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ABSTRACT 
 

Efficient identification of diseases in 
mango leaves is crucial for 
maintaining the health and 
productivity of mango crops. 
Existing approaches, relying on 
manual inspection or image 
processing, are time-consuming, 
error-prone, and face challenges 
with various image conditions. This 
study addresses these issues by 
proposing a robust machine learning model capable of classifying mango leaf diseases across diverse conditions, including different resolutions, 
structural complexities, and varying blur levels. The solution involves exploring and optimizing machine learning algorithms, tuning 
hyperparameters, and developing a predictive model for accurate disease identification based on visual features extracted from leaf images. To 
overcome these challenges, a novel deep mutual learning model, DVNet, is introduced, leveraging the strengths of Densenet 121 and VGG19 
neural networks. Hyperparameter optimization, a systematic procedure for identifying optimal values, is incorporated using Particle Swarm 
Optimization (PSO). The proposed framework achieves an impressive accuracy of 94.72% in detecting eight distinct disease categories and healthy 
mango leaves, surpassing existing works in mango leaf disease detection.  

Keywords: Mango Leaf disease Detection, Deep mutual learning, DenseNet-121, VGG-19, Particle Swarm optimization (PSO). 

INTRODUCTION 
Plant diseases pose a significant threat to agricultural production 

and can lead to substantial economic losses. Early detection and 
accurate diagnosis of plant diseases are crucial for implementing 
timely control measures and preventing the spread of infections. In 
recent years, there has been a growing interest in utilizing deep 
learning techniques for the detection and diagnosis of plant 
diseases. Deep learning models, such as convolutional neural 
networks, have shown promising results in various domains, 
including computer vision and image recognition. The mango 

industry, in particular, faces challenges with detecting diseases that 
affect mango leaves. These diseases, if left untreated, can lead to 
reduced yield and poor fruit quality. The mango, a fruit that is 
extensively produced on a global scale, is prone to a range of 
diseases that have the potential to greatly affect its overall 
productivity. Plant diseases, particularly those affecting the leaves, 
are significant variables that have a substantial impact on crop 
productivity. These illnesses are characterized by the presence of 
certain symptoms on the leaves, including the formation of lesions, 
changes in pigmentation, and the development of deformities. The 
timely identification of these signs is of utmost importance in 
facilitating efficient disease control and mitigating the 
dissemination of illnesses inside the orchard. The foresight of 
outbreaks of diseases would facilitate and streamline the diagnostic 
procedure, hence promoting the cultivation of high-quality crops.1  

Conventional approaches to disease identification frequently 
depend on visual examination, a process that is labor-intensive and 
potentially prone to inaccuracies. Small farms have a better chance 
of spotting the infections early and taking preventative action. 
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However, when it comes to large-scale agricultural operations, the 
process becomes both labor-intensive and financially burdensome. 
Hence, the pursuit of an automated, precise, efficient, and cost-
effective technique for the identification of plant diseases holds 
significant significance.2 In recent times, the utilization of deep 
learning techniques has become increasingly prevalent in the field 
of image analysis. These techniques have proven to be highly 
effective in addressing the challenge of automated identification of 
diseases affecting mango leaves, so presenting a hopeful prospect 
for this particular application.3 Recently, there has been a shift in 
the utilization of deep learning models for the purpose of detecting 
diseases in mango leaves, as these models are increasingly being 
implemented in real-world scenarios rather than solely inside 
research settings. By utilizing smartphones and affordable imaging 
gear, farmers have the capability to record photographs of mango 
leaves, which can then be analyzed by deep learning models.4 This 
process enables the prompt and precise diagnosis of potential 
issues. The utilization of real-time evaluation enables farmers to 
promptly and specifically respond, thereby reducing the adverse 
effects of diseases on crop productivity. Several automated 
methods have been published for detecting disease-affected 
regions, including segmentation and classification methods such as 
K-means,5 Support Vector Machine (SVM),6 and Convolutional 
Neural Networks (CNNs).7-9 

Problem Statement: The accurate identification and diagnosis 
of mango leaf diseases from images present a significant challenge 
due to inherent complexities such as blurriness, varying 
orientations of leaves, disease pattern variations and size variations 
in the leaves. Traditional methods of disease detection struggle to 
handle these diverse and intricate characteristics, leading to 
suboptimal results and hindering the effectiveness of agricultural 
disease management practices. To address these problems, a novel 
approach is required that integrates advanced deep learning models. 
Additionally, the optimization of model parameters is crucial for 
achieving robust performance. This paper aims to provide a 
solution to the challenges posed by the complex nature of mango 
leaf images, offering an innovative and efficient method for disease 
detection that overcomes the limitations of existing approaches 

This research’s primary findings and contributions are outlined 
in the subsequent sections. 
• This study utilized a unique dataset comprising 4873 pictures 

of mango leaves exhibiting healthy and disease-affected 
conditions. Through careful analysis, eight distinct categories 
of leaf diseases were identified: Anthracnose, Bacterial Canker, 
Cutting Weevil, Die Back, Gall Midge, Powdery Mildew, Red 
Rust, and Sooty Mould. 

• The utilization of deep learning methods provides a more 
automated and accurate approach to identifying and diagnosing 
mango leaf diseases. By leveraging the Densenet-121 and 
VGG19 deep learning models, demonstrated the potential to 
revolutionize disease detection in mango plants. These models 
have the ability to analyze large datasets of images of mango 
leaves, effectively distinguishing between healthy leaves and 
those affected by diseases. Furthermore, the integration of a 
deep mutual learning model enhances the accuracy and 

robustness of disease detection by leveraging the collaborative 
learning from multiple models 

• Introduced a heuristic search mechanism based on Particle 
Swarm Optimization. This optimization technique is employed 
to fine-tune the model parameters, ensuring that the integrated 
Densenet 121 and VGG19 architecture is optimized for mango 
leaf disease detection. This contributes to achieving better 
convergence and performance. 

• Combined effect of deep mutual learning and heuristic search 
using PSO results in a more accurate and efficient model for 
mango leaf disease detection. The proposed approach aims to 
outperform existing methods by providing a robust and reliable 
solution for accurate identification and classification of various 
diseases affecting mango leaves. 

• The deep mutual learning model described in the paper 
demonstrates a prediction accuracy rate of 94.72% in 
recognizing eight separate diseases affecting mango leaves. 
This finding indicates the model’s potential for practical 
implementation in real-time applications. 

LITERATURE SURVEY 
In recent years, a multitude of methodologies have been devised 

for the detection of diseases affecting mango leaves. The methods 
can be broadly classified into illness detection and classification 
techniques. The majority of strategies employ a deep convolutional 
network for the purposes of segmentation, obtaining attributes, and 
categorization.10 CNNs have demonstrated remarkable efficacy in 
the domain of image identification, rendering them particularly 
suitable for the detection of diseases affecting mango leaves. These 
models represent a class of deep neural network structures that have 
been specifically engineered to acquire and adjust hierarchical 
features from visual data, such as photographs. In the domain of 
mango leaf disease identification, CNNs demonstrate exceptional 
proficiency in discerning complex patterns and subtle deviations 
within leaf pictures, hence facilitating precise categorization of 
leaves as either healthy or diseased. Mishra et al. introduced a CNN 
framework aimed at the identification of plant diseases.11 Prasad et 
al. proposed a CNN-based model which was constructed to detect 
plant disease and abnormalities at their early stages. The model 
achieved an accuracy of 90.36% in accurately identifying three 
unique disease classes.12 Pham et al. employed an artificial neural 
network (ANN) based architecture to identify the presence of early-
stage disease on plant leaves marked by tiny pathogenic blobs.13 In 
their study, Prabhu et al. introduced a CNN structure that employed 
the levy flight distribution for the purpose of feature selection, 
while utilizing MobileNetV2 for classification. The model 
successfully identified three distinct diseases affecting mango 
leaves.14 

In their study, Rao et al. employed the AlexNet15 model to 
perform automated feature extraction and classification in the 
context of detecting diseases in mango and grape leaves. The 
research findings yielded a success rate of 89% in the treatment of 
mango leaf cases.16 Rizvee et al. developed LeafNet, a novel 
detection system, for identifying seven prevalent leaf diseases in 
mango plants.3 This framework adheres to the convention 
established by AlexNet, wherein the number of filters or channels 
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is initially expanded and subsequently reduced during the process 
of feature map extraction. The aforementioned model achieved an 
average accuracy rate of 99.3%.3 In their study, Swaminathan et al. 
devised a plant leaf disease detection model based on Densenet-121 
architecture, which was applied to identify diseases in seven 
distinct plant species.17 Nandhini et al. introduced an improved and 
hyperparameter tuned Densenet-121 framework with the aim of 
enhancing the accuracy of plant leaf disease identification. The 
model achieved an average precision score of 98.60%.18 Seetha et 
al. proposed the hybrid Coyote Grey Wolf optimization (CO-
GWO) method to classify mango leaves as healthy or unhealthy. 
Classification involves extracting important elements from the split 
image. The Neural network (NN) classifier classifies, with the 
weights updated using the proposed algorithm to improve 
classification accuracy. Precision, recall, and F1 measure, accuracy 
show that the proposed model is 96.7111%, 97.5712%, 97.1504%, 
and 96.4792% effective.28 Performed the comparison of CNN 
architectures AlexNet, VGG-16, and the ResNet-50 model for 
mango plant disease classification. These models are trained on the 
Mendeley dataset and validated with and without transfer learning 
models. AlexNet, for short (25 layers, 6.2 million individuals 
parameters) has 94.54% testing accuracy and reduced training time. 
ResNet-50 (117 layers, twenty-three million parameters) and VGG-
16 (16 layers, a total of 138 million features) have 98.56% and 
98.26% testing accuracies.29 

DESIGNED METHODOLOGY 
The designed methodology shown in figure 1, for mango leaf 

disease prediction involves a series of steps designed to enhance the 
performance and robustness of the models, focusing on image 
preprocessing, model construction, and optimization. Initially, the 
mango leaf images are resized to a 256x256 standardized resolution 
to facilitate seamless integration with the models. This resizing step 
ensures that the images, regardless of their original dimensions, 
conform to a consistent format suitable for both DenseNet-121 and 
VGG-19.  

Following normalization, data augmentation techniques are 
employed to diversify the training dataset. Augmentation methods 
include random rotations, flips, and shifts, enhancing the model's 
ability to generalize to varying conditions in mango leaf images. 
Data pre-processing step is a crucial stage that ensures the input 
images are appropriately prepared for the subsequent fusion model. 
Once the pre-processing steps are completed, a deep mutual 
learning model is constructed by combining DenseNet-121 and 
VGG-19 architectures. Feature maps are extracted from 
intermediate layers of both models, and a novel feature integration 
technique is introduced. This integration incorporates a fusion 
mechanism that merges complementary information captured by 
each model, enhancing the model's overall understanding of 
intricate disease patterns in mango leaves. Combining DenseNet-
121 and VGG-19 models in mango disease prediction involves a 
two-step fusion process: feature-level concatenation and attention-
guided feature integration. In the feature-level concatenation step, 
feature maps extracted from intermediate layers of both DenseNet-
121 and VGG-19 are concatenated along the channel axis. This 
process capitalizes on the dense connectivity of DenseNet-121 and 

the deep hierarchical feature extraction of VGG-19. The 
concatenated features form a fused representation that encapsulates 
both intricate and high-level patterns related to mango diseases. The 
second step involves attention-guided feature integration. A 
lightweight attention mechanism is introduced to dynamically 
modulate the importance of features from DenseNet-121 and VGG-
19. This attention mechanism is trained to weigh the contribution 
of features based on their relevance to disease patterns in the 
training dataset. By emphasizing the most informative features 
from each model, the attention-guided integration refines the fused 
representation, ensuring that the combined features focus on crucial 
disease-related characteristics. 

 

 
Figure 1. Proposed Methodology for Mango Leaf Disease Prediction. 

 
The methodology for the deep mutual learning model for 

combining DenseNet-121 and VGG19 to predict of mango leaf 
diseases involved several key steps. First, the pre-trained 
DenseNet-121 and VGG19 models, which are well-established 
convolutional neural networks (CNNs) in computer vision, were 
selected as the base architectures. These architectures were then 
fused at an intermediate layer to create a deep mutual learning 
model. The decision to combine DenseNet-121 and VGG19 was 
based on their complementary strengths in feature extraction, as 
DenseNet-121 is known for its dense connectivity and feature 
reuse, while VGG19 is recognized for its simplicity and 
effectiveness. To optimize the performance of the deep mutual 
learning model, hyperparameter tuning was conducted using 
Particle Swarm Optimization (PSO), a heuristic search algorithm 
inspired by the social behavior of birds and fish.  

The hyperparameters considered for optimization included 
learning rates, batch sizes, and training epochs. The PSO algorithm 
efficiently explored the hyperparameter space to find optimal 
configurations that maximize the accuracy of the model in 
predicting mango leaf diseases. The selected hyperparameters were 
then used to train the deep mutual learning model on a dataset of 
mango leaf images, aiming to achieve superior disease 
classification performance through the synergistic utilization of 
DenseNet-121 and VGG19. In detail of the individual model is 
explained in below subsections 

DENSELY CONNECTED CONVOLUTIONAL NETWORKS  
DenseNet, also known as “Densely Connected Convolutional 

Network,” is a convolutional neural network (CNN) architecture 
that has been specifically developed for the purpose of picture 
categorization and other related computer vision applications [19]. 
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The fundamental concept underlying DenseNet is the notion of 
dense connectedness.20 In conventional CNN topologies, the 
feature maps present at a certain layer are exclusively coupled to 
the following layers. On the other hand, DenseNet facilitates inter-
layer connections in a dense and compact fashion. In a DenseNet, 
each layer is intricately related to every successive layer.21 The high 
level of connection in the network enables the reuse of features and 
promotes the smooth propagation of gradients during the training 
process. 

DenseNet is constructed with dense blocks, which consist of 
many convolutional layers within each block. Inside a compact 
block, the resultant feature maps of each layer are combined with 
the feature maps of all preceding layers inside the same block by 
concatenation. Transition layers are employed in the context of 
dense blocks to effectively decrease the spatial dimensions of 
feature maps. The transition layers commonly consist of a blend of 
1x1 convolution layers, which are employed for dimension 
reduction and pooling layers. Global average pooling is a 
commonly used technique in DenseNet for classification, replacing 
the use of fully connected layers. The process of global average 
pooling involves the reduction of spatial dimensions in feature 
maps to a singular value per feature map. This is subsequently 
followed by the implementation of a softmax layer for the purpose 
of classification. In order to enhance computing performance, 
DenseNet has bottleneck layers within its dense blocks. The 
bottleneck layer is composed of a 1x1 convolution layer, which is 
subsequently followed by a 3x3 convolution layer. The use of a 1x1 
convolutional layer aids in the reduction of the number of feature 
maps prior to the subsequent 3x3 convolutional layer, which then 
serves to enlarge them. DenseNet-121 represents a particular 
iteration of the DenseNet architectural framework. The term “121” 
in DenseNet-121 denotes the cumulative count of layers within the 
network architecture 

DEEP MUTUAL LEARNING MODEL  
In this work, created a deep mutual learning model using 

DenseNet-121 and VGG-19 models. The details of this structure 
are discussed in this section. DenseNet is renowned for its 
characteristic dense connectedness, wherein every layer is provided 
with input from all preceding levels. The architectural structure is 
characterized by the presence of compact blocks and transitional 
levels. The DenseNet-121 architecture shown in figure 2, consists 
of a total of 120 convolutional layers and 4 average pooling layers. 
The weights of all layers, even those within the same dense block 
and transition layers, are distributed across different inputs. This 
distribution enables deeper layers to utilize features that were 
extracted in earlier stages. Due to the presence of numerous 
repetitive features in the transition layers, the layers inside the 
second and third dense blocks have a tendency to assign lower 
weights to the output generated by these transition layers. 

Let X be the input of layer l in the dense block operation, and the 
output is Hi. A concatenation takes place here inside the operation, 
which is represented in the equation below. 

0 1 1Re ( _ ([ , , ..., ])l lH LU Batch normalization X X X −=         (1)           

Transition layers are employed in order to decrease the spatial 
dimensions, specifically the width and height while maintaining the 

same number of channels. If θ  is a compression factor, then the 
transition layer can be presented as in Equation 2. 

2 ( , _ , kernel_size=1)transitionX Conv D H growth rate θ= ×    (2) 

 

 
Figure 2. DenseNet-121 architecture  

 
VGG19 is a variant of the VGG architecture as shown in figure 

3, characterized by its simplicity with many convolutional layers.  
Let Xl be the input to the l-th convolutional layer,  lW be the 

convolutional filter, lb  be the bias, lH and be the output. Then, 
the output can be written as Equation 3. 

Re ( 2 ( , , , ) )l l l lH LU Conv D X W padding stride b= +        (3) 
Then, the fully connected layer can be presented as below. 

_ _ _ _Re ( . )fully connected fully connected fully connected fully conectedH LU X W b= +    (4) 

In a classification task, the output is subjected to a ‘softmax’ 
activation function to get class probabilities. 

 

 
Figure 3. VGG19 framework 

PARTICLE SWARM OPTIMIZATION 
Deep learning models have the capability to automatically 

classify various disease categories by analyzing photos of mango 
leaves. Nevertheless, the efficacy of these models is contingent 
upon the selection of hyperparameters, including but not limited to 
the learning rate, number of layers, and activation function. The 
hyperparameter optimization process is an essential component in 
searching for the optimal set of hyperparameters that may 
effectively enhance the accuracy and generalizability of models. 
Particle Swarm Optimization (PSO) is a metaheuristic algorithm 
that emulates the collective behavior observed in swarms of avian 
or aquatic organisms. PSO is a technique that may be utilized to 
explore and identify the optimal hyperparameters in machine 
learning models.[22] This is achieved by an iterative process of 
updating the positions and velocities of a group of potential 
solutions, known as candidates, based on their fitness and the best 
solution discovered thus far. PSO has demonstrated efficacy and 
efficiency in addressing many optimization challenges, 
encompassing the optimization of hyperparameters for machine 
learning models.[23] 
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The coordinates of particle i in hyperparameter space can be 
denoted by iX , where i is an integer between 1 and the total 

number of points in search space. Each iX  is a vector encoding 

some combination of hyperparameters. Each point’s velocity iV  is 
also a vector, and it’s this vector that determines the point’s 
positional evolution over time. Both the particle’s individual best-
known location ( bestQ ) and the swarm’s global best-known 

position ( bestG ) are used to calculate the most up-to-date velocity. 
Then, the new velocity of that point is as follows. 

 
1

1 1 2 2. . .( ) . .( )
i

t t t t
i i best i best iV wV k r Q X k r G X+ = + − + −        (4) 

The current iteration is denoted by t, here. Particle momentum is 
determined by the inertia weight, denoted using w. The motion of 
the point is affected by two acceleration constants 1k  and 2k , 
which are defined by the point’s local and global optimal locations, 
respectively. The numbers 1r  and  2r  are completely arbitrary 
between 0 and 1. 
The fitness function ( ( )if X )assesses the model’s performance by 

considering the hyperparameters ( iX ). The position of the particle 
that is most widely recognized is revised when the fitness of the 
current position surpasses the fitness of the previously 
acknowledged best-known position ( bestQ ). The global best-

known position ( bestG ) is updated whenever a particle within the 
swarm discovers a superior position. The PSO technique employs 
an iterative process to continually update the positions and 
velocities of particles. The objective is to identify the optimal 
hyperparameter configuration that either reduces or maximizes the 
fitness function. 

ALGORITHM  
The methods utilized in this research are presented in the visual 

depiction depicted in Figure 4. The primary objective of our study 
is to forecast the occurrence of several disease classes in mango 
leaves, encompassing both healthy and eight distinct diseases. The 
picture data was gathered from several sources in order to create a 
more comprehensive dataset with a substantial quantity of 
photographs. A complete statistical analysis was performed on the 
dataset through the use of exploratory data analysis techniques. 
Following this, the examination is presented using a visual 
representation of data. Subsequently, the dataset was divided into 
separate subsets to facilitate the training and testing procedures. 
Following that, the dataset was subjected to data augmentation in 
order to address the problem of data imbalance. Subsequently, the 
DV-PSO-Net model was constructed to predict the occurrence of 
mango leaf disease. The methodology provided in this study 
involves the extraction of relevant features through the utilization 
of a concatenated model that is built on the DenseNet-121 and 
VGG-19 frameworks. The PSO technique was employed in this 
work as the hyperparameter optimizer for the suggested model. The 
hyperparameters encompassed in this set consist of swarm size, 
inertia weight, and acceleration coefficients. The utilization of the 

PSO approach has been observed to enhance the performance 
metrics in the identification of mango leaf diseases. 

PSO is employed as a powerful heuristic search algorithm to 
optimize the hyperparameters crucial for the performance of a deep 
mutual learning model combining DenseNet 121 and VGG19. The 
objective is to enhance the predictive accuracy of the model in the 
context of identifying mango leaf diseases. Hyperparameters such 
as learning rate, epochs, batch size, and network weights play a 
pivotal role in determining the model's efficacy. PSO is utilized as 
an optimization technique to automatically search and discover an 
optimal set of hyperparameter values that maximizes the model's 
predictive performance. The application of PSO involves 
representing potential solutions, or particles, within a 
multidimensional search space defined by the hyperparameters. 
Each particle in the swarm corresponds to a unique combination of 
hyperparameter values. The fitness of a particle is determined by 
evaluating the performance of the associated deep mutual learning 
model on a training dataset, where the model is configured with the 
specific hyperparameters represented by that particle. The fitness 
function typically involves a performance metric such as accuracy 
or F1 score, reflecting the model's ability to accurately classify 
instances of mango leaf diseases.  

In PSO selecting the specific values for parameters such as 
swarm size, inertia weight, cognitive weight, and social weight 
significantly impact the convergence and exploration-exploitation 
trade-off during the optimization process. The swarm size 
determines the number of particles in the search space, affecting the 
diversity of the search. Common values range from 10 to 100, and 
the optimal value depends on the problem. Inertia weight balances 
the particle's current velocity with its historical velocity, 
determining the balance between exploration and exploitation. 
Values typically range between 0 and 1. Lower values promote 
local exploration, while higher values favor global exploration. The 
cognitive and social weights govern the influence of a particle's 
personal best and the global best solutions on its movement. 
Common values are between 1 and 2, with higher values 
emphasizing individual learning. The careful selection of these 
parameters is crucial for achieving an optimal balance between 
exploration, ensuring broad coverage of the search space, and 
exploitation, focusing on promising regions. 

Throughout the optimization process, particles in the swarm 
iteratively update their positions and velocities based on both their 
individual experiences (local best-known position) and the 
collective knowledge of the entire swarm (global best-known 
position). This dynamic interaction allows the swarm to explore the 
hyperparameter space efficiently, converging towards 
configurations that yield superior model performance. The PSO 
algorithm fine-tunes hyperparameters, adjusting learning rates, 
epochs, batch sizes, and network weights to discover an optimized 
configuration for the deep mutual learning model. The final result 
is a set of hyperparameters that significantly improves the accuracy 
and reliability of the combined DenseNet 121 and VGG19 model 
for predicting mango leaf diseases. This approach not only 
enhances model performance but also demonstrates the 
effectiveness of PSO as a tool for automated hyperparameter tuning 
in complex deep learning architectures. 
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Figure 4. The designed Fused DV-PSO-Net Model for Mango 
Disease Prediction. 

 
The fusion of DenseNet-121 and VGG-19 models for mango 

disease prediction brings forth a synergistic approach that leverages 
the unique strengths of both architectures. DenseNet-121, known 
for its dense connectivity patterns, enables efficient information 
flow between layers by concatenating feature maps from preceding 
layers. This characteristic facilitates the model's ability to capture 
intricate patterns and hierarchical representations within the input 
images, particularly beneficial when dealing with complex 
structures such as diseased regions in mangoes. On the other hand, 
VGG-19, renowned for its simplicity and deep convolutional 
layers, excels in capturing low to high-level features across the 
image, providing a robust foundation for recognizing disease-
related patterns. By combining these models, harnessed the detailed 
feature extraction capability of DenseNet-121 and the depth of 
VGG-19, creating a comprehensive framework that excels in 
discerning nuanced patterns indicative of various mango diseases. 
The necessity for combining models arises from the diverse nature 
of mango disease patterns, wherein certain diseases may manifest 
with intricate textures and structures, while others may present 
more straightforward visual cues. The fusion of DenseNet-121 and 
VGG-19 enables a more holistic understanding of mango disease 
scenarios, allowing the model to exploit the strengths of each 
architecture based on the specific characteristics of the input image. 
This fusion enhances the model's capacity for generalization across 
a broad spectrum of disease presentations, thereby improving the 
overall accuracy and robustness of mango disease prediction. In 
essence, the combined architecture harnesses the complementary 
features of DenseNet-121 and VGG-19, offering a versatile and 
powerful solution for accurate mango disease diagnosis in 
agricultural settings. 

In this study, the combination of DenseNet121 and VGG19 for 
mango leaf disease prediction from mango leaf images, selection of 
hyperparameters such as learning rate, batch size, epochs, dense 
drop outs, number of neurons in dense layer and optimization of 
these hyperparameters plays pivotal role in building the robust 
model. The general outline of the algorithm of this proposed 
methodology is presented below.  

 
 

Algorithm: Mango Disease Classification using DV-PSO-Net 
Input:  
    - Dataset D containing mango images with corresponding 
disease labels 
    - PSO parameters: population size, maximum iterations, inertia 
weight, cognitive factor, social factor 
Output: Trained model for mango disease classification 
Step 1: Data Preprocessing(D): Perform data preprocessing steps, 
including resizing, normalization, and augmentation 
Step 2: Initialize PSO Parameters(): Initialize PSO parameters 
such as population size, maximum iterations, inertia weight, 
cognitive factor, and social factor 
Step 3: Initialize Population(): Initialize the population of particles 
with random values for hyperparameters 
Step 4: while (termination criteria not met) do 
Step 5:     for each particle in the population, do 
Step 6:         Update Particle Velocity( iV ) 
Step 7:         Update Particle Position( iX ) 
Step 8:         Evaluate Fitness() 
Step 9:         Update Personal Best( bestQ ) 
Step 10:       Update Global Best( bestG ) 
Step 11:    end for 
Step 12: end while 
Step 13: Extract Global Best( bestG ):  Extract the best set of 
hyperparameters found during the PSO search 
Step 14: Model Training(D, Global Best): Train the combined 
DenseNet-121 and VGG19 model with the hyperparameters 
obtained from the PSO search 
Step 15: return Trained Model 

 
The algorithm aims to optimize hyperparameters for mango 

disease classification using a combination of DenseNet-121 and 
VGG19 models through the PSO technique. The algorithm begins 
with data preprocessing, ensuring that the mango image dataset is 
appropriately resized, normalized, and augmented to enhance the 
model's generalization capabilities. Subsequently, PSO parameters 
are initialized, including population size, maximum iterations, 
inertia weight, cognitive factor, and social factor. The PSO 
optimization process iteratively refines a population of particles 
representing different hyperparameter configurations such as 
learning rate, number of epochs, batch size and network weights. In 
each iteration, the algorithm updates particle velocities and 
positions based on the PSO dynamics. The fitness of each particle, 
representing the performance of a specific hyperparameter 
configuration, is evaluated using a predefined fitness function. 
Personal and global best solutions are updated to guide the search 
towards promising regions in the hyperparameter space. The 
algorithm terminates when a predefined termination criterion is 
met. The global best solution, representing the optimal set of 
hyperparameters, is then extracted. Finally, the DenseNet-121 and 
VGG19 model is trained using the obtained hyperparameters, 
resulting in a trained model for mango disease classification. This 
algorithm offers a systematic and automated approach to 
hyperparameter tuning, leveraging the collective intelligence of 
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particles in the PSO search space to enhance the performance of the 
combined model for accurate disease prediction in mango leaves 

RESULTS AND DISCUSSION   
One of the primary obstacles faced in the development of 

systems for identifying pests and diseases in mangoes is the lack of 
sufficiently large and precisely annotated datasets. The 
effectiveness of deep learning (DL) models is limited by the lack of 
sufficient training data. To mitigate the issue of overfitting, reduce 
mistakes, and improve the model’s ability to generalize, deep 
learning models necessitate the utilization of adequately large 
training datasets. In recent times, scholars have utilized a diverse 
range of computer-assisted and machine-learning techniques to 
classify different types of illnesses affecting mango leaves. 
However, it is important to note that these methodologies have 
shown limitations in their effectiveness. These limitations can be 
attributed to various factors such as increased dimensionality of 
features, overfitting, higher computational complexity, longer time 
consumption, limited consideration of features, inadequate feature 
quality, and lower segmentation outcomes.  

DATA SETS    
Compiled a unique dataset of 4873 images that are categorized 

into nine distinct classes as presented in figure 5. Despite the dataset 
including a substantial amount of data, preparation is necessary for 
the entire dataset due to variations in the shapes and sizes of the 
photos. Table 1 represents the count of the mango leaf images 
utilized in each category of diseases and healthy mango leaves 
images count.  

 

 
Figure 5. Examples of Eight Distinct Mango Leaf Diseases. 
 
Table 1. The Image data count present in each class of the dataset. 

Mango Leaf 
Condition 

  Number of 
Images 

Healthy   670 

With Disease 

1. Anthracnose 743 
2. Bacterial Canker 500 
3. Cutting Weevil 500 
4. Die Back 500 
5. Gall Midge 500 
6. Powdery Mildew 500 
7. Red rust 163 
8. Sooty Mould 797 

 

In this experiment, we implemented the models with GPU 
backing. Therefore, we used a Lenovo ThinkPad E16 40.64cms 
computer with Windows 11 operating system, which has a 13th 
Generation Intel® Core™ i5-1335U Processor. The system used a 
40 GB memory with NVIDIA® GeForce® MX550 graphics. The 
PyTorch deep learning platform was chosen in this study to 
facilitate the quick training and testing of datasets. The 
implementation of these programs employs the Keras framework, 
which is a Python toolkit for deep neural networks that is open-
source. In order to conduct image classification on a substantial 
dataset, it is imperative to partition the data into two distinct 
subsets: one designated for training purposes and the other intended 
for validation. The training set is utilized for the purpose of training 
the neural network model, whilst the validation set is employed to 
assess its performance and mitigate the risk of overfitting. A 
commonly employed approach involves utilizing a predetermined 
ratio, such as 80:20, to partition the data into distinct training and 
validation sets. 

A variety of CNN architectures are available for selection in 
order to train our model. This study aims to do a comparative 
analysis of the outcomes obtained by employing ResNet, VGG19, 
and Inceptionv3 models. The ResNet architecture is a type of deep 
residual network that addresses the issue of disappearing gradients 
by incorporating skip connections. The VGG19 architecture is 
characterized by its depth, employing a series of convolutional 
layers with tiny filters to effectively extract data. The Inception V3 
model is a convolutional neural network architecture that 
incorporates inception modules. These inception modules are sub-
networks designed to concatenate the outputs of various 
convolutional operations. The learning rate, batch size, and number 
of epochs are just a few of the hyperparameters that must be 
tweaked before we can begin training our model. The learning rate 
parameter governs the magnitude of weight updates performed by 
the model at each iteration. The batch size parameter determines the 
number of samples that are simultaneously inputted into the model 
during training or inference. The quantity of epochs determines the 
number of complete iterations the model undergoes during the 
training process, encompassing the whole training dataset. Grid 
search and random search are two commonly used methods for 
determining the ideal values of hyperparameters that minimize the 
validation loss and maximize the validation accuracy  

A range of criteria were utilized to assess the different models 
given in the work presented here. The confusion matrix is a matrix 
that has been expressly created to assess the efficacy of a certain 
methodology within the realms of pattern recognition and machine 
learning, particularly in the context of classification problems. The 
classifier’s output yields several parameters. The above-mentioned 
classes cover both positive and negative consequences, that can be 
either valid or invalid. Various evaluation measures can be obtained 
from these. The measures of precision, recall, F1-score, and 
accuracy are extensively acknowledged and held in high regard 
within the academic community.24  

The statistical notion of precision entails calculating the 
proportion of correct predictions generated by an algorithm in 
relation to the overall sum of forecasts. The recall rate can be 
calculated by dividing the sum of true positives and false negatives 
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by the number of true positives alone. The incorporation of 
precision and recall measurements can offer significant benefits in 
gaining a more comprehensive comprehension of the efficacy of a 
certain approach while also ensuring that the results conform to 
established standards. Nevertheless, the issue arises when 
depending simply on these measures for comparison, as it involves 
the selection of the best appropriate strategy for the data while 
concurrently evaluating numerous approaches proficient on the 
same information sets. The importance of the F1 score is of utmost 
significance. The F1 score is a quantitative measure that quantifies 
the harmonic mean of the precision and recall metrics. 

The methodology employed in this research entails the 
extraction of pertinent features by employing a deep mutual 
learning model constructed using the concatenated version of 
DenseNet-121 and VGG-19 frameworks, which is subsequently 
followed by two fully connected layers. The initial dense layer has 
a Rectified Linear Unit (ReLU) activation function. At this step of 
the study, the PSO technique was utilized as the hyperparameter 
optimizer for the created model. The set of hyperparameters 
includes swarm size, inertia weight, and acceleration coefficients. 
The second dense layer is triggered using the ‘Softmax’ function 
since the target variable requires a prediction over nine distinct 
classes. The implementation of the PSO technique has been found 
to improve the performance metrics in the detection and 
classification of mango leaf diseases. In accordance with the 
technique adopted in this work, the normalization step was 
conducted by dividing each pixel value of the images in both the 
original and supplemented datasets by 255. Following this, the 
photos underwent a resizing process to conform to the standard 
dimensions that were suitable for the corresponding models. 

In the conducted experiments, the deep mutual learning model 
DenseNet-121 and VGG19 was trained using various 
hyperparameter configurations obtained through Particle Swarm 
Optimization (PSO) heuristic search. The experiments aimed to 
explore the impact of different learning rates, batch sizes, and 
training epochs on the model's performance. The obtained results 
shown in table 2 gives that the Experiment 5, with a moderate 
learning rate, PSO iterations, and random initialization of VGG19 
weights, achieved a high training accuracy of 94% and a 
commendable test accuracy of 91%. On the other hand, Experiment 
7, involving a lower learning rate, PSO iterations, and random 
initialization of VGG19 weights, resulted in a lower training 
accuracy of 90% and a test accuracy of 85%. These findings suggest 
that a careful balance of hyperparameters, particularly learning 
rates and weight initializations, is crucial for achieving optimal 
performance in the deep mutual learning model. 

The details of the hyperparameters tuning based on the PSO 
technique in seven different trials are described in Table 3. 
Following this, the plot depicted in Figure 6 shows the accuracies 
in seven different trial runs of the proposed models in different 
hyperparameter value combinations. Found that the most efficient 
approach was the 4th trial. In this case, the mode achieved an 
accuracy of 94.72% when the swarm size is 12, and the inertia 
weight is set at 0.4. The first and second acceleration coefficients 
are 2.5 and 1.6, respectively. Figure 7, shows the Training and test 
loss in case of trial with highest accuracy (4th trial). Table 5 

represents the comparisons of various models for mango leaf 
disease detection. This table also compares the number of leaf 
disease categories for each study. In this comparative table 4, 
various methods for mango leaf disease classification are evaluated 
based on their respective classes, employed models, and average 
accuracy. Gulavani et al. [25] utilized a CNN-ResNet50 model 
achieving an accuracy of 91% for 5 Classes. Prabhu et al. [14] 
applied MobileNetV2 for 4 Classes and achieved an average 
accuracy of 92.15%. Our Previous work26 employed 
EfficientNetB4-CNN, reaching an accuracy of 93.01% for 9 
Classes. The proposed method, presented in this paper, surpasses 
the existing approaches by introducing DV-PSO-Net, achieving the 
highest accuracy of 94.72% for 9 classes. This suggests that the 
proposed method outperforms the existing referenced models, 
providing a more effective solution for mango leaf disease 
classification, particularly in 9 classes.  
 
Table 2. Hyperparameters Tuning based on PSO technique in various 
Experiment (Exp) trials. 

 
Table 3. PSO parameters obtained from various trials. 

Trials Swarm 
Size 

Inertia 
Weight 

Cognitive 
Weight 

Social 
Weight 

Model 
Performance 
(Accuracy) 

1 10 0.5 2.0 2.0 0.9400 
2 20 0.7 1.5 1.9 0.9232 
3 15 0.6 2.0 1.8 0.9351 
4 12 0.4 2.0 1.6 0.9472 
5 18 0.8 1.8 2.0 0.9211 
6 16 0.6 2.0 1.6 0.9139 
7 12 0.8 1.9 1.8 0.9301 

 

Learning 
Rate 

Batch 
Size 

Epochs 
PSO 

Iterat
ions 

DenseNet 
121 

Weights 

VGG19 
Weights 

Train 
Accura

cy 

0.0010 32 20 50 ‘imagenet’ ‘image
net’ 0.92 

0.0005 64 15 75 ‘random’ ‘rando
m’ 0.89 

0.0020 128 25 100 ‘imagenet’ ‘rando
m’ 0.94 

0.0015 64 30 50 ‘random’ ‘image
net’ 0.91 

0.0018 128 18 60 ‘imagenet’ ‘rando
m’ 0.94 

0.0022 32 25 80 ‘random’ ‘image
net’ 0.93 

0.0013 64 22 70 ‘imagenet’ ‘rando
m’ 0.90 

0.0016 128 20 90 ‘random’ ‘image
net’ 0.93 

0.019 32 30 60 ‘imagenet’ ‘rando
m’ 0.92 

0.0012 64 15 40 ‘random’ ‘image
net’ 0.91 
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The confusion matrix shown in figure 8, reveals the model's 
performance across nine distinct mango disease classes. Notably, 
the diagonal elements represent true positives, indicating the 
model's accurate predictions for each class. Classes such as 
"Powdery Mildew" (Class 6) and "Red Rust" (Class 7) exhibit 
perfect predictions, with all instances correctly classified. The off-
diagonal elements highlight instances of misclassification, with a 
few false positives and false negatives observed across various 
classes. For instance, "Anthracnose" (Class 1) shows a slight 
confusion with "Bacterial Canker" (Class 2) and "Cutting Weevil" 
(Class 3), as evident from the non-zero values in the respective 
cells. The overall distribution of values in the confusion matrix 
indicates a commendable degree of accuracy, emphasizing the 
model's ability to differentiate between mango diseases. 

 
Figure 6. Accuracy of the model in different trials 

 
Figure 7. Training and test loss in case of trial with highest accuracy 
(4th trial). 

  
Figure 8. Confusion Matrix  

The performance evaluation results shown in table 4, across the 
nine classes indicate a generally robust predictive capability of the 
model for mango disease classification. Notably, classes such as 
"Healthy" (Class 0), "Powdery Mildew" (Class 6), and "Red Rust" 
(Class 7) exhibit exceptional precision, recall, and F1-scores, 
indicating accurate identification and classification of these 
conditions. Other classes, including "Anthracnose" (Class 1) and 
"Gall Midge" (Class 5), demonstrate high precision and recall, 
highlighting the model's proficiency in distinguishing these 
diseases. The overall F1-scores for all classes underscore the 
balanced performance in terms of precision and recall, emphasizing 
the model's ability to provide accurate predictions across a diverse 
range of mango diseases. Additionally, the model showcases high 
precision in the detection of healthy mango leaves, critical for 
avoiding false positives. These results collectively signify a well-
performing model that effectively addresses the complexity of 
mango disease classification. 

Table 4. Results of precision, recall and f1-score of each class. 
Mango Leaf  
Disease Classes 

Performance Evaluation Metrix’s  
Precision  Recall F1-score 

Class 0 
(Healthy) 

1.00 0.94 0.97 

Class 1 
(Anthracnose) 

0.96 0.94 0.95 

Class 2 
(Bacterial Canker) 

0.94 0.94 0.94 

Class 3 
(Cutting Weevil) 

0.97 0.97 0.97 

Class 4 
(Die Back) 

0.975 0.97 0.97 

Class 5 
(Gall Midge) 

0.98 0.98 0.98 

Class 6 
(Powdery Mildew) 

1.00 1.00 1.00 

Class 7 
(Red Rust) 

1.00 1.00 1.00 

Class 8 
(Sooty Mould) 

0.97 0.98 0.98 

 
Table 5. Various model comparisons for mango leaf disease detection 

 

Paper Class Model Average 
Accuracy 

Gulavani 
et al. [25] 5 CNN-ResNet50 91% 

Prabhu et 
al. [14] 4 MobileNetV2 92.15 

Vijay et 
al. [26]  9 EfficientNetB4-CNN 93.01% 

Proposed 
method 9 DV-PSO-Net 94.72% 
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It was seen that the designed model in this study performed better 
than CNN-ResNet50,25 MobileNetV2,14 and our previously 
reported model EfficientNetB4-CNN.26 DV-PSO-Net surpasses 
EfficientNetB4-CNN due to the PSO-based hyperparameter tuning 
method.  

CONCLUSION     
Several networks can share predictions and jointly optimize a 

loss function to improve their performance using deep mutual 
learning. In this way, they can improve the generalization capability 
of each network while still benefiting from the diversity and 
complementarity of their architectures. The approach taken in this 
study involves the use of a deep mutual learning model built using 
a combination of the DenseNet-121 and VGG-19 frameworks, 
followed by two fully connected layers for feature extraction. The 
PSO method was used to optimize the model’s hyperparameters at 
this stage of the research. The size of the swarm, mass of the inertia, 
and acceleration coefficients are all part of the collection of 
hyperparameters. The model was trained and tested using a dataset 
consisting of 4873 images of mango leaves that are either healthy 
or damaged, which has identified the existence of eight unique 
forms of leaf diseases. To name just a few, we have anthracnose, 
bacterial cellulase, cutting weevil, die back, gall midge, powdery 
mildew, red rust, and sooty mold. The study proposes a hybrid 
model that demonstrates a recognition accuracy rate of 94.72% for 
recognizing leaf diseases in mango plants. Experiments 
demonstrate that DV_PSO-Net can greatly boost network 
performance. It can make the networks more amenable to real 
applications by decreasing their inference time and memory usage. 
We think our method offers a novel perspective and potential 
solution for disease detection in mango leaves and other plant 
materials. The adoption of the PSO technique has been proven to 
increase the performance metrics in the early prediction of mango 
leaf diseases. The complexities associated with the interactions of 
hyperparameters are well-documented. The PSO operates by 
treating each hyperparameter in isolation, potentially constraining 
its capacity to effectively capture complex interdependencies 
among the parameters. 
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