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ABSTRACT 
 

Cognitive radio technology 
enables intelligent wireless 
communication systems to 
learn from their surroundings, 
allowing secondary users to 
reuse available radio resources 
while avoiding interference 
with licensed users. Spectrum 
sensing is a critical component, and machine learning approaches are gaining interest for improving performance and predicting spectrum 
availability. Supporting multiple secondary users simultaneously enhances spectrum sensing speed and data transfer efficiency. The research's 
second phase introduces a hybrid learning algorithm for Cooperative Spectrum Sensing in congested Cognitive IoT Networks. It evaluates the 
performance of BPSK, QPSK, and 64-QAM modulation schemes under varying Signal-to-Noise Ratios (SNRs) in a simulated network environment. 
The hybrid model, incorporating ResNet-50 architecture, adapts to network congestion levels, providing insights for optimizing digital 
communication systems in diverse congestion scenarios. 

Keywords: Cognitive Radio, Spectrum Sensing, Machine Learning, Cooperative Spectrum Sensing, IoT Networks 

INTRODUCTION 
The ever-growing demand for wireless communication services, 

along with the increasing proliferation of Internet of Things (IoT) 
devices, has led to a significant strain on the available radio 
spectrum resources. Traditional spectrum allocation policies, 
characterized by static and inflexible frequency assignments, no 
longer suffice to address this escalating demand. In response to this 
challenge, the paradigm of Cognitive Radio (CR) has emerged as a 
transformative solution.1 Cognitive radio, often regarded as an 
intelligent and adaptive wireless communication system, has 
garnered widespread attention for its ability to learn and adapt to its 
surrounding environment. At its core, CR enables Secondary Users 
(SUs) to opportunistically access and utilize the radio spectrum 

allocated to Primary Users (PUs), without causing harmful 
interference to the licensed users. This paradigm shift from static to 
dynamic spectrum access holds the promise of significantly 
improving spectrum utilization, mitigating congestion, and 
enhancing the overall efficiency of wireless networks.2 Key to the 
successful implementation of cognitive radio technology is the 
process of spectrum sensing, which involves the detection of 
available spectrum opportunities while avoiding interference with 
primary users. Spectrum sensing, often carried out in dynamic and 
challenging wireless environments, presents a critical challenge. 
Traditional spectrum sensing techniques based on statistical signal 
processing have shown limitations in coping with the complexity 
of real-world scenarios, which include variations in signal strength, 
fading channels, and interference from multiple sources.3  

In recent years, the fusion of machine learning techniques with 
spectrum sensing has emerged as a promising avenue to address 
these challenges effectively. Machine learning, with its ability to 
learn from data, adapt to changing conditions, and discern complex 
patterns, offers the potential to significantly enhance the accuracy 
and robustness of spectrum sensing in cognitive radio networks.4 
This research paper delves into the intersection of Cognitive Radio, 
Machine Learning, and Spectrum Sensing, with a particular focus 
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on addressing the spectrum congestion challenges faced in the 
context of IoT networks. The first part of this paper provides an 
overview of cognitive radio technology and its fundamental 
principles. It explores the role of spectrum sensing as the 
cornerstone of CR operation and discusses the limitations of 
conventional sensing techniques.  

The second phase of the research introduces a novel hybrid 
learning algorithm designed for Cooperative Spectrum Sensing in 
congested Cognitive IoT Networks. This segment of the study 
meticulously evaluates the effectiveness and performance metrics 
of various modulation schemes under varying Signal-to-Noise 
Ratios (SNRs) in a simulated network environment. The hybrid 
model, incorporating state-of-the-art machine learning 
architectures, adaptively learns network congestion levels, thereby 
providing valuable insights into the optimization of digital 
communication systems for enhanced efficiency and reliability 
under diverse network congestion scenarios.5 

This research investigated the spectrum sensing within 5G 
networks, a critical process for identifying unused frequency 
channels and ensuring efficient spectrum allocation. Traditional 
spectrum sensing methods, while foundational, grapple with 
limitations such as the need for prior information and time-
intensive processes. The introduction of computational intelligence 
algorithms, particularly deep learning, presents a transformative 
potential to enhance real-time spectrum sensing capabilities.6 This 
research aims to innovate in this domain, developing algorithms 
that not only predict spectrum availability with greater accuracy but 
also adapt to the dynamic nature of 5G networks, paving the way 
for more efficient and robust wireless communication systems. 

Therefore, the paper centers on improving spectrum sensing in 
5G networks using deep learning algorithms. Traditional methods 
are inadequate due to their time-consuming nature and the need for 
prior information about primary users. This research aims to 
develop advanced computational intelligence algorithms that can 
efficiently predict channel availability in real-time, enhancing the 
efficiency of cognitive radio systems. Key objectives include the 
development of adaptable deep learning algorithms for spectrum 
prediction, improving the interpretability and reliability of machine 
learning models, and addressing challenges such as energy 
efficiency and scalability. This research seeks to overcome the 
limitations of current spectrum sensing methods, optimizing 
spectrum utilization in increasingly crowded 5G networks. 

RELATED WORK 
Patel et al.1 achieved higher classification accuracy compared to 

IED and CED using an artificial neural network (ANN). They 
utilized previous sensing events, Zhang statistics, and energy as 
input features and optimized hyperparameters. Their ANN 
outperformed other methods, with a 63% improvement in 
performance. Pan et al.2 introduced a deep learning-based method 
using cyclic spectrum for OFDM signals, improving CNN's 
performance for spectrum sensing, especially in low SNR 
scenarios. Soni et al.3 proposed a deep learning-based LSTM-SS 
scheme for time series spectrum data, considering PU activity 
statistics. Their LSTM-SS outperformed ANN-based schemes, 
even in low SNR conditions. Chen et al.4 presented a cooperative 

spectrum sensing system (CSS-CNN) using CNN to enhance 
detection accuracy in complex scenarios, showing significant 
improvement. Liu et al.5 studied hard-biased sensors for off-track 
reading, considering magnetic noise and the media's magnetic field 
effects. They proposed a model to calculate reader resistance, 
particularly important for high-coercivity media. Xu et al.6 
proposed a parallel CNN-LSTM network for single-node spectrum 
sensing, demonstrating superior performance over a wide range of 
SNRs and the ability to detect multiple modulation types. Xie et al.7 
developed a deep unsupervised learning-based detector (UDSS) for 
spectrum sensing, requiring less labeled training data and 
outperforming non-deep learning algorithms. Sachi et al.8 presented 
a comprehensive channel model using CNN for PU signal 
classification, achieving high accuracy in a noisy environment. 
Usha et al.9 analyzed the role of ML algorithms, particularly 
gradient boosting, for channel state prediction in cognitive radio, 
achieving high accuracy and energy savings. Liu et al.10 proposed a 
big-data-based intelligent spectrum sensing method, processing 
large spectrum data through ML for heterogeneous spectrum 
communications. Khan et al.12 introduced an SVM-based algorithm 
to classify Secondary Users (SUs) and legitimate Mobile Users 
(MUs) and used DS evidence theory for decision-making regarding 
Primary Users' (PUs) existence in the network.  

Song et al.13 explored AI-enabled IoT networks, both centralized 
and distributed. They focused on technical challenges like random 
access and spectrum sharing and proposed Deep Reinforcement 
Learning (DRL) strategies using neural networks for spectrum 
access and sensing. Delvecchio et al.14 combined machine learning 
and communication security to study adversarial evasion attacks. 
Their approach allows secure communication by evading detection 
by deep learning-based eavesdroppers. Sagduyu et al.15 investigated 
adversarial attacks in IoT networks, focusing on how these attacks 
affect wireless communication through manipulation of training 
data. They developed defense mechanisms to counteract these 
attacks and improve system performance. Lin et al.16 presented an 
evaluation framework for UAV sharing using the M/G/1 queuing 
model. They combined DRL and LSTM networks to improve 
algorithm performance, demonstrating faster convergence and 
higher throughput compared to traditional methods. Shi et al.17 
addressed complex signal classification challenges in wireless 
networks. They used continual learning, outlier detection, extended 
CNN architectures, and blind source separation for efficient 
spectrum sharing and signal classification. Zhang et al.18 introduced 
a new power control strategy for Secondary Users (SUs) using the 
A3C methodology and DPPO-based power control. This approach 
allowed SUs to learn power control strategies independently, 
enhancing spectrum sharing efficiency. Raj et al.19 evaluated 
machine learning techniques for ASD screening using publicly 
available datasets. Their CNN-based models showed high accuracy 
in screening across various age groups. Dai et al.20 focused on 
annotating retinal lesions in a large image dataset. They applied 
transfer learning to improve the effectiveness of their Diabetic 
Retinopathy grading system, achieving high sensitivity and 
accuracy. 
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METHODOLOGY USED 
System Model  
The section discusses a solution for spectrum sharing (SS) and 

resource allocation in a 5G-based Internet of Things (IoT) network. 
The designed system, called Hybrid Congestion Aware Cognitive 
IoT (HCAC-IoT), employs a cluster-based, cognitive radio-assisted 
architecture specifically designed for urban environments. The 
network comprises four main components: 
• PBS (Primary Base Station) 
• HLSAs (High-Level Spectrum Allocators) 
• PUs (Primary Users) 
• SU (Secondary User) 

Entire working is considered to be mobile i.e., PU and SU are 
mobile. In this network, multiple HLSAs operate under a single 
PBS within a specified radius. Each HLSA cluster contains a 
certain number of SUs, which are distributed uniformly within the 
PBS's coverage area. There is also a variable number of SU in the 
network with velocity (βSU) and direction of travel (αSU). The 
mobility of these SU users is defined by two Gaussian-distributed 
parameters:  

𝛽𝛽𝑆𝑆𝑆𝑆𝑣𝑣 = 𝑁𝑁𝛽𝛽𝜇𝜇𝑣𝑣𝜇𝜇𝛽𝛽𝜎𝜎𝑣𝑣  (1) 

𝜎𝜎𝑆𝑆𝑆𝑆𝑣𝑣 = 𝑁𝑁�𝛼𝛼𝜇𝜇𝑣𝑣 , 2𝜋𝜋 − 𝛼𝛼𝜇𝜇𝑣𝑣 tan�
�𝛽𝛽𝑆𝑆𝑆𝑆𝑣𝑣

2
�∆𝑡𝑡� (2) 

The paper elaborates on the statistical modeling of the mobility 
of Secondary User (SU) vehicles in the HCAC-IoT system. The 
mobility is modeled using a Gaussian distribution characterized by 
mean (μ) and standard deviation (σ).  

For each SU vehicle, the mean velocity is denoted by 𝛽𝛽𝜇𝜇𝑣𝑣 and its 
standard deviation is represented by 𝛽𝛽𝜎𝜎𝑣𝑣 . Likewise, the mean 
direction of travel for the SU is denoted by 𝛼𝛼𝜇𝜇𝑣𝑣. The term 𝑡𝑡 specifies 
the time period during which the mobility model of the SU is 
updated in the system.  

Following this, the section proceeds to describe the roles and 
responsibilities of each network entity within HCAC-IoT: 

PBS: In the HCAC-IoT system, the Primary Base Station (PBS) 
is a central, stationary unit situated at a fixed location. The PBS 
serves multiple roles including providing backhaul connectivity to 
the High-Level Spectrum Allocators (HLSAs). These HLSAs are 
responsible for managing the SUs located along the urban roads. 
Additionally, the PBS coordinates spectrum access services across 
its designated coverage area.  

HLSA: In the HCAC-IoT system, the High-Level Spectrum 
Allocator (HLSA) functions as an intelligent cluster head with 
various decision-making responsibilities. Primarily, it is tasked 
with monitoring the Primary User (PU) spectrum occupancy using 
a Deep Learning-based Spectrum Sharing (DL-based SS) 
algorithm. Here, ResNet50 is used for spectrum sensing. It 
maintains a Spectrum Hole Table (SHT) to record available 
frequencies and manage Secondary User (SU) vehicle requests 
within its cluster. Secondly, upon receiving a request for 
opportunistic spectrum access at an SU, the HLSA utilizes a 

ResNet50 to determine the most optimal SU for channel allocation. 
The decision-making process for optimal RSU allocation is based 
on a 3-D feature vector. 

Learn Signal Environment: In the HCAC-IoT system model, the 
first responsibility of the High-Level Spectrum Allocator (HLSA) 
is to learn the signal environment. This is done through Spectrum 
Sharing (SS), where the presence or absence of a Primary User (PU) 
in the network is identified. Based on this identification, a Spectrum 
Hole Table (SHT) is created. During the SS process, if a PU signal 
is detected, the corresponding frequency band is marked as "no 
spectrum hole" (no SH) in the SHT. Conversely, if no PU signal is 
detected in a particular frequency band, it is labelled as a "spectrum 
hole" (SH), indicating that these vacant frequency bands of the PU 
spectrum are available for Secondary Users (SUs) to utilize. The 
generated SHT serves as a dynamic record of available and 
occupied spectrum, guiding the HLSA in resource allocation 
decisions for SU. Thus, the PU detection problem is formulated as 
expressed in the following: 

�̂�𝑠𝑃𝑃𝑆𝑆𝑖𝑖 → 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑎𝑎 = �
ℎ
𝑃𝑃𝑆𝑆→𝐻𝐻𝐻𝐻𝑆𝑆𝐻𝐻𝑎𝑎 𝑠𝑠�𝑃𝑃𝑃𝑃

𝑖𝑖
+𝜔𝜔𝑖𝑖

𝑖𝑖 , (𝑛𝑛𝑛𝑛 𝐻𝐻𝐻𝐻)

𝜔𝜔𝑖𝑖      (𝐻𝐻𝐻𝐻)
 (3) 

Where �̂�𝑠𝑃𝑃𝑆𝑆𝑖𝑖  is the PU signal, �̂�𝑠𝑃𝑃𝑆𝑆𝑖𝑖 → 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑎𝑎 denotes the ith 
received PU signal sample at the ath HLSA in the network. 𝑃𝑃𝑃𝑃 →
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 denotes the Rayleigh multipath fading channel between the 
ath HLSA and PBS. ωi denotes the additive white Gaussian noise 
(AWGN), with σ2 ω noise power and zero mean. 

In the technical details of the HCAC-IoT system, �̂�𝑠𝑃𝑃𝑆𝑆𝑖𝑖   represents 
the signal from the Primary User (PU), and �̂�𝑠𝑃𝑃𝑆𝑆𝑖𝑖 → 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑎𝑎 denotes 
the ith received PU signal sample at the ath High-Level Spectrum 
Allocator (HLSA) in the network. ℎ𝑃𝑃𝑆𝑆𝑖𝑖 → 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑎𝑎 indicates the 
Rayleigh multipath fading channel between the ath HLSA and the 
Primary Base Station (PBS). 𝜔𝜔𝑖𝑖  stands for the additive white 
Gaussian noise (AWGN), which has a noise power of 𝜎𝜎𝜔𝜔2  and a 
mean of zero. These elements collectively describe the 
complexities of the signal environment, accounting for factors like 
fading and noise, which the HLSA has to consider while making 
resource allocation decisions based on the Spectrum Hole Table 
(SHT). This ensures that the system can adaptively manage 
spectrum sharing and resource allocation in real-world scenarios, 
where signal quality and availability can be highly variable. 
The High-Level Spectrum Allocator (HLSA) calculates the 
expected stay time of each mobile SU within a target Unit (SU) cell. 
This is based on the IoT mobility speed and angle of movement. 
Additional factors like the node density are also considered to 
identify network conditions. The HLSA also evaluates the network 
capacity, which is the ratio of resources allocated to active SUs to 
the total network resources. 

Spectrum Sensing using ResNet50  
Data Generation: The research involves generating training and 

validation data in the form of spectrograms, which are visual 
representations of how the frequency spectrum of a signal changes 
over time. These spectrograms are categorized into two classes: 1) 
spectrum hole, representing the absence of Primary User (PU) 
signal, and 2) no spectrum hole, indicating the presence of PU 
signal. Each class contains 40,000 spectrograms. The 'spectrum 
hole' class represents idle PU transmission status, essentially 
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showing noise, while the 'no spectrum hole' class represents active 
PU transmission in the network. 

Network Architecture: For extraction of features ResNet50 is 
used, as presented in Fig 1. 

ResNet50, with its 50 layers, incorporates residual learning to 
make training deep networks easier. Like the existing model, 
ResNet50 also employs Batch Normalization (BN) and Rectified 
Linear Activation (ReLU) after each convolution, but it leverages 
the power of shortcut connections to preserve earlier features. 
These residual connections could further improve multiscale 
feature learning and model generalization, much like the original 
model. The residual connections in ResNet50 could also address 
the issue of vanishing gradient, aiding faster convergence, a feature 
already present in the existing model. ResNet50 is well-known for 
its strong performance in a wide variety of applications, potentially 
improving spectrum sensing accuracy. In last softmax classifier is 
used for effective resource allocation in the highly dynamic IoV 
network, as it is currently done by the High-Level Spectrum 
Allocator (HLSA). By integrating ResNet50, the system might not 
only retain but potentially enhance its existing capabilities, 
including efficient spectrum hole detection and resource allocation 
in HCAC-IoT. 

 

 
Figure 1. ResNet50 Architecture 

 

Extraction of Learning Features: In the research, different 
features were initially evaluated to assess the performance. Based 
on empirical studies, three key features were chosen to optimize 
spectrum efficiency and resource allocation for SU in the HCAC-
IoT system. These features adapt to the changing network 
conditions, accurately estimating vacant channels and determining 
optimal network routes for resource allocation. Some of the features 
are: 

Node Density: This feature is defined as the number of active PU 
and SU within cognitive IoT. Mathematically, the node density in 
the coverage area of the uth, denoted by 𝑣𝑣 active Secondary User 
(SU), could be expressed as: 

𝑓𝑓2 = 𝛿𝛿𝑅𝑅𝑆𝑆𝑆𝑆 
𝑢𝑢 = � SU𝑣𝑣  

∀𝜇𝜇

 (4) 

This feature expands the concept of node density to the cluster 
level, under the jurisdiction of a High-Level Spectrum Allocator 
(HLSA). For a given ath HLSA cluster that contains 𝑢𝑢 number of 
SU, the overall node density would incorporate the total number of 
active Secondary User (SU) node connected to all the SUs within 
that particular cluster. The node density is evaluated as: 

𝛿𝛿𝐻𝐻𝐻𝐻𝑆𝑆𝐻𝐻𝛼𝛼 �𝛿𝛿𝑅𝑅𝑆𝑆𝑆𝑆 
𝑢𝑢         

∀𝜇𝜇

 (5) 

Then it is simplified as: 

𝛿𝛿𝐻𝐻𝐻𝐻𝑆𝑆𝐻𝐻𝛼𝛼 �  � SU𝑢𝑢𝑣𝑣  active
∀𝜇𝜇

 
∀𝜇𝜇

 (6) 

Network Capacity: This feature defines the network capacity for 
each uth SU within an ath High-Level Spectrum Allocator (HLSA) 
cluster. Although the specific formula to express this capacity is not 
provided, this measure is likely to consider factors such as 
bandwidth, the number of active users, and perhaps quality of 
service metrics. Understanding the network capacity of individual 
RSUs within an HLSA cluster can be crucial for optimizing 
resource allocation and ensuring a robust and efficient network. 

Feature Set: A feature set 𝐹𝐹𝐻𝐻(𝑣𝑣) is created by concatenating the 
computed features sets {𝑓𝑓1,𝑓𝑓2, … .𝑓𝑓𝑛𝑛} for each SU in a given High-
Level Spectrum Allocator (HLSA) cluster. This results in a (𝑃𝑃 ×
𝑛𝑛)-dimensional feature set, where 𝑃𝑃 is the total number of SUs in 
the relevant ath HLSA cluster. This feature set is used to train the 
ResNet50 model with softmax classifier in the HCAC-IoT system. 
The classifier aims to determine the optimal SU for spectrum access 
for each Secondary User (SU) node based on the availability of 
spectrum holes and the best route for resource allocation. Example 
of feature set is presented as below: 

𝐹𝐹𝐻𝐻(𝑣𝑣) = �
𝑓𝑓1(1,𝑣𝑣) 𝑓𝑓2(1,𝑣𝑣) 𝑓𝑓3(1,𝑣𝑣)
𝑓𝑓1(𝑢𝑢,𝑣𝑣) 𝑓𝑓2(𝑢𝑢, 𝑣𝑣) 𝑓𝑓3(𝑢𝑢,𝑣𝑣)
𝑓𝑓1(𝑃𝑃,𝑣𝑣) 𝑓𝑓2(𝑃𝑃,𝑣𝑣) 𝑓𝑓3(𝑃𝑃, 𝑣𝑣)

� (7) 

The study uses ResNet50, to dynamically allocate the best SU to 
handle requests from SU nodes within the HCAC-IoT framework. 
This approach is shown to be superior to heuristics methods, which 
are less viable, computationally costly, and sensitive to complex 
high-dimensional problems. In summary, ResNet50 offers a more  
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Figure 2. Designed Methodology

efficient and responsive solution for complex, dynamic network 
environments like HCAC-IoT. The entire working step is presented 
below in Fig 2. 

RESULT ANALYSIS 
The results of the presented work are analyzed on three different 

metrics under different conditions. These parameters are: 
Pd (Probability of Detection): This is a measure of how effectively 
the system can detect congestion.  

RE (Recovery Error Rate): This metric indicates the average 
error in recovering the true state of the system from the received 
signals. 

Time: This could represent the average computational time taken 
for each iteration of the algorithm. 
Performance Evaluation under a Congested Environment 

It seems from Figures 3 to 5 that the system performs best (in 
terms of detection and recovery error rate) when the network is less 
congested. It achieves a perfect probability of detection (Pd = 1) 
when the congestion rate is 0.3 or less. Also, as the congestion rate 
decreases, the Recovery Error Rate (RE) decreases, suggesting a 
better recovery performance. The Time metric appears to be 
relatively consistent across different congestion rates 

 

 
Figure 3. Probability of Detection Under Varying Congestion Ratio  

 
Figure 4. Recovery Error Under Congestion Ratio  

 
Figure 5. Average Computational Time Under Varying Congestion 
Ratio 
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Performance Evaluation under Congested and Noisy 
Environment 

 
Figure 6. Probability of Detection Under Varying SNR 

 
Figure 7. Recovery Error Under Varying SNR 

 
Figure 8. Average Computational Time Under Varying SNR 

From figures 6 to 8, the results are presented with varying levels 
of Signal-to-Noise Ratio (SNR), measured in decibels (dB). Signal-
to-Noise Ratio in dB, which represents the power of the signal 

relative to the power of the background noise. According to the fig 
6, as the SNR increases (i.e., less noise or a stronger signal), the 
Recovery Error Rate also increases, which might be 
counterintuitive. From fig 7 the PD improves as SNR improves, 
which is expected. A clearer signal should generally lead to better 
detection capability. From the fig 8, the computational time 
decreases as the SNR increases, suggesting that higher-quality 
signals might require less computational effort to process, or that 
the algorithm converges faster in such cases. Overall, the figures 
suggests that higher SNR levels yield better detection capabilities 
(higher PD) but also lead to higher Recovery Error Rates (higher 
RE) in this particular simulation. Computational time improves 
(decreases) as SNR gets better. 
Performance Evaluation under Congested and Noisy 
Environment with BPSK Modulation 

Figure 9 presents the Probability of Detection (PD) under 
different Signal-to-Noise Ratio (SNR) conditions for three different 
modulation schemes: BPSK (Binary Phase-Shift Keying), QPSK 
(Quadrature Phase-Shift Keying), and 64-QAM (64-Quadrature 
Amplitude Modulation). BPSK shows perfect detection (PD = 1) at 
lower SNRs (-10 dB, -5 dB, 5 dB) but takes a hit at 10 dB (PD = 
0.85). The PD of QPSK is generally good but slightly lower than 
BPSK at negative SNRs. It stays relatively consistent as SNR 
increases, but like BPSK, also drops slightly at 10 dB. 64-QAM 
starts with the lowest PD at -10 dB and maintains a slightly lower 
PD across the board compared to BPSK and QPSK. Its PD also 
drops at 10 dB, but the drop is similar to that in QPSK. All three 
modulation schemes perform extremely well in terms of detection 
capability at lower SNRs but show a noticeable dip in performance 
at an SNR of 10 dB. BPSK provides the highest Probability of 
Detection at negative and low positive SNRs, but the differences 
among the three schemes are not significant. The decline in the 
Probability of Detection at an SNR of 10 dB across all modulation 
schemes is an interesting phenomenon that might warrant further 
investigation. These results provide valuable insights into how 
different modulation schemes behave under various noise 
conditions, particularly in terms of their ability to accurately detect 
true conditions. 

 

 
Figure 9. Probability of Detection Comparison with Modulation 
Techniques 
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Figure 10. Recovery Error with Modulation Techniques 

Figure 10 compares the Recovery Error Rate under varying 
Signal-to-Noise Ratio (SNR) conditions for three different 
modulation schemes: BPSK (Binary Phase-Shift Keying), QPSK 
(Quadrature Phase-Shift Keying), and 64-QAM (64-Quadrature 
Amplitude Modulation). For all modulation schemes, the Recovery 
Error Rate is highest at an SNR of -10 dB and decreases 
substantially as SNR improves. At lower SNRs, BPSK appears to 
have a slightly lower Recovery Error Rate compared to QPSK. 
However, this advantage seems to fade away as SNR increases. 
Interestingly, 64-QAM shows a Recovery Error Rate that is 
between BPSK and QPSK at -10 dB but is the highest at -5 dB and 
then aligns closely with the other two at higher SNRs. At an SNR 
of 10 dB, all three schemes demonstrate a very low Recovery Error 
Rate, with 64-QAM showing the lowest value. All modulation 
schemes are sensitive to noise at low SNR levels, but they perform 
significantly better as the SNR improves. At high SNRs, the 
Recovery Error Rates across all three modulation schemes are quite 
similar, suggesting that the choice of modulation may have less 
impact on recovery performance in high-SNR scenarios. Despite its 
complexity, 64-QAM performs admirably well, particularly at 
higher SNRs, even achieving the lowest Recovery Error Rate at an 
SNR of 10 dB. The varying behavior of these modulation schemes 
at different SNRs could be a subject for further investigation to 
understand the intricacies of their performance better. Overall, 
these results offer useful insights into how well each modulation 
scheme can recover the true signal under different noise conditions. 

 

 
Figure 11. Average Computational Time Comparison with 
Modulation Techniques 

Figure 11 presents the Average Computational Time under 
different Signal-to-Noise Ratio (SNR) conditions for three 
modulation schemes: BPSK (Binary Phase-Shift Keying), QPSK 
(Quadrature Phase-Shift Keying), and 64-QAM (64-quadrature 
Amplitude Modulation). For BPSK, the computational time is 
noticeably higher at lower SNRs and decreases as SNR improves. 
This trend is less apparent for QPSK and 64-QAM. Across all SNR 
levels, BPSK takes more computational time compared to QPSK 
and 64-QAM. In general, the average computational time for all 
schemes seems to decrease as the SNR increases. Despite its 
complexity, 64-QAM consistently requires the least computational 
time across all SNR levels. Higher SNRs seem to reduce the 
computational time required, particularly for BPSK. 64-QAM, 
despite being the most complex scheme, requires the least 
computational time, suggesting a high level of efficiency in its 
implementation. While BPSK has its advantages in other metrics, 
it falls short in terms of computational efficiency compared to 
QPSK and 64-QAM. The reduction in computational time with 
increasing SNR suggests that there might be opportunities for 
further optimization, especially for schemes like BPSK which start 
with higher times at lower SNRs. 

CONCLUSION  
This study compares the performance of three digital modulation 

schemes - BPSK, QPSK, and 64-QAM - in a network with different 
Signal-to-Noise Ratios (SNRs). It finds that all schemes perform 
adequately at low SNRs, but there's a noticeable performance drop 
at 10 dB SNR. However, as SNR increases, the Recovery Error 
Rates decrease, with 64-QAM demonstrating the lowest error rates 
at higher SNRs. Despite its complexity, 64-QAM proves to be the 
most computationally efficient, making it an ideal choice for 
environments with limited resources. Conversely, BPSK, though 
effective at low SNRs, is computationally inefficient and less 
suitable for real-time or resource-constrained applications. In 
summary, 64-QAM offers a good balance of detection capability 
and computational efficiency, particularly at higher SNRs. 
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