∗ 𝑍𝑍 ∗  (𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚 𝐸𝐸)  =  𝐾𝐾1 
17: 𝛼𝛼2(𝑌𝑌 ∗ 𝑍𝑍 ∗ (𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚 𝐸𝐸))  =  𝛽𝛽𝛽𝛽1 
18: 𝛼𝛼2(𝑋𝑋 ∗ 𝑍𝑍 ∗ (𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝐹𝐹))  =  𝛽𝛽𝛽𝛽2 
19: 𝛼𝛼2(𝑌𝑌 ∗ 𝑋𝑋 ∗ (𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚 𝐺𝐺))  =  𝛽𝛽𝛽𝛽3 
20: 𝑒𝑒𝑒𝑒𝑒𝑒 

3.4.2. Encryption Process 

The parameter A is given a positive integer value of the form Ak 
257, where k can take on any positive integer value between 1 and 
n. Let's pretend we have an array T with 256 distinct numbers (0–
255). Using the linear mapping given by Equation (11), a new array 
R is constructed from A and T.: 
𝑅𝑅(𝑖𝑖)  =  𝑚𝑚𝑚𝑚𝑚𝑚((𝐴𝐴 ×  (𝑇𝑇(𝑖𝑖)  +  1)), 257) (11) 

where i is an integer between 1 and 256. The range of T(i) is from 
0 to 255, and any positive integer A fulfils the expression Ak257, 
where k is an integer bigger than 0. The results of the division by 
257 of (A/257) and (T(i + 1)/257) are not integers. 
𝑀𝑀𝑀𝑀𝑀𝑀 ((𝐴𝐴 (𝑇𝑇(𝑖𝑖)  +  1)), 257) is therefore not equal to zero. When 
R(i) = R(i) - 1, R(i) is in the range [0,255], where [i] is in the range 
[1,256]. The original S-box, represented by the 1D array R = R(i), 
is converted to the 2D matrix Rb. A chaotic sequence of length L is 
produced by iteratively applying the tent-logistic map L times. By 
excluding the initial (L-256) items of the true chaotic series, we 
create a new chaotic series of length 256, designated as X, which 
improves the sensitivity of the chaotic series. 𝑋𝑋, 𝐽𝐽 =
𝐽𝐽(1), 𝐽𝐽(2), . . . , 𝐽𝐽(256) is an index array produced by sorting X. As 
the chaotic sequence is nonperiodic and ergodic, it surely gives 
𝐽𝐽(𝑖𝑖) ≠ 𝐽𝐽(𝑗𝑗), providing that 𝐼𝐼 ≠ 𝑗𝑗. 
3.4.3. Communication with diagnosed patients 

Each medical centre creates its own identifier using the 
following formula (Equation 12) based on logic and node distance: 

𝑑𝑑𝑖𝑖�𝐻𝐻𝑖𝑖 ,𝐻𝐻𝑗𝑗� =
∑ �𝑋𝑋𝑝𝑝𝑝𝑝

𝐻𝐻𝑖𝑖+𝑋𝑋𝑝𝑝𝑝𝑝
𝐻𝐻𝑗𝑗�𝑝𝑝,𝑞𝑞∈�𝐻𝐻𝑖𝑖∪𝐻𝐻𝑗𝑗−𝐻𝐻𝑖𝑖∩𝐻𝐻𝑗𝑗�

∑ �𝑋𝑋𝑝𝑝𝑝𝑝
𝐻𝐻𝑖𝑖+𝑋𝑋𝑝𝑝𝑝𝑝

𝐻𝐻𝑗𝑗�𝑝𝑝𝑝𝑝∈𝐻𝐻𝑖𝑖∪𝐻𝐻𝑗𝑗

 (12) 

where 𝐻𝐻i and 𝐻𝐻j are nodes with IDs of 𝐻𝐻𝑖𝑖(𝑖𝑖𝑖𝑖) and 𝐻𝐻𝑗𝑗(𝑖𝑖𝑖𝑖), 
correspondingly; p is the source. As stated in Equation (13), two 
hospital nodes' data privacy is tenable in a decentralised fashion 
using a randomised tactic: 
𝐻𝐻𝐻𝐻[(𝑅𝑅0) ∈ 𝑆𝑆]  ≤  𝑒𝑒𝑒𝑒𝑒𝑒(∈) · 𝐻𝐻𝐻𝐻[(𝑅𝑅′) ∈ 𝑂𝑂] (13) 

where R and R_0 are two data records next to each other and O 
is the data set that was output. Although RS successfully protects 
patient information, Laplace is implemented in a local training 
model mi for a number of healthcare facilities, as indicated in 
Equation (14). 
𝑚𝑚��⃗ 1 = 𝑚𝑚𝑖𝑖 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑠𝑠/∈) (14) 

where s represents sensitivities and represents overall 
transmission costs. All patient information is encrypted using a 
combination of public and private keys. (𝑃𝑃𝑃𝑃i, 𝑆𝑆𝑆𝑆i). MAE provides 
an estimate for each exchange and announces it through 𝑚𝑚𝑖𝑖 and 𝐻𝐻𝑗𝑗. 
The distributed ledger contains a record of every transaction that 
has been validated. Equation (15) provides the MAE: 
𝑀𝑀𝑀𝑀𝑀𝑀(𝑚𝑚𝑖𝑖) = 1

𝑛𝑛
∑ |𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑋𝑋𝑖𝑖)|𝑛𝑛
𝑖𝑖=1  (15) 

where n represents the total sum of users and 𝑋𝑋𝑖𝑖  represents the 
individual costs of communicating with and making a transaction 
with each user. Some specialised security attacks pose a threat to 
data providers if their customers' personal information is shared. 
The problem can be solved by protecting the holders' data while yet 
providing it to the user with all relevant information. Provided data, 
such as hospitals, can instead trade trained models just with the 
requester. 
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RESULTS AND DISCUSSION 
PYTHON was used to carry out the employment of the suggested 

model. The computer has an Intel CPU, 8 GB of RAM, and 
Windows 10, among other features. The proposed model was 
evaluated with respect to its precision, sensitivity, and 
generalizability. Existing models were compared with the proposed 
framework. In the paragraph that follows, we will discuss the 
criteria used for grading.: 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹
                    (16) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                (17) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

                         (18) 

𝐹𝐹1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2×𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

                 (19) 

 
Table 1: Classifier Analysis 

Methodology  Parameter Evaluation 

Accuracy 
(%)  

Precision 
(%)  

Recall 
(%)  

F-measure 
(%)  

LeNet 88.89  79.12  80.92  85.27  

AlexNet 72.32  80.53  83.69  86.07  

InceptionNet 81.43  82.07  90.06  89.28  

ResNet 77.16  91.04  94.17  93.08  

Inception-
ResnetV2 

96.20  97.84  98.20  98.67  

 
In the Table 1 provided, the Classifier Analysis is characterized 

as follows: 
In this investigation, the LeNet model achieved an accuracy of 

88.89%, with a precision range of 79.12%, recall of 80.92%, and an 
F1-score of 85.27%. The AlexNet model achieved an accuracy of 
72.32%, with a precision range of 80.53%, recall of 83.69%, and an 
F1-score of 86.07%. The InceptionNet model achieved an accuracy 
of 81.43%, with a precision range of 82.07%, recall of 90.06%, and 
an F1-score of 89.28%. The ResNet model achieved an accuracy of 
77.16%, with a precision range of 91.04%, recall of 94.17%, and an 
F1-score of 93.08%. The Inception-ResNet V2 model achieved an 
accuracy of 96.20%, with a precision range of 97.84%, recall of 
98.20%, and an F1-score of 98.67%. 

 

 
Figure 7: Graphical Illustration of projected model 

 
Figure 8: Analysis of different models for prediction process. 
 
4.2. Performance Analysis for proposed encryption model 

Metrics like encryption and decryption times can be used to 
assess the efficacy of the proposed CPABPP approach. 
4.2.1 Encryption Time 

Encryption Period is the time taken for transporting an input text 
to ciphertext.  

 
Table 2: Encryption time comparison 

Key Sizes 64 128 256 512 1024 
RSA 9 100 150 410 720 
Blowfish  7 10 100 220 650 
CPABPP 1 2 5 80 350 

 
In the analysis of Table 2 characterizing the Encryption time 

comparison: The RSA encryption time for key sizes of 128 was 9, 
for 256 it was 100, for 512 it was 150, for 256 it was 410, and for 
1024 it was 720, respectively. The Blowfish encryption time for 
key sizes of 128 was 7, for 256 it was 10, for 256 it was 100, for 
256 it was 220, and for 256 it was 650, respectively. The CPABPP 
encryption time for key sizes of 64 was 1, for 256 it was 2, for 256 
it was 5, for 512 it was 80, and for 1024 it was 350, respectively. 
4.2.2 Decryption Time 

Decryption period is the period taken for transporting encrypted 
text to unique text  
 
Table 3: Decryption time comparison 

Key Sizes 64 128 256 512 1024 
RSA 70 145 280 520 830 

Blowfish  60 120 270 400 710 

CPABPP 0 8 10 90 400 
 

In Table 3, the Decryption time comparison is characterized as 
follows: The RSA model reached decryption times of 70 for key 
size 64, 145 for key size 256, 280 for key size 512, and 830 for key 
size 1024, respectively. The Blowfish model reached decryption 
times of 60 for key size 64, 120 for key size 256, 270 for key size 
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512, 400 for key size 512, and 710 for key size 1024, respectively. 
The CPABPP model reached decryption times of 8 for key size 64, 
10 for key size 256, 90 for key size 512, and 400 for key size 1024, 
respectively. 

CONCLUSION 
When it comes to using the IoT for healthcare, privacy is one of 

the biggest concerns. Existing security methods are inadequate for 
the IoT due to its restricted resources. Threats to security and 
privacy are overcome by the suggested Inception-ResNet model, 
which incorporates a privacy preservation approach in its design. 
For the purpose of building a patient-control strategy utilized in 
electronic medical subdivisions, this research offered innovative 
ciphertext-policy attribute-keys. Researchers and scientists dealing 
with private healthcare data in distributed computing environments 
may find this study valuable. The suggested model achieves 
competitive performance by making use of both strategies, but at 
the cost of major trade-offs in execution time and client count. 
Using both encrypted and plain data, the classification metrics 
(accuracy, F1, precision, and recall) achieve over 96% in every 
scenario. The aforementioned studies show that there is a wide 
range in image quality both within and across categories. It's easy 
to confuse one for the other during the identification phase. 
Therefore, additional improvements to the recognition accuracy 
can be achieved through appropriate data augmentation and other 
methods in future studies. 
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