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ABSTRACT 
 

Alzheimer's is a disease 
that affects the brain 
parts and leads the 
cells of the brain to die. 
It is a permanent 
disorder that causes 
danger in memory and 
loss the responsiveness 
related to the 
environment. The brain 
network plays a significant part in the identification of (Alzheimer's Disease) AD and (Mild Cognitive Impairment) MCI disorders. Since the 
Alzheimer's Association cautioned that Alzheimer’s disease will affect 1 in 85 people by 2050, it is highly essential to have a role play to get a 
faster diagnosis and a prognosis. The biomarker used to diagnose the disease for distinguishing across various dementia causes needs early 
detection. Machine learning (ML) uses a variety of techniques to allow (Normal Controls) NCs to benefit from high dimensional data sets. This 
paper presents a study in early-stage identification or classification of AD using different transferred ML techniques with different modalities and 
their critical assessment and analysis. 
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INTRODUCTION 
According to the World Health Organization (WHO), 

Alzheimer's Disease affects 5% of men and 6% of women over the 
age of 60 worldwide.1,2 In 2013, it was estimated that 44 million 
people worldwide were affected by dementia, with a rapid increase 
to 136 million predicted by 2050.3 As one of the neurodegenerative 
diseases AD is the most common dementia that appears often in 
people above 60 and increasingly impacts their brain and other 
cerebral roles. The issues associated with the aging population are 
becoming more and more severe for people who live long-lasting 
and reduce fertility across various courtiers. The estimated 
occurrence of AD is projected to surpass 65 million worldwide in 
the next 55 years based on Alzheimer's Union analysis.4 The most 

common type of dementia is AD, diagnosed in the elderly and 
decreases their life dramatically, This risk is reduced by diagnosing 
in the early stage more accurately predefined causes exist in the 
medical field related to AD because of the progressive nature and 
multi-stage brain disease. Various risk factors are available namely 
adjustable and non-adjustable factors. Age is amongst all the big 
non-genetic risk factors.5,6 It causes both functional and structural 
disruption of the nerve in the brain's Cellular cells. It stimulates 
Synaptic dysfunction of brain nerve cells in early disease that 
affects connectivity in the neural circuit, memory functions 
cognitive functions, etc.7 The pictorial representation of 
Alzheimer’s brain in Figure 1 gives the understanding of atrophy in 
the cerebral cortex, hippocampus, and enlarged ventricles from the 
normal healthy brain. According to the Alzheimer's Association, 
Alzheimer’s and dementia deaths have increased by 16% during the 
COVID-19 pandemic.8 

ML algorithms are used widely for CAD in the field of medical 
imaging8 and retrieval9 with broad applications area especially 
detecting and classifying the disease in the brain by considering 
CRT10  and X-ray technologies.11 Recent image process method 
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Figure 1- Normal Brain vs Alzheimer’s Brain 

 
uses high processing capabilities during the diagnosis process 
which leads to problems due to the large number of attributes 
involved such as clinical, cellular molecular, etc. Several imaging 
techniques have been used in the diagnosis of AD during the past 
decade, including DTI (Diffusion Tensor Imaging),12 structural 
MRI (Magnetic Resonance Imaging),13 and PET (Positron 
Emission Tomography).14-17 Functional MRIs (fMRIs) play a vital 
role in controlling brain activity and discovering functional 
connectivity between different regions in the brain. It is a reliable 
technique for investigating and detecting brain disease.18 

Machine Learning Techniques are the most important platform 
that is used for the diagnosis of AD in all aspects. Different levels 
of tools are used for making decisions in statistical and 
probabilistic types based on previous information and knowledge. 
ML Tools are used to classify new patterns from old ones. Usage of 
the ML will give efficient results if we understand the limitations of 
the algorithm and understand the problem in a good manner. For 
Various Applications, more than one type of Machine learning 
method always plays a crucial role in yielding very good results. 

MACHINE LEARNING MODELS 
An important knowledge for a clear understanding of what ML 

is before beginning a thorough study of machine learning 
techniques.AD prognosis is widely done using various machine 
learning methods. ML falls in the field of artificial intelligence 
which comprises a range of methods centred on previous learning 
to make statistical, probabilistic decisions. To identify new events 
and predict new patterns, it utilizes past learning (training). 

As compared to standard statistical instruments, machine 
learning is very efficient. In ML, a thorough analysis of a problem 
area and algorithm weaknesses is important to be well understood 
to obtain successful results. Normally experiments are performed 
properly by training a dataset at an appropriate level and the results 
are tested dynamically, it has a good chance of success. In addition, 
all of the algorithms and techniques in Ml are very different. In 
general, machine learning has three kinds of algorithms for learning 
namely Reinforcement, unsupervised, and supervised learning E. 
Moradi et al.19 Supervised learning needs labeled data for 
performing the learning process to draw the appropriate output. The 
self-learning method is based on unclassified and unlabeled data 
which is used in unsupervised learning algorithms.AD prediction 

and diagnosis are carried out based on supervised algorithms such 
as Artificial Neural Networks (ANN), Genetic Algorithms 
Decision Trees, etc. SVM, AR mining, and Ensemble methods are 
other techniques that are commonly in use. SVM (Support Vector 
Machine) is a relatively recent technique compared to supervised 
learning and now it is a popular ML technique, but it suffers an 
unidentified problem in the AD prognosis field. Instead of using a 
single feature, a combination of features also yields very good 
results in predicting the disease using logistic regression which 
gave an accuracy of 86% in the longitudinal study.20 
 

Figure 2: ML Model-based Performance Analysis  
 
Table 1 Performance analysis of ML algorithms for the prediction of 
Alzheimer's Disease  

ML 
Algorith

m 

SV
M 

Logistic 
Regressio

n 

Decisio
n Tree 

Rando
m 

Forest 

VA
F 

Aprior
i AR 

Minin
g 

Number 
of articles 91 74 79 81 68 92 

 

Decision tree algorithms are non-image-based analyses that play 
a vital role in the prediction of AD using various attributes. Dana 
AL-Dlaeen et al.21 predicted the disease by selecting useful 
attributes from the given set of attributes using a decision tree 
algorithm. Gopi Battineni et al22 proposed a feature reduction 
(pruning) technique to improve classification accuracy using the 
DT(Decision Tree) algorithm.AD forecasts do not use KNN (K -
Nearest Neighbors) and DTs algorithms. 

 
Nomenclature 

APOE4 Apolipoprotein E4 allele 
CSF Cerebrospinal Fluid 
CT Computed Tomography 
MRI Magnetic Resonance Imaging 
PET Positron Emission Tomography 
PSEN1& 

PSEN2 
Preseniline gene 1 and 2 

SPECT Single Photo Emission CT 
APP Amyloid Precursor Protein 

 
Random forest is another type of ML classifier that classifies the 

AD from the control subjects. The random forest can be applied to 
different modalities namely MRI23 and EEG 
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(Electroencephalogram)24 respectively which yielded good results. 
The performance analyses for machine learning algorithms 
illustrated in Figure 2 are based on the detailed study of different 
research publications from 2008 to 2024.1-3,14-17,25-56 

BIO-MARKERS AND MODALITY 
Depending upon the various Surveys the identification of AD 

can be done with several Bio- markers as listed out in Table 2. 
 
Table 2 Various Biomarkers of Alzheimer’s Disease 

S.No Spheres Bio Marker 

1 Bio-Chemical CSF, 
Blood-Based 

2 Neuroanatomical CT Scan 
MRI Scan 

3 Metabolic PET Scan 

SPECT Scan 
4 Genetic APP PSEN1 

PSEN2 
APOE4 

5 Neuropsychological Episodic 
Memory 
Other-attention 
Executive Functioning 

 
Various analyses and reviews are done based on the different 

biomarkers over ML algorithms for selecting a suitable algorithm 
to detect AD. 

MODALITY ANALYSIS 
The integration of these modules provides 92.11% accuracy. The 

proposed algorithm suffers ambiguity problems which are related 
to the transform to continuous data from discrete data with attribute 
selection15. Histogram segmentation is used to mask the images 
through the control plane with mean analysis. AR mining takes ROI 
as an input with the constraint parameters and also achieves an 
accuracy of 96.61 %.  

The proposed approach was compared and the findings were 
92.78% and 91.33% accuracy in the SPECT model and PET model 
respectively. Further, a CAD (Computer-Aided Diagnosis) 
decision-making tool 16 is developed for the existence of defects in 
the human brain and proposed pre-processing of the PET dataset. 
Various normalization methods are identified namely spatial and 
intensity and Fisher Discriminants ratio (DR) etc. The accuracy was 
improved related to the predictive level by eliminating incomplete 
data and class inequality, especially for early AD detection. The 
goal was to improve the AD diagnosis rate using AR progression 21 
and keep track of their success by reducing the time and clinical 
expense-related trials. Here, the different data sets are applied to the 
PiB-PET and FDG-PET model which achieves 94.74% and 97.37% 
respectively. 

The CAD system used for detecting AD diagnosis in the early 
stage is a more challenging task, so the proper classification method 
needs to be introduced for analysis R. Chaves et al.,(2010). The 
approach proposed was based on the focus regions (ROIs) of the 

three-dimensional stimulated brain. For this reason, they selected 
an ADNI, SPECT dataset of 97 instances (AD-54, NC-43). The 
authors made comparisons with other strategies such as PCA-
SVM, GMM-SVM, and VAF with 95.87% accuracy in terms of 
cost analysis. With the same dataset,27 the work by discovering the 
correlations between attributes. Various algorithms were 
compared to each other and achieved 94.87% accuracy. The 
imbalance condition of class labels was reduced and focused on 
pathologically unverified evidence without any consideration of 
missing and noise values. These data sets of AD have also been 
applied to other image-processing models to diagnose other types 
of neurodegenerative diseases. PET and SPECT Modalities are 
implemented by performing association rules with homogeneous 
data sets in the data mining.29 

 
Figure 3 Performance Analysis of Modalities  
 
The regular pattern area applied improves the accuracy of the 

proposed structure-based MRI to differentiate AD with early-stage 
controls. It also applied over the conversion from SVM to MRI 
separating the disease from normal aging. Using whole-brain 
pictures, 96% of AD patients who have been pathologically 
checked have been accurately identified with standard data. 
 
Table 3 Performance analysis of Different Modalities for prediction 
of Alzheimer's Disease  

Modality MRI SPECT PET DTI EEG 
Multi- 

Modality 
Number 

of 
articles 

88 94 90 82 90 91 

 
Different biomarkers provide accurate outcomes based on the 

groups and corresponding classification. Enhanced biomarkers are 
combined with various attributes for diagnosing AD and making 
the AD members healthy.30 The integration of MRI, CSF, and PET 
modalities obtained 93.2% accuracy. The baseline MRI is tested 
individually with an accuracy rate of 86.5%. Classification strength 
is boosted by comparing future time attributes (i.e. points) with 
various conversion methods.31 The CSF and MRI measures with 
various dimensions found an accuracy of 81.6% and 87% 
respectively. The integration of these models also achieved 91.8% 
accuracy, which is good for AD detection. The automated measures 
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are selected such as CSF and MRI with OPLS parameters which 
increase the accuracy of the respective conversion process. Figure 
3 shows the performance analysis of various Modalities based on 
the detailed study of different research publications during 2008-
2024.1,14-17,25,26,28-34,57,58 and the respective data values associated 
with the figure are illustrated in Table 3. 

MACHINE LEARNING-BASED IMAGE ANALYSIS 
A spare illustration helps integrate different ages to improve 

accuracy26. Machine learning techniques combined with structural 
MRI can detect non-focal alterations in the temporal lobe that are 
indicative of the onset of Alzheimer's disease. Early detection and 
diagnosis of AD are analyzed based on non-invasive biomarkers for 
verifying their feasibility32. The AD data are collected from 
heterogeneous sources and applied in ensemble methods for 
assessing the performance. The modern method of AD detection 
uses a software model with shape and brain abnormal features. It 
also reads the factors such as white and grey volume, cortex and 
cavity area, and density of the brain. It doesn’t provide the level of 
effect on the brain by AD35. The Recurrent Neural Networks (NN) 
model interprets the low-level features and coefficients for 
combining hippocampal data from a different location. Region-
based shift and voxel-based models verify the various measures of 
the brain with AD prediction36. The simple Majority Voting (MV) 
model is used to achieve 85.55% precision by considering data 
fusion-based diagnosis. The integration sum and SVM of 
modalities increase the precision rate in the 10 % - 20 % range. The 
Ensemble approach is reliable57, but the resulting accuracy is poorer 
than the accuracy obtained in previous research59 and as an 
elaboration of previous models, a novel method of using Multi-
View classification for diagnosing AD, where Earlier methods used 
only ROI (Region of Interest) features from MRI. In contrast, here 
author used both ROI and HOG (Histograms of Oriented Gradient) 
features Since HOG is less robust to noise when compared to ROI. 

A novel method is proposed for learning the transformation 
comparison among two spaces with the individual collection based 
on the control of the class label. The multi-view method helps to 
increase the efficiency of recognition of disease status which 
outperforms compared to the baseline method. The effectiveness of 
the model is increased by using multiple modalities. Low-level 
characteristics are considered for using MRI volumes and mean 
signal intensities of PET60. High diagnostic accuracy is achieved by 
using latent features over auto-encoders in deep learning 
approaches like AD and MCI classification. A multi-modality 
approach (fMRI+FDG-PET+CSF) has been proposed which 
showed very high precision and also compared with the novel 
method of latent representation. 

The learning of multimodality-based AD diagnosis uses 
MRI+PET+Genetic data for the AD diagnosis61. The existing 
methods discard the unknown samples that are present in the multi-
modality data. This issue is addressed by using novel latent 
representation, especially for incomplete data. The proposed 
method used an automated framework that yields effective results. 
A weighted combination of multi-modality SCDDL was proposed 
to classify AD from MCI and AD and also compared with NC. 
Structural MRI, fluoro-deoxy-glucose (FDG), PET and florbetapir 

PET evidence produces 98.5% accuracy 82.8% and 82.7% 
respectively.62 The multi-model approach is extended to the 
SCDDL model by using kernel learning. A single classifier is 
suffering an unsuccessful classification problem due to the 
minimum sample size. A hierarchical approach uses a multilevel 
classification method for combining different features at the local 
level. The intra-cerebral Regions and zones have been applied and 
showed a result of high precision of 92.0%.63 

The Linear SVM approach selects the attributes that indicate 
high relevance and are more accurate with classification scores 64. 
The classification of various people like AD patients and non-AD 
patients are classified and verified using a P-type Fourier descriptor 
with 87.1% accuracy. An efficient biomarker converts MCI to AD 
from MRI images for accurate prediction. Grading biomarker 
calculates the accuracy based on parameters such as the correlation 
of age, selection of features, training data selection, accuracy during 
registration, and so on. The image with ML algorithm analysis is 
shown in Figure 2 concerning the X-axis as the total number of 
articles published and the Y-axis as types of machine learning 
algorithms for various Datasets and the respective data values 
associated with the figure are illustrated in Table 1. 

PERFORMANCE LEVEL ANALYSIS 
SVM classification based on specific subjects defers an accuracy 

of 84%.19,35,65,66. It will have a confounding impact on the use of 
disease-specific classification changes. A Linear regression model 
removes the difficult effect of normal-age people.67 The Cox hazard 
model combines linear regression with multivariate analysis of 
survival for diagnosing accuracy with ROC analysis.68 ELM 
approach uses different biomarkers by selecting the filter-based and 
wrapped-based features for identifying the atrophic variations 
among various people.sMRI acquired three measures from the 
brain namely thickness of cortical, surface area, and gray volume. 
It also preprocessed MRI data with the measurement of atrophy in 
the brain, CSF quantification, and scores related to cognitive and 
performance.69 Detecting pre-symptomatic AD is very challenging 
using only a single biomarker. An automated ML classifier predicts 
the AD by performing various levels of tests like p-tau, t-tau, and 
CSF Aβ. It is `compared with MCI, NC, and AD subjects in 
individuals and groups for achieving higher precision.70 

Unlike other researchers, a survey was taken using an alternative 
method for AD diagnosis at the earlier stage by using EEG 
signals.71 An AD patient suffers a problem due to the 
transformation of the spectrum from a high to lower frequency 
range which leads the EEG anomalies. Variations in the EEG 
waveforms are in different levels namely alpha level, beta level, 
theta level, and delta level concerning the threshold values which 
intimates the unambiguous diagnosis of AD. A non-linear 
combination of the cortical fibres is not proved because of lack of 
evidence, so this is detected using a sign-based approach72. The bi-
spectral method of analysis calculates frequency changes related to 
coupled and field frequency in the different cortexes. The 
diagnostic accuracy was assessed by the EEG approach based on a 
large literature study with approximately 80%. Functional and 
structural neuro-image accuracy is improved by applying 
approaches like CT, MRI, SPECT, PET, and the integration of EEG 
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[59,71-77]. The classifications of patients in most of the research work 
are (Stable Cognitive Impairment) SCI, (Mild Cognitive 
Impairment) MCI, Non-AD, and AD patients,78-82 and the reliability 
analysis of the patients is represented in Figure 4. 

 
Figure 4 Reliability Analysis of Different Patients 
 
Jelicet al.1999 have done work with the grouping of PET with 

EEG with 90% accuracy and 100% sensitivity. Research combining 
MRI with EEG83 for the measurements of hippocampus regions 
which gave a maximum score of abnormalities in AD patients has 
also been done. Additionally, the abnormality with a combination 
of CT provides useful early markers that have been measured. 
Major studies investigated whether or not the hereditary variation 
of 4 alleles of Apolipoprotein E (APOE), a significant biological 
risk factor for late-onset AD impaired the EEG in AD patients.83-87 
Similarly, it has been found that AD patients were homozygous for 
the APOE 4 allele87. 

The EEG coherence is measured based on functional 
connectivity factors like linear right, linear wrong, linear right, 
temporal right, and coherence. Efficient tools are used for EEG and 
AD diagnosis with the comparison of various signals present in AD 
patients and also check the health-related to subjects. The classes 
of these signals are measured by performing EEG functions that 
exist in the entropy and bump model (Nesma Houmani et.al 
(2018)). EEG diagnosis performs automatically with database 
support over various clinical conditions and obtained an accuracy 
of 91.6%. The comparison of different accuracy falls in the range 
of 81.8% and 88.8% for patients with AD and non-AD patients. The 
limitations examined in these methods deliver that only small 
datasets have been examined so far, these methods showed only the 
lowest specificity. Finally, these accuracies were not evaluated with 
other diagnosing methods. It will focus on the study of differential 
AD diagnosis based on MCI subjects to extract the finest descriptors 
from the group of subjects. 

CONCLUSION 
In the past two decades, the diagnosis of AD has been 

progressive, and empowered technology helped to detect AD with 
better accuracy. Various approaches have been studied and 
identified the challenges faced by the existing methods. 
Pathological verification is proved with the small data set. 
Different modalities are reviewed to identify the reliable 

parameters that were collected from agencies like ADNI and 
OASIS. Feature identification and selection methods are analyzed 
over AD detection using image processing methods. Biomarkers are 
identified for detecting AD in the early stages and their 
corresponding studies about various modalities and their 
prediction rate are discussed. Imaging modalities are analyzed 
based on the changes that occur in the various regions of the AD 
patient's brain. The mathematical investigation has been carried out 
in a parallel manner to predict AD in critical conditions. The non-
linear dynamic model understands the deep insights that will help 
with spectral analysis. Apart from analysis done based on various 
modalities, biomarkers, and models for diagnosing AD, early-stage 
prediction is much more important for middle-class society in our 
country where the cost factor plays a vital role in treating the 
disease in the later stages. Machine learning models are compared 
to identify the challenges related to AD. Even though many earlier 
studies used neuro-imaging as a data source, the current tendency 
is to integrate multimodal data. The medical experts also direct 
us to focus on various AI techniques to classify AD patients. 
Finally, the study expressed that the nature and volume of the 
disease are identified by the strengths and weaknesses of AD 
detection. 
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