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ABSTRACT 

 

Automated brain 
tumor segmentation 
is challenging due to 
the tumor tissues' 
shape, size, and 
appearance. Various 
methods used multi-mode MRI scans to segment sub-regions of brain tumors.  3D CNN methods improved performance in recent years, but most 
methods do not use uncertainty information in segmentation. For reliability and understanding, model prediction is vital for clinical decisions. 
This work studies three models namely 3D-UNet, Modified 3D-UNet, and Modified Multistage-3D-UNet for brain tumor segmentation. MRI 
volume bias correction and normalization were carried out using z-score normalization. Two patch generation strategies reduce memory use and 
class imbalance. Voxel-wise uncertainty evaluation was made for aleatoric and epistemic uncertainties using test time augmentation and dropout, 
respectively. Variance and entropy are used to measure the uncertainty of the modified multistage-3D-Unet segmentation model from ground 
truth. Variance creates separate uncertainty maps for each tumor sub-regions, whereas, entropy provides only global information. Uncertainty 
is used to filter miss-segmented predictions and improve accuracy. Uncertainty awareness increases model accuracy with dice scores of 0.93, 
0.91, and 0.83 for tumor sub-regions WT, TC, and ET respectively. 
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INTRODUCTION 
A brain tumor is an abnormal development of tissue in central 

nervous system. The tumor can be benign or malignant. 
Development of tumor in brain known as primary brain tumor and 
spread of tumor to brain tissue from other parts of body is metastatic 
or secondary brain tumor.1 Brain tumors can be classified based on 
the tissue type, anatomical location and malignancy level. World 
Health Organization (WHO) classifies brain tumor based on 
histological features, molecular characteristics and malignancy.  
The grading ranges from Grade I to Grade IV with increasing 
malignancy or severity.2 Gliomas are the most common type 

primary brain tumor.1 Glioma can be classified into two types (1) 
“low grade gliomas" (LGG), grades I-II, characterized by low blood 
concentration with less aggression,  and (2) “high grade gliomas" 
(HGG), grades III-IV, with faster growth rate and aggressiveness.2  

Different MRI modalities (T1-weighted, post-contrast T1-
weighted, T2-weighted, and Fluid-Attenuated Inversion Recovery- 
FLAIR) reflect the heterogeneous tumor sub-region properties for 
diagnosis, treatment and evaluation of brain tumor.3 The diverse 
brain tumor sub-regions are peritumoral edematous / invaded 
tissue, the fluid filled necrotic core, the enhancing solid non-
enhancing tumor core.  Manual segmentation of MRI modalities is 
challenging and time consuming for clinical experts. There is a 
need of automated method for automated brain tumor 
segmentation. Despite the advancement in recent years, due to 
highly diverse size, appearance, and shape of malignancy and 
reliability of available methods, Developing trustworthy automated 
multi-modal brain tumor segmentation is a challanging task.4  

The work presented here is regarding the development of 
algorithm for finding uncertainy in brain tumor segmentation using 
3D multi-modal Magnetic Resonance Imaging (MRI) scans. The 
proposed method is implemented with well accepted 3D-UNet5 
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Modified 3D-UNet6 and modified 3D-Unet with multistage 
training. Two different patch generation techniques proposed to 
decrease the class imbalance problem. Patch based sampling is used 
due to memory restriction and data augmentation carried out to 
avoid model overfitting.  

Aleatoric7 and epistemic uncertainties have been estimated from 
the segmentation predictions using Test Time Augmentation (TTA) 
and Test Time Dropout (TTD) respectively. Voxel wise uncertainty 
measure in terms of variance and entropy gives tumor sub-region 
and global information in segmentation prediction to that of ground 
truth. Hybrid uncertainty derived from the combination of aleatoric 
and epistemic uncertainties on modified Multistage-3D-UNet. 
False positive predictions were filtered out using suitable threshold 
to improve model performance in segmentation prediction in 
different classes. 

RELATED WORKS 
In the last decade many researchers have focused on medical 

image analysis problems, particularly developing methods for 
efficient brain tumor segmentation. Existing brain tumor 
segmentation approaches can be generalized in two classes; namely 
generative and discriminative. Generative methods use preceding 
acquaintance and probabilistic distribution of model. 
Discriminative methods extract features from dataset. With 
advancement in Convolutional Neural Network (CNN), later 
appraoches have increase in recent algorithms of brain tumor 
segmentation. DeepMedic5,8 and nnU-Net9 were the breakthrough 
in the area of medical imaging using CNN.  

For clinical decision making and to help understand the 
reliability of segmentation prediction, uncertainty information is 
important. Many studies (Eaton-Rosen et al., 2018; Jungo et al., 
2018; Wang et al., 2019a; Wang et al., 2019b) exploit medical 
uncertainty based aleatoric or epistemic estimations.10-13 Wang et 
al. proposed a cascade of hierarchical CNNs to segment all brain-
tumor structures, and used test-time augmentation to obtain not 
only segmentation outputs but also data-based uncertainty 
(aleatoric) of all structures of brain-tumor segmentation.13 In 
another study Wang et al. used a combination of aleatoric and 
epistemic to estimate uncertainties for whole tumor segmentation.12 
Finally, McKinley et al. proposes to incorporate uncertainty 
measures during training by defining loss function that models 
noise and uncertainty.14  

There is a need of method, which can address measurement of 
segmentation uncertainty in all brain sub-regions along with global 
information for aleatoric and epistemic uncertainty measurement 
and provide segmentation with more confidence. 

METHOD 
Dataset Description 
This work use BraTS2020 dataset of Brain Tumor Segmentation 

(BraTS) Challenge 2020.15 The multimodal  BraTS2020 dataset 
provides four different scans, namely T1 (native), T1ce – (post-
contrast T1-weighted), T2 (T2 weighted), and FLAIR (T2 Fluid 
Attenuated Inversion Recovery). The data acquired routine 
clinically acquired multimodal MRI from multiple institutions by 
means of non-identical clinical protocols and different scanners.16-

18 The multimodal MRI scans containing gliomas with 

segmentation tumor as ground truth annotations by expert 
neuroradiologists, with pathological resolute opinion. The 
annotations distinct by the non-enhancing tumor core and necrotic 
(NET/NCR - label 1), the peritumoral edema (ED - label 2), and the 
GD-enhancing tumor (ET - label 4).16,19,20 BraTS dataset includes 
369 cases (293 HGG and 76 LGG). The  3D MRI of all four 
modalities are rigidly aligned, resample to 1 mm3 isotropic 
resolution and skull-stripped. Each modality MRI volume has size 
of 240 x 240 x 155. Validation and test sets include 125 and 166 
cases respectively. 

The comparative small region of brain tumor to whole brain 
tissue in MRI creates class imbalance. In the Brain volumes, tumor 
region accounts 5-15 % with further smaller sub-tumor classes.21 
The volume distribution of each tumor sub regions class presented 
in figure 1. In global sub region distribution evidently tumor sub 
class ED is more  likely to occur, compare to other two classes, ET 
and NCR. The NCR shows high variability between subjects. 
Global sub region distribution is aligned with distribution in HGG 
glioma subjects. LGG subjects having appaerently low ET region 
voxels compare to other two sub region ED and NCR distribution. 
The low ET appearance can be justified by the LGG tumors with 
low blood concentration.  

Figure 1. Voxel distribution in ED, ET, NCR with class imbalance. 

 Data Preparation 
The MRI scans having inherent bias, due to variation in magnetic 

field with multiple scanner, clinical protocols, and multi-
institutional nature of data. The structural MRI bias field correction 
was carried out with N4ITK Insight Toolkit.22 Each MRI modality 
volumes were normalized and standardized with Z-score 
normalization and min-max scaling. Mean value and the standard 
deviation are estimated on all training volumes by accumulating the 
voxel intensity values of the brain. The final value of each voxel 
pertaining to brain would range from 10 to 110. Background voxels 
distinguished with value 0. Similar set of values of mean and 
standard deviation were used in validation and testing phase in Z-
score normalization process. Each MRI sequences are normalized 
in 0 to 1 range of voxel value before feeding for training. To 
surmount the problem of overfitting, augmentation was 
implemented with least data disruption. Data augmentation was 
done with Random intensity shift between       (-0.1, 0.1), random 
rotation on two axis with 50% probability, and random flip on all 
three axis with 50% probability. During training phase, random axis 
mirror along the horizontal axis was also applied for augmentation. 

Sampling Strategy 
Larger MRI volumes cannot be feed directly to 3D-CNNs due to 

its computational complexity. To increase the images fed in single 



Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(5), 802             Pg  3 

batch, patch-base strategis are effective.6 Bigger batch size could 
increase optimization but leads less contextual information with 
smaller patches. Whereas, bigger patches give more contextual 
information, leads to the smaller batch size, which increases the 
variance of stochastic gradient and reduces optimization. To 
overcome the trade-off and taking advantage between batch and 
patch size, training batch pool with various patch size was created 
as preset. Different padding and cropping layers between 
convolution layers in network can learn global information from the 
bigger patch and informative texture from small patch with the 
same parameter.  

Two different patch generating strategy were used to deal with 
larger MRI volumes on a less powerful GPU. Two different 
strategies based on cuboidal boundary were considered for 
generation of patches of size 128 X 128 X 128.  

Figure 2. Two strategies for cubical patch generation. 
 

The first strategy as shown in figure 2(a), generate cubic patch  
with origin at a random starting point on boundary at distance 
ranges 0 - 6 voxels away. Keeping 32 voxel overlap between 
neighboring patches, next patch will be generated by moving patch 
window with 96 voxel from the origin of previous patch. This 
strategy will also produce the background values. The second 
strategy as shown in figure 2(b) created patch starting at the corner 
of the quadrilateral boundary of scan. Next patches will be 
generated in the same manner to former method. The second 
strategy arrange all patches to a wide extent inside the brain. 
Patching stretegies are also usefull in maintaining the inter class 
distribution.  

Loss Function 
Earlier methods suggest the weighted multi-class dice loss 

function for deep learning based brain tumor segmentation in 
earlier BraTS.17 This MRI dataset has a significant class imbalance. 
Voxels representing sub-regions of brain tumors are outnumbered 
by those containing healthy tissues. Outliers are not taken into 
account after the dataset is cleaned. To address class-imbalance 
data, the customized weighted multiclass dice loss function can be 
utilized during network training, as proposed in Bakas et al.17 and 
other existing methods.  The inherent class imbalance problem was 
addressed using weighted multi-class dice loss function in the 
network.  

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷= - �
∑ 𝐺𝐺𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖
127
𝐷𝐷,𝑗𝑗,𝑘𝑘=0 𝑌𝑌𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖

∑ 𝐺𝐺𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖
127
𝐷𝐷,𝑗𝑗,𝑘𝑘=0 + ∑ 𝑌𝑌𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖

127
𝐷𝐷,𝑗𝑗,𝑘𝑘=0

2

𝐷𝐷=0

                                   (1) 

Where c is channel number, c ∈ {0;2}. Ground truth image matrix 
is G of size 3 X 128 X 128 X 128. Y is the output of the network and 
i, j, k are voxel locations   with  values {i, j, k} ∈ {0;127}. 

 

Network Architecture 
This work implements two networks, 3D U-Net5 and Modified 

3D U-Net6 architectures, for brain tumor segmentation and creates 
an ensemble to reduce the bias in each independent model. The 
modified 3D U-Net6 is the improvement over 3D U-Net.5   

3D-UNet The original implementation with some minor 
modifications is implemented. Batch Normalization is changed for 
Group Normalization with 32 feature maps at the highest 
resolution. 

Figure 3. 3D-Unet architecture with encoder-decoder blocks [5]. 
 

The network architecture is divided into symmetric Encoder and 
Decoder parts. The Encoder is includes two convolutional blocks 
consisting of 3DConv + ReLu + GroupNorm structure. The 
downsampling and upsampling is performed with 23 Max-Pooling 
and interpolation respectively. Convolutional layers have kernel 
size 3 x 3 x 3, and the last convolutional layer reduced to 1 x 1 x 1 
kernel size with 4 feature maps for multi-class output in terms of 
segmentation labels. ReLu non-linearity and the skip-connections 
are joined with a concatenation step. The network outputs a four-
channel segmentation map with the training labels as well as a 
softmax. The detailed architecture can be seen in Figure 3. 

Modified 3D-UNet The basic 3D U-Net5 expanded with residual 
connections. This will be decresing the vanishing gradient problem 
by allowing a deeper network. Apart from the residual blocks, other 
modifications compare to basic 3D U-Net, in network structure 
includes, (i) upsampling  changed to interpolation for transposed 
convolution, (ii) element-wise addition to join skip-connections.  

As shown in figure 3 and 4, in both the network, all three 
modalities along with ground truth are input to the network as 4 x 
128 x 128 x 128 matrices stack with patch size 128 x 128 x 128. 
 

Figure 4. Modified 3D-Unet architecture [6]. 
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Downblocks reduce patch size and increase the channel length, 
whereas, convolution block (CB) follows instant normalization and 
leaky ReLU.23 Downblock pass information from front to end to 
eradicate overfitting,. The upblock reconstructs the location 
information by joining corresponding downblock outputs. The 
patch size and number of channels are recovered with a probability 
matrix with the confidence of each voxel belongs to a particular 
sub-region of the tumor, namely WT, TC, and ET. 

This study made use of three distinct 3D UNet segmentation 
architectures. Original 3D UNet suggested by Isensee et al. 
Modified 3D UNet by Parmar et al. and proposed modified 3D 
UNet with multistage training. As input, the first two techniques 
took a 112 x 112 x 112 patch size and a batch size of 2. In contrast, 
the multistage-modified 3D UNet network underwent a two-stage 
training process. At first, with a 128 × 128 x 128 patch size for 300 
epochs and batch size of 1, and then, for 200 epochs in batch size 
of 2, with a 112 x 112 x 112 patch size. Modified 3D UNet was 
trained with two-stage training (Multistage-3D-UNet), considering 
the sampling strategy. As a result, the network may be trained more 
effectively using both local and global data. 

 The all three networks were trained using the ADAM optimizer, 
with initial learning rate of 1 x 10-4. For unchanged validation loss 
over last 30 epochs, learning rate will decreased by a factor of 5. 
Training was regularized weight decay of 1 x10-5. 

A single patch is created by combining all output channels of 
patch size 128 x 128 x 128. Incorporate with suitable threshold 
values, the intensities of each voxel in the patch represents one of 
the tumor sub-region or background.  

Post-processing 
Post-processing step was carried out to reduce the false positive, 

small and separated components. Suitable threshold value was set 
prom the training set knowledge to correct the false positive. 
Connected components with larger proportion than threshold 
values were kept. This process will leads to removal of false 
positive smaller and separated components but larger components 
can be kept, in view of the fact that some subjects may have 
multiple separate tumors. 

Most of the existing methods expressed the biggest intricacy of 
providing accurate segmentation of the smallest sub-region ET. ET 
sub-region is hard to segment in LGG subjects. Almost 40% 
subjects missing enhancing tumor.16 As suggested in nnNet,5,9 ET 
volume lower to the threshold can be replaced to necrosis to 
improve the overall accuracy of model. Such threshold values can 
be set through independent experiment. 

Uncertinty 
The work carried out to model voxel-wise uncertainty using Test 

Time Augmentation (TTA) and Test Time Dropout (TTD) for 
aleatoric and epistemic uncertainties respectively.  

Aleatoric uncertainty was model in similar manner using 
augmentation techniques in training steps with adding up random 
Gaussian noise. This process can add modifications not previously 
encountered by the network.  

Epistemic uncertainty was computed as proposed by Gal et.al.24  
For task simplification Bayesian Approximation was used fro 
dropout, during both, training and tastig phase. Further, it is 
suggested to repeat the prediction several hundred times with 
random dropout. The final prediction can be averaged out over all 

predictions. For 𝑌𝑌𝐷𝐷 = {𝑦𝑦1𝐷𝐷 ,𝑦𝑦2𝐷𝐷 … 𝑦𝑦𝑛𝑛𝐷𝐷}, vector representing ith voxel 
prediction label. For each evaluation regions, the uncertainty can be 
modeled by finding the variance (σ2)of each prediction as expressed 
in equation 2. 

𝜎𝜎2 =
1
𝑁𝑁��𝑦𝑦𝑛𝑛𝐷𝐷 − 𝑦𝑦𝜇𝜇𝐷𝐷 �

2
𝑁𝑁

𝑛𝑛=0

                                                     (2) 

where µ indicates mean value of ith voxel predections with N 
iterations. 20 iterations with 50% random dropout probability used 
to eliminate channel. For each sub-region, the uncertainty maps 
were generated independently.  

As suggested by Wang et.al.,13 Uncertainty can also be predicted 
using entropy parameter. The voxel-wise uncertainty using entropy 
(S) can be calculated as:  

𝑆𝑆�𝑌𝑌𝐷𝐷�𝑋𝑋� ≈ − � �̂�𝑝𝑚𝑚𝐷𝐷 ln��̂�𝑝𝑚𝑚𝐷𝐷 �                                              (3)
𝑀𝑀

𝑚𝑚=0

 

where �̂�𝑝𝑚𝑚𝐷𝐷  is the frequency of the mth unique value in Yi and X 
represent the input image. Global uncertainty map can be generated 
using entropy. 

Experimental Setup 
Uncertainty estimations were carried out considering three 
strategies to evaluate the model behaviour in different conditions. 
In first experiment, aleatoric uncertainty was modeled with test 
time augmentation (TTA). The second experiment was designed to 
model epistemic uncertainty with test time dropuout (TTD). 
Whereas, the third experiment  model hybrid uncertainyy (aleatoric 
+ epistemic) with TTA and TTD together. For all three experiments 
variance and entropy parameters were used to predict the 
uncertainty maps. The final prediction and uncertainty maps are 
computed with same strategies for aleatoric and epistemic 
uncertainties. Entropy will provide a single global measure of 
uncertainty, while, each sub-region uncertainty maps were 
generated using variance. 

RESULTS 
The algorithm has been implemented in python using Pytorch25 

and TensorFlow26 on NVIDIA Quadro P5000 GPU for training, 
validation and testing of model. All the previously mentioned 
Convolutional Neural Network (CNN) architectures were initially 
trained on 295 (80 %) data (divided in training (280 images) and 
validation (15 images) set) and tested on 74 (20 %) data. The 
models were further trained on 369 scans, validated on 125 scans 
and tested with 166 previously unknown images using BraTS 
dataset. Dice score, Hausdorff distance (95th percentile), sensitivity 
and specificity for each class were evaluated.  Ratio of filtered TN 
(FTN) and ratio of filtered TP (FTP) are used for specific 
uncertainty evaluation metrics.  

Segmentation 
Sensitivity (the rate of true positives) and specificity (the rate of 

true negatives) for the voxels were determined. The degree to which 
the segmented areas overlap voxel-wise was measured by 
sensitivity, specificity, and dice score. The surface distance, or the 
distance between segmentation borders, was assessed by a separate 
set of scores.The Dice coefficient can be used to determine how 
well a predicted segmentation matches up with the ground truth 
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voxel-wise. Multiplying the intersection area by the total number of 
voxels in both regions yields the dice coefficient. 

Evaluation of segmentation performance can be measured with 
also known as the Sørensen–Dice index also known as the Dice 
Similarity Coefficient (DSC) of simply Dice.27 DSC represents the 
degree of overlap between predicted region map and ground truth 
and calculated using equation 4 as; 

𝐷𝐷𝑆𝑆𝐷𝐷 =
2 |𝑃𝑃 ∩ 𝑄𝑄|
|𝑃𝑃| + |𝑄𝑄|                                                                    (4) 

Where P represents predicted values and Q is the corresponding 
ground truth. The symbol | • | denotes the volume of underlying 
region. Considering Boolean nature of DSC for predicted label and 
ground truth at voxels level, sub-region dice can be calculated using 
equation 5 as; 

𝐷𝐷𝑆𝑆𝐷𝐷 =
2𝑇𝑇𝑃𝑃

𝐹𝐹𝑃𝑃 + 2𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁                                                      (5) 

Where TP, FP and FN are values of True Positive (TP), False 
Positive (FP) and False Negative (FN) respectively. Given that the 
problem involves more than one class, equation (5) is a 
modified Dice equation (4). In this context, the concepts of 
sensitivity and specificity are examined via true positive and true 
negative values. 

Hausdorf distance measures the maximum distance of one set to 
the nearest point in the other set [18], defined as: 

𝐷𝐷𝐻𝐻(𝑃𝑃,𝑄𝑄) = 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑠𝑠𝑠𝑠𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑦𝑦𝑥𝑥𝑦𝑦𝑑𝑑(𝑚𝑚,𝑦𝑦)� , �𝑠𝑠𝑠𝑠𝑝𝑝𝑦𝑦𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥𝑥𝑥𝑑𝑑(𝑚𝑚, 𝑦𝑦)��   (6) 

Where sup and inf represents the supremum and the infimum 
among the considered sets. Hausdorff distance at 95th percentile 
(HD95) is considered to avoid noisy segmentation and achieve 
more robust results the evaluation scheme uses the 95th percentile.  

Table 1. Segmentation Results on Training phase (369 cases). 

Method 
Dice Hausdorff (mm) 

WT TC ET WT TC ET 
3D-UNet 0.85 0.84 0.76 6.97 10.13 28.23 
Modified 3D-UNet 0.82 0.82 0.76 8.56 12.11 28.93 
Modified 
Multistage-3D-UNet 

0.87 0.86 0.79 9.19 11.89 30.94 

Ensemble - mean 0.87 0.85 0.79 9.46 11.90 29.03 
 
Segmentation results for training phase of 369 training data are 

presented in table 1 using Dice and Hausdorff Distance (95th 
Percentile) for 3D UNet, modified 3D UNet, modified Multistage-
3D-UNet, and ensemble mean of all considered network 

Table 2. Segmentation Results on Validation phase (125 cases). 

Method 
Dice Hausdorff (mm) 

WT TC ET WT TC ET 
3D-UNet 0.84 0.83 0.76 7.37 11.15 26.78 
Modified 3D-UNet 0.83 0.82 0.74 5.34 11.34 23.29 
Modified Multistage-3D-UNet 0.88 0.85 0.76 8.43 11.37 23.09 
Ensemble - mean 0.88 0.85 0.77 8.43 11.90 21.04 
 

Table 2 represent the evaluation parameters during validation 
phase with 125 data. 

The evaluation of segmentation model was carried out on all 
trained network models to understand the model behaviors.  of test 
sets was carried out. Table 3 represents the output of modified 
Multistage-3D-UNet architecture with post processing in training, 
validation and test phases on 166 cases for comparasion purpose.   
 
Table 3. Segmentation Results modified multistage-3D-UNet with 
post-processing. 

Dataset 
Dice Hausdorff (mm) 

WT TC ET WT TC ET 
Train 0.87 0.86 0.79 9.19 11.89 30.94 
Valid 0.88 0.85 0.76 8.43 11.37 23.09 
Test 0.89 0.86 0.80 8.26 11.11 23.83 

 
In the absence of ET label in ground truth, all models were highly 

penalized. It was observed that, 3D-UNet based model gives false 
negatives. Use of small patches in place of whole tumor volume 
causes false positives. This aggravates variation in the ratio of 
healthy tissue against tumor classes. Contrary, larger number of 
false negatives may be present due to use of bigger patch sizes and 
pooling layers instead of strid convolutions in 3D-UNet models. 

 

 
 (a)   (b)      (c)   (d)   (e)    (f) 

Figure 5. Training results on patients: 115, 175, and 310 (top-bottom). 
For (a) Flair (b) Ground Truth (c) Modified Multistage-3D-UNet (d) 
Modified 3D-UNet (e) 3D-UNet (f) Ensemble mean. 
 

Increasing the patch size may leads to lessen false positives but 
it fail to see local information, which cause label miss-classification 
on the region's boundaries. Qualitative segmentation results of 
various sample subjects are shown in figure 5 for visual comparison 
of models. 

Uncertainty 
Three uncertainty maps along with corresponding prediction 

maps were generated, one for each sub-region (WT, TC, ET). 
Normalization was applied on voxel values between 0-100, 
indicating most certain prediction with “0” and “100” represent 
most uncertain predictions. To calculate uncertainty in each class, 
Filtered True Positive (FTP) ratio and Filtered True Negative 
(FTN) ratio where used. FTP ration is defined as; 

𝐹𝐹𝑇𝑇𝑃𝑃 =  
(𝑇𝑇𝑃𝑃100/𝑇𝑇𝑃𝑃𝑇𝑇)

𝑇𝑇𝑃𝑃100
                                                           (7) 
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Where more uncertain values are filtered using threshold T. The 
FTN ratio can be also calculated in a similar manner. The integrated 
score can be calculated as follows: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐴𝐴𝐴𝐴𝐷𝐷1 + (1 − 𝐴𝐴𝐴𝐴𝐷𝐷2) + (1 − 𝐴𝐴𝐴𝐴𝐷𝐷3)             (8) 

In the above equation 8, AUC1, AUC2, and AUC3 are area under 
curves for dice, FTP and FTN parameters respectively.  

Modified Multistage-3D-UNet outperformed to other considered 
networks with balanced results among various sub-regions. Table 4 
present the results with aleatoric, epistomic and hybrid uncertainty 
considerations computed with variance and entropy parameters. 
The Dice value calculated here is computed by averaging the 
segmentation output for several thresholds used for filter uncertain 
predictions, It is evident from the displayed results that, Dice 
obtained with filtered uncertainty prediction improves to that of 
earlier segmentation on each sub-regions (WT : 0:92, TC : 0:89, ET 
: 0:82). Further, the model was more certain on the TP and less 
certain on FP and FN. AUC-Dice gives higher values while using 
entropy as the uncertainty measure. 

 
Table 4. Results with estimate uncertainty on modified Multistage-3D-
UNet during training phase. 

Measure Method 
Dice Ratio FTP Ratio FTN 
WT TC ET WT TC ET WT TC ET 

V
ar

ia
nc

e TTA 0.91 0.89 0.82 0.02 0.04 0.03 8.0e-4 2.0e-4 1.8e-4 
TTD 0.90 0.87 0.80 0.17 0.15 0.08 2.3e-3 1.6e-3 3.0e-4 
Hybrid 0.92 0.88 0.82 0.17 0.15 0.09 2.6e-3 2.1e-3 4.0e-4 

En
tr

op
y TTA 0.92 0.88 0.81 0.05 0.04 0.05 1.2e-3 4.6e-3 5.3e-3 

TTD 0.91 0.87 0.81 0.14 0.12 0.07 2.2e-3 7.2e-3 1.2e-2 
Hybrid 0.92 0.89 0.82 0.16 0.11 0.06 3.1e-3 1.1e-3 1.9e-2 

Results show that the model is more uncertain on epistemic 
uncertainty in LGG patients. This can be solved by introducing 
more training data to achieve more confident predictions. From the 
results and comparing different uncertainties, its obvious that; 
Aleatoric uncertainty focus on the region boundaries, with small 
variations, epistemic improves results on the ET region but filters 
more TP and TN, and the hybrid approach accomplish the best 
Dice-AUC results when entropy is used as the uncertainty 
measurement. 

Table 5 shows the results in Training, validation, and test sets. 
The achieved integrated scores for validation are 0.91, 0.87 and 
0.81 and for test 0.93, 0.91, 0.83 for WT, TC and ET respectively. 
The improvement of up to 2 point can be observed on the ET and 
TC sub-regions for test set. 

Table 5. Uncertainty Results for the modified Multistage-3D-UNet. 

Dataset 
Dice Ratio FTP AUC Ratio FTN AUC 

WT TC ET WT TC ET WT TC ET 

Train 0.9212 0.8915 0.8178 0.0349 0.0238 0.0580 0.0008 0.0002 0.0001 

Valid 0.9116 0.8715 0.8088 0.0422 0.0333 0.0380 0.0009 0.0002 0.0001 

Test 0.9299 0.9084 0.8254 0.0322 0.0536 0.0375 0.0019 0.0004 0.0003 

DISCUSSION 
Cancer is one of major ailments that are responsible for a number 

of deaths every year.28 The early diagnosis of the cancer is the key 
factor in controlling of this ailment.29 MRI and other diagnostic 
techniques are at the fore-front for diagnosis while the proper 
detection of cancer from images still remains a challenge.30  In this 
work three set of models on variations of 3D-UNet based CNNs 
specialized in medical imaging are proposed. 3D-UNet, Modified 
3D-UNet, and Modified Multistage-3D-UNet outperforms in 
particular tumor sub-regions. Ensemble of these models was also 
defined to increase the model performance in segmentation. To 
increase the trustworthiness, consistency and understanding of the 
model, uncertainty implications on predicted segmentations were 
analyzed.  Uncertainty prediction was also used to consider with 
suitable threshold to filter out prediction with less certainty, in turn 
increase the model accuracy in segmentation. Uncertainty measures 
were implemented on modified Multistage-3D-UNet. 

The best outcomes of segmentation were achieved in ensemble 
of all three models, as the limitations of each model can be 
controlled. The results are comparatively good with the existing 
methods, still improvement chance can be sought. Presented results 
can still be modified with higher accuracy by changing training 
strategies for correct label distribution, thereby reducing false 
detections. The absence of ET regions in ground truth creates 
uncertain predictions in all models, which gratly decrease the 
accuracy. In order to improve the results, future work will be 
carried out for better representation of labels to the network with 
better viewability of local and global information in dataset than 
current patch strategies.  

The results of all three segmentation models achieve good 
results. By adding more complexity to the network at different 
layers may boost the model performance. It can be also observed 
that LGG patient MRI shows low accuracy due to blood perfusion 
in surrounding tissues. Post-processing methods and targeted 
training strategies for each glioma grades can be helpful in 
differentiating sub-region segmentation predictions. 

In this work, TTD use random dropouts, which can be structured 
with improved with Monte Carlo Dropout or any other well defined 
method to prevent loosing relevant label information. Also there is 
a scope of improvement in augmentation techniques. Variance and 
entropy are considered for uncertainty estimation. Other statistical 
parameters like Z-score can be explore to find the uncertainty 
prediction.  

CONCLUSIONS 
This work focus on improvement of segmentation of tumor sub-

regions considering the uncertainty assessment. 3D-UNet, 
modified 3D-UNet and modified Multistage-3D-Unet (modified 
3D-UNet with 2 stage training) models were trained on BraTS2020 
datasets. Aleatoric, epistemic and hybrid uncertainty in the model 
segmentation prediction were evaluated. Uncertainty estimation 
carried out using variance, to evaluate uncertainty in each tumor 
sub-regions and entropy, as global measure. Uncertainty 
predictions were used to filter false positive segmentation with 
empirical threshold values for different tumor sub-regions. The 
result presented here, shows that uncertainty awareness leads to 
improvement in segmentation accuracy. The best brain tumor 
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segmentation results were achieved with Dice score with hybrid 
approach using entropy as uncertainty prediction. The results 
achieved with uncertainty aware segmentation in this methods for 
WT, TC and ET as Dice score of 0.93, 0.91, and 0.83 respectively 
in test set. The results can be further improved by implementing 
different network training strategies and using structured dropout 
and augmentation strategies during test time. 
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