
Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(4), 788 Pg 1

J. Integr. Sci. Technol. 2024, 12(4), 788

Journal of Integrated

SCIENCE & TECHNOLOGY

Assessing the efficacy of Machine learning classifier for Android malware
detection
Harshal Devidas Misalkar, Pon Harshavardhanan

School of Computing Science and Engineering, VIT Bhopal University, Madhya Pradesh, India.

Received on: 14-Oct-2023, Accepted and Published on: 04-Jan-2024

ABSTRACT

The primary
challenges
faced by
software
security
experts is the
identification and detection of malware within Android applications, as dangerous software is increasingly being embedded in sophisticated
manners in application software. The existing applications, as well, are expanding in size and becoming increasingly intricate in terms of
their functionalities. The ongoing endeavor of extracting valuable and indicative functionality from applications is a perpetual undertaking.
There has been a lack of comprehensive studies that examine the specific attributes designed for identifying malicious applications on the
Android platform. This is despite the existence of several feature extraction methods employed in prior research endeavors. Here, a
comprehensive and concise analysis is presented to comprehend the behavior of applications using various criteria to identify harmful
applications. This study evaluates the efficacy of ten different machine learning classifiers by analyzing a dataset including 15,036
applications categorized as either harmful or benign. The evaluation of classifiers involved the utilization of many metrics like Accuracy,
Area Under the Curve (AUC), False Positive Rate (FPR), and False Negative Rate (FNR) towards development of illustrative framework
for the detection of Android malware applications.
Keywords: Android applications, IoT, Ensemble learning, feature extraction, malware detection, reverse engineering, machine learning

INTRODUCTION
Numerous mobile applications have been developed with the

aim of facilitating consumers in adopting a more intelligent living
environment. These programs encompass a wide range of
functionalities, including social networking platforms as well as
applications pertaining to financial management. Over the past few
years, Android smartphones have consistently held an average
global market share of 80%, establishing their dominance in the
mobile device industry. Malicious programs are mushrooming in
number in the meantime. Numerous security issues with mobile

applications pose a risk to the privacy and property of users. As an
illustration, certain malicious software may take users' personal
account information without the users' consent.

These applications' bad habits mostly involve consuming traffic,
stealing personal data, making erroneous calculations, etc. As the
number of smartphone apps rises, so does the security issue caused
by unauthorized access to various personal resources. The
applications thus become less secure, stealing personal information
and engaging in SMS fraud, ransomware, etc.

The official store for Android apps is called Google Play (apps,
henceforth). Bouncer is a Google-implemented automated
monitoring service that checks submitted software for possibly
dangerous behaviour in order to safeguard the market against
malicious programmes.1 To help keep devices secure, Google
recently launched a new security feature for Android Play Protect
in addition to the Bouncer utility. The device is routinely scanned
by this feature, which also issues danger alerts. There are a few
unofficial repositories for Android apps in addition to the official

*Corresponding Author: Harshal Devidas Misalkar
Tel: 9503251870
Email:harshal.misalkar2019@vitbhopal.ac.in

Cite as: J. Integr. Sci. Technol., 2024, 12(4), 788.
URN:NBN:sciencein.jist.2024.v12.788

©Authors CC4-NC-ND, ScienceIN
http://pubs.thesciencein.org/jist

Article

https://pubs.thesciencein.org/journal/index.php/jist

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(4), 788 Pg 2

market. However, the majority of these do not have any means for
scanning for malware when user-uploaded apps are present; as a
result, these repositories are among the main sources of malware.

It is evident that the perpetration of destructive activities has
significantly jeopardised the mental well-being and material
possessions of individuals. Several strategies for analysing and
detecting malicious applications have been created through the
examination of app behaviour. The primary objective of these
techniques is to prevent the distribution of malicious application
and low-quality applications in the marketplaces.

In recent years, research has focused heavily on how to identify
programs that exhibit dangerous behavior and safeguard users'
privacy. The Android ecosystem faces a significant and difficult
problem with malware detection. To differentiate between harmful
and good applications, numerous strategies have been developed.

Machine learning is a frequently used technology that is used for
Android malware identification. It is frequently used in
classification processes, and creating features is the key stage in
identifying malicious Android apps. The efficacy of the detection
is contingent upon the optimal functioning of the selected attributes.
The current characteristics can be categorised into three distinct
groups: static features obtained through static analysis, dynamic
features obtained through dynamic analysis, and meta-data-based
features. Despite the rapid progress in detecting malicious
applications that exploit extracted app features, certain challenges
persist.

Malware applications can be predicted by training a model with
extracted static features from reverse-engineered Android
applications. This can be accomplished using machine learning
techniques such as the Support Vector Machine (SVM) algorithm,
logistic regression, ensemble learning, and other applicable
algorithms. The use of intrinsic attributes in reverse-engineered
Android applications is prevalent in machine learning approaches,
thereby easing the difficulty of this endeavor.

String features, or structural features, are the basis for Android
malware detection techniques based on static analysis. String
features, also known as meta-data, are exhaustive descriptions of

software or application source code. Permissions, intents, API

queries, etc. are frequently discussed. String features, or structural
features, are the basis for Android malware detection techniques
based on static analysis. String features, also known as meta-data,
are exhaustive descriptions of software or application source code.
Permissions, intents, API queries, etc. are frequently discussed.

A. ISSUES
1. COMMON ISSUES OF EXTRACTING THE FEATURES

• The extraction of features from an Android Package (APK)
might be time-consuming due to its increasing size and
intricate behaviours, hence diminishing the effectiveness of
identification. For example, when employing static analysis
techniques, it is commonly observed that the process of
extracting function call graphs for a Google Play apk with a
size of 15 MB typically requires approximately 15 minutes.
The real-time discovery of this is clearly undesirable for end
users.

• Up to a million features can be taken from a single
programme. Many features, however, are zero.2 It is crucial
to figure out how to handle the sparse vectors effectively.3

2. ISSUES OF EXTRACTING STATIC FEATURES
For app verification, static features analysis is frequently

employed. However, there are a number of significant difficulties
that static analysis faces

• Extracting well-discriminated static data from Android apps
poses a significant challenge due to the ever intricate and
polymorphic nature of their behaviour.

• The proliferation of applications is accompanied by a
corresponding growth in the number of characteristics. A
significant concern is to the optimal processing of the
continuously increasing array of features in a manner that is
both useful and efficient. Based on the categorization of
feature sets in previous study,2 we classified all static
features into two distinct types: platform-defined features
and app-specific features. As the number of applications
increases, the amount of app-specific features tends to

increase, while the number of platform-defined features

Figure 1: The process of Android malware application detection.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(4), 788 Pg 3

remains constant. Platform-defined features are commonly
utilised for the automated detection of malicious
applications due to their higher level of persistence
compared to features that are specific to individual apps. In
essence, the presence of numerous application-specific
features for processing may potentially result in inefficient
identification. applications increases, the amount of app-
specific features tends to increase, while the number of
platform-defined features remains constant.

• Platform-defined features are commonly utilised for the
automated detection of malicious applications due to their
higher level of persistence compared to features that are
specific to individual apps. In essence, the presence of
numerous application-specific features for processing may
potentially result in inefficient identification.

• Numerous malicious programmes employ obfuscation
techniques such as dynamic code loading or code
encryption in order to evade detection based on static
characteristics. According to a comprehensive investigation
by D. Wermke et.al.,4 it has been determined that over 25%
of the applications available on Google Play undergo
obfuscation. Furthermore, this ratio significantly increases
to 50% for the most popular applications with over 10
million downloads. Nevertheless, the efficacy of numerous
static analysis approaches is compromised by the presence
of obfuscation, hence diminishing their efficiency and
becoming them more challenging to implement compared
to dynamic analysis.

3. ISSUES OF EXTRACTING DYNAMIC FEATURES
Malapps' covert behaviors can be extracted through dynamic

analysis. The information gathered from observing and
documenting an app's actions may accurately reflect the app's
intended use. However, there are still some problems with dynamic
feature extraction.
• Due to the inherent limitations of dynamic analysis in fully

exploring all possible execution paths, the utilisation of
dynamic features for malware application identification may
result in the occurrence of false negatives.

• If an application is protected by runtime security mechanisms,
it may prevent the extraction of dynamic features, such as
DexGuard.

Figure 1 elucidates the process involved in the detection of
Android malware applications.

CONTRIBUTIONS
To successfully detect malicious software, it is essential to

identify and extract unique traits. While many different types of
characteristics have been explored in the past, it appears that no
comprehensive study has been undertaken on the features used for
the detection of harmful programmes. In order to provide a
comprehensive and coherent understanding of the recent
developments in identifying hazardous applications through the
characterization of app behaviors with varied properties, this study
zeroes in on the challenges involved with assessing efficient
features and introduces a feature taxonomy.

OVERVIEW OF ANDROID SYSTEM AND SECURITY

A. ANDROID PLATFORM
Android is an open-source mobile platform based on the Linux

kernel and developed primarily for smartphones and other
connected devices. There are four distinct tiers that make up
Android's architecture: the application layer, the framework layer,
the library layer, and the Linux kernel layer. Memory management,
task management, and network protocols are only a few of the
crucial features provided by Linux's kernel layer. The fundamental
drivers for all hardware components are located at this layer. The
library layer, consisting of both the native library and external
libraries from third-party sources, supplies the application's
primary library in order to improve the framework layer's
capabilities.5

The application framework layer is analogous to a middle layer
that provides strategic management of the system's components and
improves its scalability. The Activity Manager, Window Manager,
Resource Manager, Location Manager, Content Provider, and other
components of the application framework work together to achieve
this goal. The application layer encompasses all running
applications on Android smartphones and serves as the sole layer
responsible for user communication.6,7

B. ANDROID APPLICATION
It is usual practice to use the Java programming language and the

Android Software Development Kit's (SDK) application
programming interfaces (APIs) to create Android applications. The
Android platform and third-party developers both offer native
libraries that may be incorporated into applications alongside Java
code. To install and run an app on an Android device, developers
package its source code, data, and resources into a file known as an
Android Application Package (APK). The Android runtime
environment is used by an APK once it has been installed on an
Android device.

Activity, Broadcast Receivers, Service, and Content Provider are
the four main parts of any Android app. The manner in which users
engage with the smartphone screen and the resulting User Interface
are influenced by activity controls. The exchange of information
between the operating system and applications is facilitated through
the utilization of broadcast receivers. The background processing
of an application is overseen by a service in order to execute
operations that need a significant amount of time.

C. INCORPORATED SECURITY MECHANISMS

TRADITIONAL ACCESS CONTROL MECHANISM
The Linux kernel security mechanism used by Android is

analogous to conventional access control mechanisms. The ability
to access an item can be restricted using an access control system.
Maintaining data secrecy and integrity through this method is
crucial. Both obligatory and discretionary controls (abbreviated
MAC and DAC, respectively) are possible to impose. MAC is
supported by Linux's security module. DAC is made possible by
the usage of secure file sharing.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(4), 788 Pg 4

MECHANISM BASED ON INSPECTION OF PERMISSION
The permission-based security strategy implemented in Android

applications restricts the access to resources that these applications
are allowed to utilize. In order to access restricted resources,
applications are required to employ XML files to seek permissions.
Applications are incapable of accessing restricted resources unless
they obtain authorization from the Android operating system. The
Android permissions are classified into four tiers, specifically
Normal, Dangerous, Signature, and Signature/System. Once an
application seeks permissions, both low-level permissions, such as
usual and dangerous levels, are granted. Advanced rights
encompass two categories: signature level permissions and
signature/system level permissions. The platform-level
authentication required by these permissions must first be
completed by the app. However, this approach has a lot of
drawbacks. Users must decide whether the permissions that an app
requests should be approved, but they lack the knowledge necessary
to do so. In addition, the user will be prompted to provide all
potentially risky permissions during installation if the target SDK
version of the application is less than 23 or if the device is running
Android 5.1.1 (API level 22) or earlier. Unless users make
modifications, the accepted permissions remain valid during the
duration of the application.

ENCRYPTION MECHANISM
The Android operating system incorporates an encryption

mechanism designed to prevent unauthorized users or applications
from accessing certain sensitive data. The Android operating
system, starting with version 3.0 and onwards, incorporates
encryption techniques. There is a growing user concern regarding
the safeguarding of private information, including phone events,
SMS messages, and some payment details. Consequently, the
encryption mechanism has gained increased significance inside the
Android operating system.

DIGITAL SIGNATURE MECHANISM
The digital signature technique is crucial to the application

layer's security. Since programmers without digital signatures
cannot be installed, Android app creators must provide them for
their creations. Attacker must resign the app if he purposefully
alters the internal le of the APK. The replication of the original
signature by the attacker is contingent upon the acquisition of the
private key belonging to the original publisher. When applications
require updating, the signatures associated with those applications
will also undergo scrutiny. Application trustworthiness and
integrity are guaranteed by digital signature.

SANDBOX MECHANISM
In the Android operating system, running apps are separated by

sandboxes. Apps can operate in a strictly restricted environment
called a sandbox. Each Android application has its own Dalvik
virtual machine, process space, and resources when it is in use. As
a result, distinct apps cannot communicate with one another or use
one another's memory or resources.

METHOD OF DETECTING ANDROID APPLICATION
Static, dynamic, hybrid, and meta-data analysis are the primary

types of analysis techniques now used to identify Android apps. We
briefly describe these analysis techniques and group the analyzed
publications into categories based on the taxonomies of the
attributes they used.

STATIC ANALYSIS
The Android platform is increasingly being attacked and faces

dangerous risks from malicious software. As a result, a lot of
research focuses on using static analysis to find malicious
programmers. Apps are initially unpacked and decompiled into
files that contain the apps' most important data during static
analysis. Then, these files are examined to see if they contain any
harmful code. Static analysis is well-known in traditional malapp
identification and is becoming more and more popular as an
effective market protection technique.

Android smartphones with limited resources can benefit from it
because the analysis is done without actually running the app. Static
analysis uses a lot less time and resources. As a result, it is a fairly
quick process. Malicious apps that employ reverse engineering
strategies like obfuscation and repackaging, however, can foil this
strategy.

The current study focuses on static feature extraction.

DYNAMIC ANALYSIS
Dynamic analysis, in contrast, looks for dangerous behavior after

the apps have been installed and run on emulators or actual devices.
The system creates snapshots of the execution of the processor,
network activities, system calls, SMS transmissions, phone
conversations, and other pertinent data to determine whether or not
a programme is malicious. The implementation of this method
requires the involvement of either human or automated entities, as
malevolent activities may only be triggered under certain
circumstances.

The data obtained via dynamic analysis provides a realistic
representation of the program's actual usage. Android's OS has to
spend a lot of time and energy on the implementation of dynamic
analysis. Furthermore, it is important to note that dynamic analysis
techniques may fail to detect malicious applications that have been
specifically designed to prevent their execution in emulated
environments.

STATIC FEATURES
Finding and utilizing the appropriate features is crucial to

improve the model's accuracy. Using the SimpleImputer class of
the ScikitLearn Library, a dataset is first preprocessed in this
research paper. After preprocessing, features are retrieved, and
using the feature importance technique, the features that are
significant in determining whether or not an application is
malicious are selected. Total of 10 features were chosen based on
their score values. significant attributes.

The feature importance for each feature can be determined by
employing a model's feature importance technique. The relative
importance of each feature with respect to the output variable is
assessed by providing a numerical score to each feature, where
higher scores correspond to greater significance. The Scikit-Learn

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(4), 788 Pg 5

toolkit for machine learning includes a Tree Based Classifier, which
provides feature significance as a default feature. This relevant
feature selection method reduces 215 features to 10 features that are
crucial for differentiating between malicious and benign programs.
Following 10 static features used in this paper for malicious
application detection.

1. TELEPHONYMANAGER.GETLINE1NUM0ER
2. TELEPHONYMANAGER.GETDEVICEID
3. ON1ERVICECONNECTED
4. ANDROID.O1.0INDER
5. 1ERVICECONNECTION
6. ATTACHINTERFACE
7. ANDROID.TELEPHONY.1M1MANAGER
8. TRAN1ACT
9. READ_PHONE_1TATE
10. 1END_1M1

1.TELEPHONYMANADER.GETLINE1NUMBER
Within the domain of Android application development, the

TelephonyManager class assumes a crucial role as a fundamental
asset for retrieving telephony-related data on a given device. One
of its several functionalities includes the provision of the ability to
retrieve the telephone number linked to the SIM card of the device
by utilizing the getLine1Number method.
Here's how you can integrate this method into your Android code:

TelephonyManager telephonyManager = (TelephonyManager)
getSystemService(Context.TELEPHONY_SERVICE);
String phoneNumber = telephonyManager.getLine1Number();

if (phoneNumber != null && !phoneNumber.isEmpty()) {

 // Feel free to utilize the retrieved phoneNumber as needed.
} else {

It is important to acknowledge that the accessibility of a phone
number might vary depending on factors such as the carrier, SIM
card, and device settings. In certain cases, there may be
circumstances where specific carriers or devices do not make the
phone number accessible using this particular function, or it may
result in an empty string being returned. Furthermore, it is
imperative to verify that the AndroidManifest.xml file incorporates
the essential permissions required for accessing telephony-related
data.

TelephonyManager.getLine1Num0er method, which is part of
the Android framework, is designed to retrieve the phone number
that is linked to the SIM card of the device. It is imperative to
recognize that placing exclusive reliance on this particular
methodology for the detection of Android malware has some
constraints and may not generate outcomes of optimal efficacy. The
following are important factors to keep in mind:

Privacy Implications: The act of obtaining a user's phone
number without their explicit consent might give rise to substantial
privacy considerations. Google has implemented rigorous
restrictions regarding the utilization of sensitive data, such as phone
numbers. As a result, legitimate applications are now required to

provide justification for their necessity of accessing such
information.

Limited Applicability: The functioning of certain authorized
programs does not always require access to the user's phone
number. As a result, malevolent applications can effectively elude
detection by refraining from employing this technique.

Evasion Strategies: Individuals who develop malicious
applications possess a high level of skill in evading detection
mechanisms. The adversaries have the ability to utilise many
tactics, such code obfuscation, postponing suspicious actions, or
dynamically seeking permissions. These techniques make it
difficult to detect their activities purely based on the usage of
getLine1Number.

Potential for false positive: The complete reliance on the
getLine1Number method for malware detection has the potential to
yield false positive results. Certain authentic applications utilise
this technique for legitimate intentions, such as authenticating a
user's identity throughout the process of setting up an account.

Inadequate Understanding of Runtime Behavior: The
effectiveness of malware detection often relies on the observation
of an application's behavior during its execution, thorough
examination of network connections, and identification of any
indications of suspicious or malicious activities. An exclusive
reliance on methods such as getLine1Number in a static analysis
does not offer a thorough understanding of an application's true
behaviour.

2. TELEPHONYMANAGER.GETDEVICEID
The TelephonyManager.getDeviceId function in Android

development is a useful tool for acquiring a distinct identification
linked to the device's radio equipment. The generally used term for
this identity is the IMEI (International Mobile Equipment Identity)
for GSM devices or the MEID (Mobile Equipment identity) for
CDMA devices. Identifiers are of utmost importance in the process
of differentiating and verifying mobile devices within wireless
networks and in relation to service providers.
TelephonyManager telephonyManager = (TelephonyManager)
getSystemService(Context.TELEPHONY_SERVICE);

String deviceId = telephonyManager.getDeviceId();
if (deviceId != null && !deviceId.isEmpty()) {

 // Proceed to utilize the acquired deviceId according to your
requirements.
} else {

 // Be prepared for scenarios where the device ID retrieval is
unsuccessful or unavailable.
}

To implement the getDeviceId method in your Android code,
follow these steps:

It is noteworthy to acknowledge that the device identification
(ID) may vary depending on the kind of device (GSM or CDMA)
and the specific implementation on the device. In addition, it is
important to note that there may be limitations on accessing the
device ID in some situations, mostly owing to concerns surrounding
privacy and security. In order to access this information, it may be

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(4), 788 Pg 6

essential to set the required permissions in the
AndroidManifest.xml file.
The static feature known as "TelephonyManager.getDeviceId"
holds considerable importance in the realm of Android malware
detection owing to its diverse range of applications.

Device Identification: Within the context of malware detection,
the establishment of a distinct device identification is of utmost
importance. The method "getDeviceId" is utilized to obtain an
identifier that is linked to the radio equipment of the device, such
as the International Mobile Equipment Identity (IMEI) for Global
System for Mobile Communications (GSM) devices or the Mobile
Equipment Identifier (MEID) for Code Division Multiple Access
(CDMA) devices. The aforementioned identification plays a crucial
role in differentiating one device from another.

Anomaly detection is a common approach employed in malware
detection systems, wherein a reference point is established to define
the normal behavior of a device. This reference point often includes
several attributes such as the device ID. Any departures from the
specified baseline have the potential to activate warnings. In the
event that the device identification (ID) undergoes an abrupt
alteration or manifests as invalid, it could potentially serve as an
indication of suspicious activity, hence suggesting the possibility of
intervention by malicious software (malware).

The identification of cloned or emulated devices is a common
concern in the context of detecting malicious software, as such
software often functions on these types of devices. In certain
scenarios, it is possible for numerous devices to possess the same
device ID. The identification of this abnormality can play a crucial
role in the detection of suspicious behavior.

The monitoring of malicious activities involves the observation
of malware's communication with command and control servers.
Through the analysis of device IDs in conjunction with other
parameters, security systems have the capability to identify patterns
of malicious activity spanning over numerous devices, hence
facilitating the timely identification of such behavior.

Policy enforcement in organizations and mobile device
management (MDM) systems heavily depend on device attributes,
such as the device ID, to effectively implement security policies.
The identification of modifications to this identity is of utmost
importance in order to guarantee adherence to security rules.

User Authentication: Certain applications incorporate the
device ID as a component within their user authentication and
authorization mechanisms. In the event that malware obtains
possession of this identification, there is a possibility for the
malware to assume the identity of the user, resulting in
unauthorized access and potential breaches of security.

Forensic Analysis: Following a security incident, possessing
knowledge of the device ID is of utmost importance in conducting
forensic investigations. This technology facilitates the
identification of the origin of hostile actions and contributes to the
comprehension of the extent of an assault.

Nevertheless, it is crucial to recognize that although the
"getDeviceId" method holds significance in detecting malware, its
utilization must adhere to privacy standards and obtain user
authorization. With the continuous development of Android, there
may be limitations or discontinuation of some device IDs in newer

versions, which may require modifications in the methods used for
identification.

3. ON1ERVICECONNECTED
The onServiceConnected method holds significant importance in

the context of Android app development, as it serves as a pivotal
callback function that is intricately linked to the Service Connection
framework. This framework facilitates the exchange of information
and engagement across many elements of an Android application,
including Activities or Fragments, as well as background services.

The initial step in setting up a ServiceConnection involves the
instantiation of a ServiceConnection object within an Android
component, often an Activity or Fragment. The aforementioned
entity assumes the role of overseeing the establishment and
maintenance of a connection to a certain service. The process of
establishing a connection with a service. The binding process is
initiated by invoking the bindService method, wherein an Intent is
provided to identify the desired service for establishing a
connection.

The onServiceConnected callback is triggered upon successful
establishment of the service connection. The callback function
offers the user the chance to get a reference to the connected
service, so providing them access to its capabilities.

Service Interaction: Once the service reference is obtained in the
onServiceConnected callback, users are able to engage with the
service by executing its methods or transmitting data as required.

The onServiceDisconnected callback is triggered when the
service connection is unexpectedly terminated, such as in the event
of a crash or explicit unbinding. The callback function facilitates
the execution of essential cleanup operations or resource
management tasks.

This is an illustrative example showcasing the potential
implementation of the onServiceConnected method within an
Android Activity.
private MyService myService; // Declare a reference to the service

private ServiceConnection serviceConnection = new
ServiceConnection() {
 @Override

 public void onServiceConnected(ComponentName name,
IBinder service) {
 // This block executes when the service connection is
successful.

 // You can access the service via the IBinder.
 MyService.LocalBinder binder = (MyService.LocalBinder)
service;

 myService = binder.getService();
 // Now, you can utilize myService to call methods within the
service.

 }
 @Override

 public void onServiceDisconnected(ComponentName name) {

 // In case of an unexpected service disconnection, this callback
is invoked.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(4), 788 Pg 7

 // It's an opportunity to perform cleanup or handle
disconnection gracefully.
 myService = null;

 }

};

The onServiceConnected method assumes a significant role in
the creation of Android applications as it enables the establishment
of communication and interaction between an Android component
and a background service. This technique facilitates the smooth
integration of services into the functioning of your application.

The onServiceConnected method in the Android framework
serves as a callback function that facilitates the establishment of
connections to bound services. The importance of this feature
within the context of Android malware detection comes in its
function as one of the monitored elements that can be examined to
identify possibly malicious activities. Nevertheless, it is crucial to
comprehend that its significance in the detection of malware is
merely one element within a more comprehensive framework.

Behavioral Analysis: Malicious software frequently exhibits
atypical behavioral patterns, such as the initiation of connections
with distant servers, the transmission or reception of data, or the
interaction with system components. Analyzing the
onServiceConnected method facilitates the identification of
atypical behavior, particularly in cases when it pertains to
questionable service connections.

Android applications are obligated to solicit explicit permissions
in order to gain access to particular system services. When an
application endeavors to establish a connection with a service
without possessing the requisite permissions, it has the potential to
arouse suspicions regarding its potentially malevolent intentions.
The examination of the onServiceConnected method facilitates the
identification of probable violations of permissions.

Intent-based assaults involve the utilization of the
onServiceConnected method by malware to carry out malicious
activities. This strategy deceives users into initiating harmful
services or components. The act of monitoring this particular
method has the potential to facilitate the detection of service
connections that are deemed suspicious or unauthorized.

The assessment of network traffic reveals that malware
frequently engages in communication with remote servers to carry
out various activities, including but not limited to receiving
instructions and extracting data. The utilization of
onServiceConnected for establishing connections pertaining to
network activity can offer valuable insights into possibly malicious
network behavior when observed. The significance of the
onServiceConnected method is influenced by the contextual factors
in which it is invoked. For example, if a service connection is
deemed superfluous within the application's functioning, it may
give rise to problems.

It is imperative to recognize that the detection of Android
malware is contingent upon the utilization of a blend of static and
dynamic analytic methodologies. Static analysis is a process that
involves the examination of an application's code and manifest files
without executing it. On the other hand, dynamic analysis refers to
the practice of running the application in a controlled environment

in order to monitor and analyze its behavior. The
onServiceConnected method is categorized as dynamic analysis as
it is conducted at runtime.

4. 1ERVICECONNECTION
The ServiceConnection interface in the Android platform is not

a static entity, but rather a pivotal component that facilitates the
interaction and binding of services within applications developed
for the Android operating system. The aforementioned aspect bears
considerable significance within the realm of Android malware
detection, as it functions as a mechanism for observing and
evaluating the behavior of an application when initiating
connections with various services. While not fundamentally
designed as a security feature, the utilization and behavior of a
system can provide valuable insights for the detection of potential
infection. The following are arguments that underscore the
significance of ServiceConnection in the identification of Android
malware:

Behavioral Analysis: Malicious software frequently displays
atypical behavior within Android applications, such as establishing
connections with dubious services or executing unauthorized
actions. Through a thorough examination of the utilization of the
ServiceConnection interface, it becomes feasible to scrutinize
whether an application's interactions with services diverge from
anticipated and lawful patterns.

The establishment of connections to services is a common
practice among Android applications, as it enables them to carry
out a range of functions. The diligent observation of the
ServiceConnection interface can aid in the detection of situations
when an application establishes connections with services that it
should not possess authorization for, hence potentially indicating
malevolent motives.

The identification of privilege escalation involves the detection
of malware that seeks to bind to system-level services or elevate its
privileges in order to enhance its authority and control over the
Android device. Examining the utilization of ServiceConnection
can aid in identifying instances of privilege escalation endeavors.

Protecting Against Intent-Based Attacks: Malicious applications
have the potential to abuse the ServiceConnection interface in order
to carry out intent-based attacks, with the aim of tricking users into
establishing harmful services. Conducting a comprehensive
analysis of the ServiceConnection can facilitate the detection of
these fraudulent strategies.

The examination of network activity reveals that the utilization
of a service connection for tasks pertaining to network operations
may give rise to concerns regarding potentially harmful network
behavior. The examination of this behavior is crucial in identifying
malware that establishes communication with external servers with
nefarious intentions.

The significance of the ServiceConnection interface in dynamic
analysis should be underscored, since it plays a crucial role in
actively observing an application's behavior during runtime. The
utilization of dynamic analysis is crucial in the identification of
malware that exhibits dangerous behavior exclusively during the
active execution of the application.

It is imperative to acknowledge that the identification of Android
malware involves the integration of static and dynamic analytic

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(4), 788 Pg 8

methodologies. Static analysis is the process of examining an
application's code and resources without executing it, whereas
dynamic analysis involves running the application in a controlled
environment to observe its behavior. This includes monitoring the
utilization of the ServiceConnection interface.

5. ATTACHINTERFACE
The attachInterface function is not commonly considered a static

feature in the context of Android. Instead, it is an internal method
employed by the Android framework to facilitate inter-process
communication (IPC) across different components. Although it
plays a crucial role in the operation of the Android system, Android
malware detection does not often prioritize this aspect.

The inclusion of internal method analysis, such as
attachInterface, in the detection of Android malware is not widely
adopted in current practices. Typically, the main emphasis lies on
higher-level behaviors and patterns that can be discerned during the
execution of an application or by a comprehensive analysis of its
code and manifest file. There are multiple reasons why the
attachInterface function is not commonly considered a vital aspect
in the identification of Android malware.

The attachInterface function is a restricted mechanism that is
solely utilized within the Android framework. The lack of
accessibility or exposure to manipulation by Android app
developers renders it an impracticable target for misuse.

The primary focus of malware detection efforts revolves around
the examination of an application's behavior at an elevated level,
encompassing its interactions with system services, network
activities, and permission utilization. The practice of detecting
malware at the level of internal framework methods, such as
attachInterface, is not commonly employed.

Dynamic analysis is a prevalent approach in the identification of
Android malware, wherein the behavior of an application is
continuously monitored within a controlled environment. The
utilization of dynamic analysis allows for the detection of
potentially suspicious or malicious actions that may not be readily
discernible through static code inspection.

Privacy and security concerns may arise when analyzing or
monitoring internal framework methods such as attachInterface.
The utilization of these methods is not intended for public
consumption, and their unauthorized access may potentially
jeopardise the stability and security of the Android system.

6.READ_PHONE_STATE
The privilege known as "READ_PHONE_STATE" holds

significant importance within the realm of Android app
permissions. This permission grants an application the ability to
retrieve data pertaining to the current state and identity of the
phone, encompassing information such as the phone number,
device identification, and call status. The
"READ_PHONE_STATE" permission is of considerable
importance in the domain of Android malware detection due to
numerous important factors.

The inclusion of the "READ_PHONE_STATE" permission in
apps raises concerns over privacy, as it grants potential access to
sensitive user data pertaining to device information and identity.
The granting of this permission gives rise to privacy concerns, as it

might potentially be exploited by malicious applications to gather
user data without obtaining authorization, so leading to substantial
breaches of privacy.

The permission known as "Call Interception" on Android devices
might potentially be exploited by malware to intercept or monitor
both incoming and outgoing calls. The engagement in such
malevolent conduct has the potential to result in unfavorable
consequences, such as the unauthorized interception of telephone
conversations or the unauthorized redirection of calls to external
parties.

Device Identification: The permission to collect unique device
identifiers, such as the IMEI (International Mobile Equipment
Identity) number, can be used by malware for malicious purposes.
The utilization of these identifiers has the potential to be leveraged
for activities such as device fingerprinting or user tracking, hence
giving rise to apprehensions regarding user privacy and security.

Telephony fraud is a prevalent issue in the realm of Android
malware, wherein certain forms of malware use the
"READ_PHONE_STATE" permission for illicit activities. This
include actions such as the unauthorized transmission of premium-
rate SMS messages, which may result in adverse financial
consequences for the recipient.

Indicators for Malware Detection: The identification of the
"READ_PHONE_STATE" permission, particularly in applications
that lack a legal necessity for its access, might be regarded as a
discerning factor suggestive of dubious or conceivably harmful
conduct. In the realm of Android security, both security
mechanisms and antivirus software frequently identify applications
that possess superfluous or uncommon permissions, hence
prompting a more thorough examination.

It is crucial to underscore that although the inclusion of the
"READ_PHONE_STATE" permission may arouse concerns in the
context of Android malware detection, it should not be assumed
that all applications asking this permission possess harmful intent.
Legitimate applications, especially those that offer call
management or caller ID services, may legitimately necessitate this
authorization in order to fulfil their intended functions.

The achievement of efficient malware detection on the Android
platform necessitates the implementation of a thorough strategy that
incorporates static and dynamic analysis techniques, alongside
ongoing behavior monitoring. The evaluation of permissions, such
as "READ_PHONE_STATE," is an integral aspect of static
analysis. However, their importance is assessed within the
framework of an application's behavior and the requirement of the
permission for valid functionality of the app.

7. 1END_1M1
The "SEND_SMS" permission is an essential Android

permission that confers upon an application the capability to
dispatch SMS (Short Message Service) messages from the user's
mobile device. The significance of this permission within the realm
of Android malware detection is noteworthy due to various
compelling factors.

Unwanted SMS Messages: Malicious applications may
deceptively seek authorization to "SEND_SMS" in order to
covertly send SMS messages without the user's knowledge or
agreement. The content of these communications may involve

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(4), 788 Pg 9

services that require payment at premium rates or through
subscription models, which could lead to unforeseen financial
expenses for the consumer.

Certain types of Android malware exploit the "SEND_SMS"
permission to disseminate unsolicited messages or fraudulent
communications, commonly known as spam or phishing, to
individuals listed in the user's contact directory. These acts have the
potential to result in the occurrence of unsolicited solicitations or
even deliberate efforts to steal confidential personal information.

The utilization of SMS as a communication channel between a
command-and-control server and some types of Android malware,
such as botnets, has been seen. The potential exists for the
transmission and reception of SMS messages in order to carry out
orders or obtain updates from the server controlled by the attacker.

The exploitation of the "SEND_SMS" permission by malicious
programmes might result in the flooding of recipients with a
significant number of SMS messages. This has the potential to
create a denial-of-service (DoS) situation, which can interrupt the
functioning of the recipient's device or network.

Unauthorized operations: This particular ability can be utilized
to carry out operations on the device without proper authorization,
like modifying device settings or sending messages to premium-
rate services, all without obtaining the explicit consent of the user.

The inclusion of the "SEND_SMS" permission in an
application's manifest is sometimes regarded as an initial indication
of possible suspicious behavior in the context of malware detection.
The security features integrated into the Android operating system,
along with antivirus software, have the capability to identify and
subject programmes that possess this particular permission to
additional examination.

It is imperative to acknowledge that authentic applications may
legitimately necessitate the "SEND_SMS" permission for valid
reasons, such as messaging applications or those supporting two-
factor authentication by SMS. Nevertheless, the importance of this
authorization in the detection of Android malware relies on its
susceptibility to exploitation by malicious programmes.

The detection of malware on Android devices involves a
comprehensive methodology that incorporates several techniques
such as static and dynamic analysis, continuous monitoring of
behavior, and heuristic evaluation. The examination of
permissions, such as "SEND_SMS," is a component that is subject
to scrutiny during static analysis. The assessment of the
significance of this permission relies on the wider context of the
application's behavior and its justified requirement for sending
SMS messages. As a result, applications that request this
permission without a transparent and valid rationale can give rise
to concerns within the context of malware detection.

RELATED WORK
In recent years, there has been a significant amount of research

focused on the detection of Android malware using machine
learning techniques. Different detection strategies are employed
depending on how the features used in machine learning algorithms
are collected.

The aforementioned analytical techniques commonly fall into
three categories: static, dynamic, or hybrid. Machine learning
algorithm characteristics are collected through dynamic analysis by

running applications on either a physical or virtual device.
Characteristics pertaining to machine learning approaches in static
analysis are acquired without the need to launch any applications.
Constructing the necessary infrastructure poses challenges due to
the utilisation of dynamic analysis in programme execution. They
do, however, successfully fend off zero-day assaults. Considering
that no applications are launched during static analysis, the
procedure is fairly quick. There is a hybrid analysis method in
addition to static and dynamic analysis methodologies. This method
combines features gained through static and dynamic methods.8

The methodologies proposed in the referenced paper contribute
to the enhancement of key factors, such as selected features for
classification and the overall accuracy in predicting malware
detection. Numerous research has integrated all of these elements
in order to enhance the efficiency of the detection rate. Certain
studies have focused on enhancing precision, whereas others have
prioritized the provision of an expanded dataset. Various feature
sets have been employed for implementation.9

The approach to doing static assurance analysis for Android
applications is contingent upon the objectives of the user. The
process of performing a static assurance analysis on an application
entails the computation of percentages that indicate the occurrence
of risky function calls. These function calls are dependent on the
successful execution of user interactions. The inclusion of crucial
function calls is taken into consideration while calculating the
assurance score. Furthermore, programmes running on other
operating systems can benefit from static assurance analysis. Using
static analysis, a method was put forth by G. Jacob et.al.10 to
compare an application with known malware. The application was
compared using a similarity metric to known malware.11

Z. Aung et.al.12 offer a system aimed at improving the
organization of the Android Market. This framework focuses on
detecting and identifying harmful applications that specifically
target the Android platform. The proposed framework seeks to
develop an Android malware detection system that utilizes machine
learning methods to differentiate harmful applications, hence
enhancing the security and privacy of individuals using
smartphones. The current system has been created with the purpose
of monitoring and documenting various permission-based
attributes and events that are obtained from Android applications.
The aforementioned attributes are next analyzed by machine
learning classifiers to ascertain the characteristics of the
programme, specifically whether it is benign or malicious. The
paper combines a total of 700 malware samples and 160 attributes
from two datasets. The Random Forest (RF) method achieved an
accuracy rate of approximately 91% for both datasets.

A total of 2000 malicious programmes, classified into 18 distinct
families based on their characteristics, were organised and
documented in a previous study.13 The Cuckoo Sandbox was used
to evaluate applications and extract the most distinguishing
behavioural traits that set different harmful families apart from one
another. A technology known as online machine learning was used
to classify malware into different families using the features that
were acquired. In the experiments, all seven groups of applications
were appropriately classified. The android.trojan.smskey family
was found to have the lowest performance rate.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(4), 788 Pg 10

Bayesian classification is used to create a unique malware
detection approach.14 The Bayesian classifier approaches analysis
of static data by disassembling Android apps. The APK (Android
Package Kit) tools are utilized to extract various attributes, which
are afterwards employed in a Bayesian classifier for the purpose of
identifying malicious code. An additional technique employed in
the realm of malware detection involves the employment of an
inter-component communication taint analysis tool in combination
with inter-component communication, with the aim of detecting
and identifying instances of information breaches. It is advisable to
employ the technique of "chasing stains" in order to detect
vulnerabilities associated with hijacking in Android applications,
namely those that arise in the interface between sensitive sources
and externally accessible interfaces. Both Leak Miner and Android
Leaks offer users the opportunity to effectively control the Android
life cycle and callback mechanisms. Nevertheless, the limited
ability of these instruments to adapt to specific contexts makes it
impractical to conduct precise analyses of a wide range of potential
scenarios.

In the work by Rovelli et.al.,15 the authors have presented a new
approach, known as Permission-based Malware Detection Systems
(PMDS), for the identification of Android malware. The
methodology employed in this study is the examination of a dataset
including 2950 Android applications, encompassing both benign
and malicious samples. Within the framework of Permission-based
Mobile Device Security (PMDS), the aggregation of permissions
requested by an application is seen as a behavioral indicator.
Following this, a machine learning model is developed using these
signs in order to detect potentially risky behavior exhibited by
unverified applications. The PMDS system has demonstrated a high
level of efficacy in detecting previously undetected malware, with
a success rate of 92.94%. Furthermore, it has managed to maintain
a low false-positive rate of 1.523.93%.

N. Milosevic et.al.16 employed machine learning techniques to
propose two separate methodologies that rely on static analysis. The
initial approach involved the utilization of static analysis to obtain
application permissions. The second approach utilized the bag-of-
words model to analyze source code. Based on the available facts,
it can be deduced that the computational expense associated with
the initial strategy is comparatively lower in comparison to the
second approach. The M0Droid dataset, comprising 200 Android
applications categorized as harmful and 200 applications
categorized as good, was subjected to machine learning algorithms.
With the SMO algorithm, the permission-based method showed the
best results. The f-measure performance score for this was 0.879.
By experimenting with various bagging methods, this success was
raised to 0.894. According to the f-measure metric, this
performance was 0.951. By experimenting with various bagging
methods, this success was raised to 0.9560.

Congyi17 proposes a method for distinguishing and to employ an
ensemble learning approach for the purpose of categorizing
Android malware. The first phase entails doing a static analysis of
the Android Manifest file contained within the Android Application
Package (APK) in order to extract system features such as
permission calls, component calls, and intents. Subsequently, the
researchers employ the XGBoost methodology, a form of ensemble
learning, to identify instances of fraudulent programmes. The

primary dataset utilized in this experiment was sourced from the
Kaggle platform, namely from their examination of over 6,000
Android applications. The researchers assessed a testing set
including 2,000 examples to evaluate both good and bad
applications. They employed three distinct feature sets for this
evaluation. Subsequently, the remaining data was utilized to create
a training set consisting of 6,315 samples.

Flowdriod, a static taint analysis tool,18 conducts an examination
of the byte code and configuration files of applications on the
Android platform in order to identify instances of privacy leaks.
While Flowdroid has high efficacy and exceptional accuracy, it
does not provide inter-component communication. There have been
various virus detection methodologies proposed to tackle this
matter, yet complete static analysis still exhibits notable limitations.
These methods lack the capability to do comprehensive static
analysis and are incapable of resolving reflected method calls. In
order to conduct an analysis of the security of third-party
programmes found on different play stores, the researchers have
introduced SAM (Static Analysis Module)19 as a component of the
mobile application verification cluster. The testing and
implementation of SAM is conducted on the Android platform.

1233 Android malware samples were categorized into several
kinds in a study by F. Alswaina et.al.20 There are a total of 28
different forms of Android malware that were classified. Machine
learning algorithms are given application permissions as input.
Some permissions fell into the category of "extremely risky," while
others did so under the category of "slightly less dangerous." The
authors suggested a method they call an "extremely randomized
tree" to digitize these variations and enhance the effectiveness of
classification algorithms. The task of feature selection was also met
by the suggested approach. The study employed six different
categorization algorithms. These include nearest neighbour, nearest
tree, ID3 decision trees, RF, neural networks, and bagging
techniques. The RF algorithm produces the best classification
results. The RF categorization result is 95.97% accurate.

The study by Li et.al.21 proposes an SVM-based approach for
detecting malware on the Android platform, which considers both
combinations of dangerous API requests and permission requests.
The dataset has a total of 400 Android applications, with 200 being
classified as excellent applications sourced from the official
Android market, and the remaining 200 being categorized as bad
applications sourced from the Drebin dataset. The user did not
provide any text to rewrite. The analysis aims to determine the
program's degree of risk and, if applicable, categorize it inside the
malware classification. State-of-the-art algorithms are employed to
detect malware, achieving a remarkable accuracy rate of 99.82%
with no instances of false positives. This is accomplished by
utilizing only a small portion of the available computational
resources and combining a restricted feature set.

G. Suarez-Tangil et.al.22 proposed a machine learning-based
malware detection system for Android that is permission-based.
Instead of employing all permissions, the significant permission
identification (SIGPID) method allows you to pick the ones that
will make it easier to distinguish between harmful software and
other malicious software. 135 permissions were downsized to 22
permissions using the suggested approach. 22 permissions were
used for classifying data, which led to more successful and quicker

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(4), 788 Pg 11

outcomes. Additionally, it was underlined that the SVM in the study
enabled over 90% of classification success.

PROPOSED METHODOLOGY
The proposed methodology consists of three stages: gathering

data, selecting and extracting features, and using machine learning
classifiers. Referring to Fig. 3, The proposed work's initial phase is
dedicated to data gathering.

A. DATA COLLECTION
The dataset being used is crucial for malware detection. Both

benign and malicious application samples are gathered in a data
collection. The performance of several machine learning
techniques is assessed using the debrian-215 dataset23 and utilized
as the dataset for the proposed work. 9,476 benign samples and
5,560 malware samples are included in this collection. The dataset
comprises a total of 215 properties, wherein manifest permissions
account for 53% of the properties, API call signatures account for
33%, and the remaining 14% are attributed to other factors. The
dataset encompasses information pertaining to the features of all
applications, wherein these properties are denoted by binary values
of either 0 or 1. The values of 0 and 1 are indicative of whether a
specific characteristic necessitates authorization.
Figure 2 provides a detailed explanation of the designed
methodology incorporated in this study.

Figure 2. Designed Methodology

B. PREPROCESSING, FEATURE EXTRACTION & FEATURE
SELECTION

PREPROCESSING
The dataset may include values other than 0 and 1. The dataset

is also characterized by a significant number of irrelevant variables
as well as a considerable amount of missing information. When
doing training for a machine learning model, the presence of
missing values has the potential to introduce errors. Preprocessing
the dataset is therefore crucial. Numerous libraries for machine
learning exist, including ScikitLearn, pandas, Numpy, and others.24
These libraries contain a wide variety of data preparation tools. For
this project, the ScikitLearn Library's SimpleImputer class and
average value approach are employed.

FEATURE EXTRACTION
The Java programming language is commonly employed in the

creation of Android applications. The Java code that has been
generated is subsequently subjected to the process of compilation,
leading to the generation of byte code. The byte code is later
converted into DEX byte code. The designated file extension for
byte code is ".class". Through the utilization of a dx tool, the
discrete .class files are amalgamated into a cohesive dex file, hence
facilitating the bundling of the Android programmed as APK
content. To facilitate the examination of the APKs, it is important
to categorize these Android applications. Apktool, dex2jar, JADX,
and other reverse engineering tools are utilized for the purpose of
disassembling and analyzing these software applications. The
extraction of features from these APKs represents the starting stage
in our endeavor. Figure 3 provides insights into the Feature
Extraction Technique utilized in the study

Figure 3. Feature Extraction Technique

Analogous to the compression of files into a zip format, an
Android application undergoes the process of archiving. The
AndroidManifest.xml file contained within this APK offers a
multitude of capabilities that can be utilized for the purpose of static
analysis. In order to extract the features from an APK file, it is
necessary to employ a reverse-engineering programed.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(4), 788 Pg 12

In this context, the extraction of permission requests from the
Android manifest.xml file and API calls from the Classes.dex file
is performed, following the example provided in Figure 4. Other
traits can likewise be retrieved in a similar manner. Using the
feature importance technique, a few key characteristics can be
chosen from the extracted features and used for malware detection.
The next part goes into detail about feature selection.

FEATURE SELECTION
Finding and utilizing the appropriate features is crucial to

improve the model's accuracy. Using the SimpleImputer class of
the ScikitLearn Library, a dataset is first preprocessed in this
research phase. After preprocessing, features are retrieved, and
using the feature importance technique, the features that are
significant in determining whether or not an application is
malicious are selected. As can be seen in below Fig. 4, a total of 10
features were chosen based on their score values. significant
attributes. Figure 4 displays crucial features along with their
respective scores.

Figure 5. Important Features

The feature importance for each feature can be determined by

employing a model's feature importance technique. The relative
importance of each feature with respect to the output variable is
assessed by providing a numerical score to each feature, where
higher scores correspond to greater significance. The Scikit-Learn
toolkit for machine learning includes a Tree Based Classifier, which
provides feature significance as a default feature.
This relevant feature selection method reduces 215 features to 10
features that are crucial for differentiating between malicious and
benign programs.

MACHINE LEARNING ALGORITHM
The identification of malicious software, commonly referred to

as malware, is predominantly dependent on the utilization of
machine learning methodologies. The machine learning model
undergoes training and testing using the selected Important
features.

The aforementioned characteristics are presented as input to a
machine learning model, which employs many classifiers to
ascertain the level of risk associated with an application.

To evaluate the effectiveness of the classifiers using various
parallel combination approaches, a 10-fold cross-validation
methodology is employed. The dataset is divided into ten distinct
and non-overlapping segments, as indicated by its nomenclature.

 The components can be classified into parts 1 through 3, and
further expanding to section 10. The evaluation methodology at
each stage employs three segments as the testing dataset, while the
remaining seven segments are allotted for training the model. The
utilization of the cross-validation training dataset is integral to the
training process of the machine learning model. Subsequently, the
predicted outcomes are compared with the validation dataset to
evaluate the model's correctness. The justification for employing
this methodology is to ensure that our strategic approach effectively
enables the detection of unidentified hazardous applications.

To achieve best results, it is customary to divide a dataset into
two separate sets: a training set and a testing set. The training set
typically accounts for 70% of the dataset, while the testing set
accounts for the remaining 30%. The algorithms are subjected to
testing using the remaining 30% of the dataset after being trained
on 70% of the data. The technique of K-fold cross-validation is
extensively utilized in the domain of machine learning to assess the
efficacy of models. In this methodology, the dataset is partitioned
into K subsets, where K is commonly designated as 10. The model
is subsequently trained and assessed K times, with each iteration
utilizing a distinct subset as the validation set and the remaining
subsets as the training set. This procedure facilitates a thorough
evaluation of the model's proficiency and aids in addressing
concerns pertaining to overfitting and bias.

The methodologies utilized in this research encompass Linear
Regression, K-Nearest Neighbours (KNN), Naive Bayes, Decision
Tree, Random Forest, Support Vector Machine (SVM), Linear
Support Vector Machine (Linear SVM), XGBoost, Adaboost, and
Gradient Boosting. The subsequent section of this research study
presents a comprehensive examination and evaluation of the
outcomes and analyses pertaining to each of the aforementioned
algorithms.

EVALUATION CRITERIA
Various criteria are employed to assess the efficacy of distinct

machine learning algorithms: The confusion matrix is a commonly
employed method for assessing the effectiveness of a classifier. The
numerical numbers within this matrix provide a succinct depiction
of the quantities of precise and imprecise predictions. The
determination of false positive and false negative rates necessitates
the application of a particular methodology. Table 1 illustrates the
Confusion Matrix.

Table 1 Confusion Matrix

Confusion Matrix
Predicted
Observed
 Positive Negative Total
Positive TP(p) FN(q) p+q
Negative FP(r) TN(s) r+s
Total p+r q+s P+q+r+s

True Positive Ratio (TPR)

The accuracy rate of identifying malicious APKs, expressed as
the ratio of successfully categorized malicious APKs to the total
number of harmful APKs in the dataset.
TPR = p / p + q

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(4), 788 Pg 13

True Negative Ratio (TNR)

The determination of the proportion of accurately categorized
non-harmful APKs can be achieved by dividing the entire count of
correctly classified non-harmful APKs by the overall count of non-
harmful APKs present in the dataset.
TNR = s / r + s

False Positive Ratio (FPR)

The fraction of incorrectly labelled benign APKs relative to the
total number of benign APKs in the dataset.
FPR = 1 − TNR = 1 – Specificity

FPR = r / r + s

False Negative Ratio (FNR)

The proportion of misclassified hazardous applications in the
dataset relative to the total number of harmful applications.
FNR = q / p + q

Accuracy (Acc)

The accuracy of predictions is defined as the ratio of correct
predictions to the total number of predictions generated by the
dataset.

Acc = p + s/ (p + q + r + s)

AREA UNDER CURVE
The measure in question is utilized as a means of assessing the

classifier's efficacy. Value of 0.5 represents random guesses, while
a value of 1 signifies perfect predictions. Figure 5 illustrates the
Area Under the ROC Curve.

Figure 5: Area Under Curve

FINDINGS
Table II presents the performance metrics for each of the

assessed algorithms.

Table 2 Performance of Classifiers
Name of
Algorithm

False
Positive
Rate (%)

False
Negative
Rate(%)

AUC Accuracy

SVM 0.033 0.026 0.9774 97.73
LOGISTIC
REGRESSION

0.030 0.026 0.9773 97.66

RANDOM
FOREST 0.012 0.036 0.9781 98.33

KERNEL
SVM 0.013 0.037 0.9768 97.96

1XG BOOST 0.008 0.015 0.9900 98.72
KNN 0.031 0.032 0.9746 97.75
NAÏVE BYES 0 1 0.5 69.40
DECISION
TREE 0.043 0.033 0.9710 97.53

ADA BOOST 0.033 0.041 0.9700 97.12
GRADIENT
BOOST 0.024 0.044 0.9713 97.23

RESULT AND DISCUSSION
Support Vector Machine
The SVM algorithm showcased robust performance in our study,

achieving a False Positive Rate (FPR) of 0.033 and a False Negative
Rate (FNR) of 0.026. With an impressive Area Under the ROC
Curve (AUC) of 0.9774, the SVM model demonstrated its efficacy
in effectively distinguishing between positive and negative
instances. The overall accuracy of 97.66% underscores its
reliability and competence in addressing the study's objectives. The
balanced trade-off between false positives and false negatives,
coupled with the high AUC score, highlights the excellent
discriminative power of the SVM model.
Logistic Regression

Parallel to the robust performance of SVM, Logistic Regression
demonstrated commendable results, featuring a slightly lower False
Positive Rate (FPR) of 0.030 and an identical False Negative Rate
(FNR) of 0.026. Possessing an AUC value of 0.9773 and an
accuracy rate of 97.66%, Logistic Regression exhibited reliability
and effectively addressed the challenges presented by the task. The
comparable performance to SVM, as indicated by the similar AUC
values, underscores the logistic regression model's high ability to
distinguish between positive and negative instances.
Random Forest

Random Forest demonstrated impressive performance in our
study, boasting a low False Positive Rate (FPR) of 0.012 and a
moderate False Negative Rate (FNR) of 0.036. With a high Area
Under the ROC Curve (AUC) value of 0.9781 and an exceptional
accuracy of 98.33%, Random Forest showcased its effectiveness in
accurately classifying instances. The combination of a low false
positive rate, a reasonable false negative rate, and a high AUC score
emphasizes the robust discriminative power and overall
competence of the Random Forest algorithm in addressing the
objectives of the study.
Decision Tree

The Decision Tree algorithm exhibited an accuracy of 97.53%,
accompanied by a marginally higher False Positive Rate (FPR) of
0.043 and a False Negative Rate (FNR) of 0.033. While boasting

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(4), 788 Pg 14

good discriminatory power with an AUC of 0.9710, it slightly lags
behind SVM and Logistic Regression in overall performance.
Despite its accurate predictions, the Decision Tree model shows a
trade-off with slightly elevated false positive and false negative
rates when compared to the aforementioned algorithms. The AUC
score of 0.9710 indicates acceptable discriminative power,
reinforcing its capability to distinguish between positive and
negative instances.

Kernel SVM
Distinguishing itself with a notably low False Positive Rate

(FPR) of 0.013, the Kernel SVM algorithm demonstrated an
impressive accuracy of 97.96%. Alongside a False Negative Rate
(FNR) of 0.037 and an AUC of 0.9768, it emphasized its prowess
in effectively discriminating between positive and negative
instances. Kernel SVM stands out not only for its remarkable
accuracy but also for its distinctly low false positive rate,
underscoring its precision in minimizing misclassifications. The
high AUC score of 0.9768 further reinforces its overall strong
discriminative power, making it a standout performer in the study.

XG Boost
XG Boost emerged as an unequivocal standout performer in our

study, showcasing the lowest False Positive Rate (FPR) at 0.008
and an impressively low False Negative Rate (FNR) of 0.015. With
an outstanding AUC value of 0.9900 and a remarkable accuracy of
98.72%, XG Boost demonstrated exceptional effectiveness in
meeting the study's objectives. Its unparalleled combination of the
lowest false positive rate, highest accuracy, and an impressive AUC
score underscores its robustness and efficacy in accurately
distinguishing between positive and negative instances, making it a
highly recommended choice for deployment in similar tasks.

K-Nearest Neighbors
KNN showcased reliable performance in our study, exhibiting a

False Positive Rate (FPR) of 0.031, a balanced False Negative Rate
(FNR) of 0.032, and an AUC of 0.9746. The algorithm's accuracy
reached 97.75%, firmly establishing its competence in the context
of the study. KNN's consistent and reliable performance is evident
in its ability to maintain a balance between false positive and false
negative rates, supported by a commendable AUC score. These
results highlight the algorithm's robustness in accurately classifying
instances and reinforce its suitability for application in similar
contexts.

Naive Bayes
In a distinctive profile, Naive Bayes exhibited an unusual pattern

by displaying no false positives (False Positive Rate, FPR: 0).
However, it encountered challenges marked by a high False
Negative Rate (FNR) of 1, leading to an overall accuracy of
69.40%. The AUC value of 0.5 further emphasizes chance-level
performance in discrimination. Naive Bayes' unique characteristic
of avoiding false positives is noteworthy, but its struggle with a
high false negative rate contributes to a lower overall accuracy. The
AUC score of 0.5 suggests that the model's discriminatory power is
no better than random chance, indicating limitations in its
effectiveness for the specific task at hand.

Ada Boost
Ada Boost demonstrated competitive performance in our study,

showcasing a False Positive Rate (FPR) of 0.033 and a slightly
higher False Negative Rate (FNR) of 0.041. The model achieved an

AUC of 0.9700 and an accuracy of 97.12%. These results
underscore Ada Boost's efficacy in the given task, as it strikes a
commendable balance between false positive and false negative
rates. The AUC score of 0.9700 further confirms its effectiveness
in discrimination, positioning Ada Boost as a robust algorithm with
competitive performance in the context of the study.

Gradient Boost
Gradient Boost demonstrated solid performance in our study,

featuring a low False Positive Rate (FPR) of 0.024 and a marginally
higher False Negative Rate (FNR) of 0.044. With an Area Under
the ROC Curve (AUC) value of 0.9713 and a commendable
accuracy of 97.23%, Gradient Boost showcased its effectiveness in
classification tasks. The low false positive rate indicates a precise
identification of negative instances, while the AUC score of 0.9713
highlights its overall good discriminative power. Despite a slightly
elevated false negative rate, Gradient Boost's strong accuracy and
competitive performance make it a valuable candidate for tasks
requiring accurate and reliable predictions.

The algorithm that demonstrates superior performance among
the ten evaluated in this study is XG Boost. XG Boost demonstrates
remarkable performance by presenting the most favorable metrics,
including the lowest False Positive Rate (FPR) at 0.008, the lowest
False Negative Rate (FNR) at 0.015, and an exceptional Area Under
the ROC Curve (AUC) value of 0.9900. Moreover, XG Boost
achieves an impressive accuracy rate of 98.72%. This
amalgamation of the minimal false positive and false negative rates,
along with a high accuracy and an outstanding AUC score,
accentuates its robustness and efficacy in accurately discerning
between positive and negative instances. Consequently, based on
the information provided, XG Boost emerges as the top-performing
algorithm among the evaluated models in the specific task under
consideration.

Figure 6: False Positive Rate

0
0.01
0.02
0.03
0.04
0.05

False Positive Rate (%)

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(4), 788 Pg 15

Figure 7: False Negative Rate

Figure 8: ROC Area Under Curve

Figure 9: Classifier Accuracy

XGBoost, short for Extreme Gradient Boosting, represents an
advanced and expanded iteration of the Boosting methodology,
specifically derived from the Gradient Boosted Decision Tree
(GBDT) technique. The core principle of this methodology is
defined by the inclusion of additive training, wherein a new
function is introduced to the model while maintaining the integrity
of the present model.17

XGBoost, has a mathematical definition that is

𝑏𝑏𝑙𝑙� = � 
𝑃𝑃

𝑝𝑝=1

𝑓𝑓𝑝𝑝(𝑎𝑎𝑖𝑖), 𝑓𝑓𝑝𝑝 ∈ ℱ… (1)

In this context, P represents the quantity of trees, while f
represents a function within the function space F. The function
space F encompasses the entirety of viable classification and
regression trees. The optimization problem requires the provision
of the target function to be optimized.

obj(𝜃𝜃) = � 
𝑞𝑞

𝑖𝑖

𝑙𝑙�𝑏𝑏𝑖𝑖 , 𝑏𝑏�𝑙𝑙� + � 
𝑃𝑃

𝑝𝑝=1

Ω�𝑓𝑓𝑝𝑝�… (2)

Ω Can be defined as

Ω(𝑓𝑓) = 𝑏𝑏𝑏𝑏 +
1
2
𝜆𝜆�  

𝑁𝑁

𝑐𝑐=1

𝑀𝑀𝑐𝑐2 … (3)

In this context, the variable N denotes the quantity of leaves,

whereas M represents the weight vector of a leaf node. The
anticipated tree structure will exhibit greater simplicity as the
values of "and" increase in magnitude.

The following benefits of using the XGBoost approach in real
applications:
L1 and L2 regularisation can penalise a complex model, preventing
over-fitting.

XGBoost is capable of effectively handling many types of sparse
data patterns through the utilization of a segmentation search
algorithm. The proposed methodology integrates sparse data
sensing methods to tackle issues pertaining to missing data and the
handling of sparse data, such as the utilization of one-hot coding for
data encoding.

The XGBoost implementation has a block structure that
facilitates parallel learning, enabling efficient computation by
leveraging several CPU cores. The data is organized and stored
within a memory component known as a block, which distinguishes
it from alternative methodologies. The reusability of the data
architecture allows for its use in subsequent cycles, obviating the
need for recalculating all variables anew, hence reducing
computational time.
DISCUSSION

It is clear from the testing results of different classifiers that all
of the algorithms worked effectively. With the exception of Naive
Byes, practically all algorithms perform above 97% accurately. XG
Boost demonstrates the highest level of accuracy among all models,
achieving a notable accuracy rate of 98.72%. Furthermore, it has
the most minimal occurrence of false positives and false negatives.
The Random Forest approach exhibits a considerable degree of
precision, specifically 98.34%, accompanied with a false positive
rate of 0.012. This performance is surpassed only by the XG boost
algorithm.

The XG Boost algorithm exhibits a higher level of performance
in relation to the false negative rate, with the support vector
machine (SVM) classifier closely trailing behind. The gradient

0.0260.026 0.0330.0370.0150.032

1

0.0330.0410.044
0

0.2
0.4
0.6
0.8

1
1.2

False Negative Rate(%)

0
0.2
0.4
0.6
0.8

1
1.2

Area Under Curve

90
92
94
96
98

100

Classifier Accuracy

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(4), 788 Pg 16

boost method is characterized by a relatively elevated percentage
of false negatives, while the decision tree approach is associated
with a comparatively higher incidence of false positives.
Based on the overall outcomes, the XG boost algorithm emerges as
the most superior and precise technique, while the random forest
algorithm ranks second.

The analysis of the experimental data shown in the table reveals
that XG Boost demonstrates the best level of accuracy, reaching
98.72%. Additionally, it achieves an AUC value of 0.99.. This
indicates that XG Boost outperforms all other classifiers utilized in
this experiment, establishing it as the most effective classifier.

CONCLUSION
Our research delineates a sustained and significant interest in the

examination of Android applications, spanning from 2014 to the
present day. The evolution of this field is discernible through our
rigorous methodology, inclusive of an extensive literature review
and systematic analysis. Our findings assert the superiority of
dynamic analysis over static analysis for effective feature extraction
in identifying malicious applications. This preference stems from
the escalating complexity of harmful app behaviors and the
advanced functionalities exhibited by genuine applications.
However, it is imperative to acknowledge that dynamic feature
extraction, while potent, entails a time-intensive process,
particularly when evaluating a large volume of applications. A
noteworthy observation is the increasing reliance on proficient
artificial intelligence and machine learning methodologies, leading
to a substantial augmentation in the identification of characteristics
and applications. This research significantly contributes to the
ongoing discourse on enhancing Android application security,
offering valuable insights for future investigations in this evolving
landscape.

The primary objective of this study was to assess the efficacy of
various machine learning techniques utilizing the debrian-215
dataset. Training on a merged dataset containing 15,036 samples of
both malware and benign software, we evaluated ten machine
learning methods employing performance metrics such as
accuracy, area under the curve (AUC), false positive rate, and false
negative rate. Remarkably, the XGBOOST technique exhibited
exceptional performance when compared to alternative algorithms,
achieving an impressive accuracy rate of 98.72% and an area under
the receiver operating characteristic (ROC) curve of 0.9900. A
comprehensive analysis of experimental data strongly suggests that
XGBOOST outperforms alternative algorithms across key metrics,
specifically within the domain of malware detection. These
findings provide valuable insights to the field of machine learning
for cybersecurity, emphasizing the efficacy of XGBOOST as a
robust tool for enhancing malware detection capabilities.

LIMITATION
This study specifically emphasizes static analysis for Android

malware detection, rather than centering on dynamic malware
detection. The superiority of dynamic analysis in Android malware
detection becomes evident when contrasted with static
methodologies. Through the execution of applications within a
controlled environment, dynamic analysis captures real-time
behavioral nuances, revealing hidden malicious activities that may

elude static examinations. This approach proves particularly adept
at identifying emerging threats, intricate logic, and encrypted
elements, showcasing its adaptability to the dynamic Android
malware landscape. The context-aware attributes of dynamic
analysis, encompassing interactions with device resources, network
communication, and user inputs, significantly contribute to the
precision in distinguishing between benign and malicious
behaviors. While static analysis remains a crucial component in the
broader malware detection strategy, the strength of dynamic
analysis lies in its capacity to unveil an application's true nature
during runtime, establishing a robust defense against sophisticated
and ever-evolving Android malware threats.

CONFLICT OF INTEREST STATEMENT
Authors certify that it is their own work, takes complete

responsibility for any text plagiarism and declare that they do not
have any conflict of interest for publication of this work.

REFERENCES
1. I. Alsmadi, R. Burdwell, A. Aleroud, et al. Mobile and Wireless Security:

Lesson Plans. In Practical Information Security; Springer International
Publishing, Cham, 2018; pp 159–179.

2. X. Wang, W. Wang, Y. He, et al. Characterizing Android apps’ behavior
for effective detection of malapps at large scale. Futur. Gener. Comput.
Syst. 2017, 75, 30–45.

3. W. Wang, M. Zhao, Z. Gao, et al. Constructing Features for Detecting
Android Malicious Applications: Issues, Taxonomy and Directions. IEEE
Access 2019, 7, 67602–67631.

4. D. Wermke, B. Reaves, N. Huaman, et al. A large scale investigation of
obfuscation use in google play. In ACM International Conference
Proceeding Series; Appl. Conf, 2018; pp 222–235.

5. W. Wang, Z. Gao, M. Zhao, et al. DroidEnsemble: Detecting Android
Malicious Applications with Ensemble of String and Structural Static
Features. IEEE Access 2018, 6, 31798–31807.

6. X. Zeng, G. Xu, X. Zheng, Y. Xiang, W. Zhou. E-AUA: An efficient
anonymous user authentication protocol for mobile IoT. IEEE Internet
Things J. 2019, 6 (2), 1506–1519.

7. G. Xu, Y. Zhang, A.K. Sangaiah, et al. CSP-E2: An abuse-free contract
signing protocol with low-storage TTP for energy-efficient electronic
transaction ecosystems. Inf. Sci. (Ny). 2019, 476, 505–515.

8. B. Urooj, M.A. Shah, C. Maple, M.K. Abbasi, S. Riasat. Malware
Detection: A Framework for Reverse Engineered Android Applications
Through Machine Learning Algorithms. IEEE Access 2022, 10, 89031–
89050.

9. D.O. Sahin, S. Akleylek, E. Kilic. LinRegDroid: Detection of Android
Malware Using Multiple Linear Regression Models-Based Classifiers.
IEEE Access 2022, 10, 14246–14259.

10. G. Jacob, P.M. Comparetti, M. Neugschwandtner, C. Kruegel, G. Vigna. A
static, packer-agnostic filter to detect similar malware samples. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics); Springer, 2013; Vol.
7591 LNCS, pp 102–122.

11. H. Bai, N. Xie, X. Di, Q. Ye. FAMD: A fast multifeature android malware
detection framework, design, and implementation. IEEE Access 2020, 8,
194729–194740.

12. Z. Aung, W. Zaw. Permission-Based Android Malware Detection. Int. J.
Sci. Technol. Res. 2013, 2 (3), 228–234.

13. A. Pektaş, M. Çavdar, T. Acarman. Android malware classification by
applying online machine learning. In Communications in Computer and
Information Science; Springer, Cham, Switzerland, 2016; Vol. 659, pp 72–
80.

14. Y. Suleiman, S. Sezer, G. McWilliams, I. Muttik. New Android malware
detection approach using Bayesian classification. In Proceedings -
International Conference on Advanced Information Networking and
Applications, AINA; IEEE, 2013; pp 121–128.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(4), 788 Pg 17

15. P. Rovelli, Ý. Vigfússon. PMDS: Permission-based malware detection
system. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics);
Prakash, A., Shyamasundar, R., Eds.; Springer, Cham, Switzerland, 2014;
Vol. 8880, pp 338–357.

16. N. Milosevic, A. Dehghantanha, K.K.R. Choo. Machine learning aided
Android malware classification. Comput. Electr. Eng. 2017, 61, 266–274.

17. D. Congyi, S. Guangshun. Method for Detecting Android Malware Based
on Ensemble Learning. In ACM International Conference Proceeding
Series; Mach. Learn. Technol, Beijing, China, 2020; pp 28–31.

18. S. Arzt, S. Rasthofer, C. Fritz, et al. FLOWDROID: Precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis for Android apps.
In ACM SIGPLAN Notices; ACM, 2014; Vol. 49, pp 259–269.

19. A. Armando, G. Bocci, G. Chiarelli, et al. Mobile app security analysis with
the MAVeriC static analysis. J. Wirel. Mob. Networks, Ubiquitous Comput.
Dependable Appl. 2014, 5 (4), 103–119.

20. F. Alswaina, K. Elleithy. Android Malware Permission-Based Multi-Class
Classification Using Extremely Randomized Trees. IEEE Access 2018, 6,
76217–76227.

21. W. Li, J. Ge, G. Dai. Detecting Malware for Android Platform: An SVM-
Based Approach. In Proceedings - 2nd IEEE International Conference on
Cyber Security and Cloud Computing, CSCloud 2015 - IEEE International
Symposium of Smart Cloud, IEEE SSC 2015; New York, NY, USA, 2016;
pp 464–469.

22. G. Suarez-Tangil, S.K. Dash, M. Ahmadi, et al. DroidSieve: Fast and
accurate classification of obfuscated android malware. In CODASPY 2017
- Proceedings of the 7th ACM Conference on Data and Application Security
and Privacy; Scottsdale, AZ, USA, 2017; pp 309–320.

23. U. V Nikam, V.M. Deshmuh. Performance Evaluation of Machine Learning
Classifiers in Malware Detection. In 2022 IEEE International Conference
on Distributed Computing and Electrical Circuits and Electronics
(ICDCECE); IEEE, 2022; pp 1–5.

24. J. Li, L. Sun, Q. Yan, et al. Significant Permission Identification for
Machine-Learning-Based Android Malware Detection. IEEE Trans. Ind.
Informatics 2018, 14 (7), 3216–3225.

	Received on: 14-Oct-2023, Accepted and Published on: 04-Jan-2024
	ABSTRACT
	Introduction
	A. Issues
	1. Common Issues of Extracting The Features
	2. Issues of Extracting Static Features
	3. Issues of Extracting Dynamic Features
	Contributions
	Overview of Android System and Security
	A. Android Platform
	B. Android Application
	C. Incorporated Security Mechanisms
	Traditional Access Control Mechanism
	Mechanism Based on Inspection of Permission
	Encryption Mechanism
	Digital Signature Mechanism
	Sandbox Mechanism
	Method of Detecting Android Application
	Static Analysis
	Dynamic Analysis
	Static Features
	1.Telephonymanader.getline1number
	2. Telephonymanager.getdeviceid
	3. On1erviceconnected
	4. 1Erviceconnection
	5. Attachinterface
	6.Read_phone_state
	7. 1End_1m1
	Related Work
	Proposed Methodology
	A. Data Collection
	B. Preprocessing, Feature Extraction & Feature Selection
	Preprocessing
	Feature Extraction
	Feature Selection
	Machine Learning Algorithm
	Evaluation Criteria
	Area Under Curve
	Findings
	Result and Discussion
	Discussion
	Conclusion
	Limitation
	Conflict of interest statement
	References

