
Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(3), 773 Pg 1

J. Integr. Sci. Technol. 2024, 12(3), 773

Journal of Integrated

SCIENCE & TECHNOLOGY

Rapid Recover Map Reduce (RR-MR): Boosting failure recovery in Big Data
applications
Sonika Anant Chorey,1,2* Neeraj Sahu1

1Computer Science and Engineering, G.H. Raisoni University, Amravati, India. 2Prof. Ram Meghe Institute of Technology &
Research, Badnera, Amravati, India.

Received on: 12-Oct-2023, Accepted and Published on: 14-Dec-2023

ABSTRACT

The rapid growth of Big Data
applications has brought forth
unprecedented opportunities
for insights and innovation, but
it has also exposed the inherent
vulnerabilities of data
processing pipelines to failures.
Hardware glitches, software
anomalies, and network interruptions can disrupt the smooth execution of critical tasks, leading to extended downtimes, compromised reliability,
and increased operational costs. In response to these challenges, we introduce Rapid Recover Map Reduce (RR-MR), an innovative framework
designed to revolutionize failure recovery mechanisms within the context of Big Data applications. RR-MR addresses the shortcomings of
conventional Map Reduce frameworks by presenting a novel approach to failure recovery that focuses on expeditious restoration of processing
tasks. By leveraging advancements in distributed systems, fault tolerance, and parallel processing techniques, RR-MR introduces a multi-faceted
strategy that enhances both the efficiency and reliability of recovery processes.

Keywords: Map Reduce; Fault tolerance; Checkpoint; Big data; Parallel computing

INTRODUCTION
 In the fast-evolving landscape of Big Data applications,

ensuring efficient and robust failure recovery is paramount to
maintaining the reliability and performance of data processing
tasks. This need has led to the innovation of Rapid Recover Map
Reduce (RR-MR), a groundbreaking approach designed to elevate
failure recovery mechanisms within the realm of Big Data
processing.1 In the realm of Big Data, where vast amounts of
information are processed to extract valuable insights, the
occurrence of failures is not uncommon. Hardware glitches,
software bugs, network interruptions, and other unforeseen issues
can disrupt the seamless execution of data processing jobs, leading
to delays, data loss, and increased operational costs. Traditional

Map Reduce frameworks, while capable, often struggle to swiftly
recover from such failures, resulting in prolonged downtimes and
hindered productivity.2 RR-MR emerges as a game-changing
solution to these challenges, heralding a new era of rapid and
efficient failure recovery in Big Data applications. At its core, RR-
MR re imagines the way failure recovery is approached within the
Map Reduce paradigm. By harnessing innovative techniques drawn
from distributed systems, fault tolerance, and parallel processing,
RR-MR optimizes the recovery process, significantly reducing
downtime and enabling applications to resume processing with
minimal disruption.3

KEY FEATURES THAT DEFINE RR-MR INCLUDE:
• Enhanced Fault Detection
• Dynamic Task Redistribution
• Localized Recovery
• Adaptive Fault Tolerance

 In the dynamic landscape of Big Data applications, the
processing and analysis of large datasets have become a
cornerstone of decision-making, innovation, and business growth.
However, the sheer scale and complexity of these operations expose

*Corresponding Author: Sonika Anant Chorey
Email: sonikachorey@gmail.com

Cite as: J. Integr. Sci. Technol., 2024, 12(3), 773.
URN:NBN:sciencein.jist.2024.v12.773

©Authors CC4-NC-ND, ScienceIN http://pubs.thesciencein.org/jist

Article

S.A. Chorey et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(3), 773 Pg 2

them to a range of challenges, including hardware failures, software
glitches, and network disruptions. The occurrence of such failures
can lead to significant downtimes, data loss, and increased
operational costs, underscoring the critical importance of efficient
failure recovery mechanisms. Traditional Map Reduce
frameworks, pioneered by Google and popularized by systems like
Apache Hadoop, have long been the workhorses of Big Data
processing. They provide a structured model for distributing
processing tasks across a cluster of machines, enabling parallel
computation and fault tolerance.4 However, as the scale of Big Data
applications has grown exponentially, the limitations of these
traditional frameworks in terms of failure recovery have become
increasingly evident. In many conventional Map Reduce
implementations, failure recovery is a time-taking and resource
intensive process. When a node fails during processing, the entire
task needs to be restarted from scratch, causing delays and wasting
precious computing resources.5 Furthermore; the recovery process
itself can introduce additional overhead, further prolonging the time
taken to complete jobs. As a result, the efficiency and reliability of
Big Data processing applications have been compromised,
hindering their ability to deliver timely insights and meet the
demands of rapidly evolving industries.6

The Hadoop Map Reduce workflow is a fundamental process in
the Hadoop ecosystem

Figure 1: Map Reduce Work Flow

Designed for processing and analyzing large datasets in a

distributed and parallel manner.7 It follows a two-phase model
consisting of the Map phase and the Reduce phase. The workflow
is designed to harness the power of a cluster of commodity
hardware to efficiently process vast amounts of data. Here's an
overview of each phase and how they fit together:

• Map Phase
• Shuffling and Sorting
• Reduce Phase

Throughout the Map Reduce workflow, fault tolerance is
achieved through mechanisms like task reassignment and data
replication. If a map per or reducer task fails, it can be rescheduled
to run on another node using the same input data. Additionally,
intermediate data produced by map per is temporarily stored on
local disks and replicated to ensure data availability even in the
event of hardware failures. It's important to note that while the Map
Reduce workflow provides a powerful way to process large

datasets, it might not be the most efficient or suitable approach for
all types of data processing tasks. As a result, the Hadoop
ecosystem has expanded to include various tools and frameworks
(such as Apache Spark) that build upon the Map Reduce model and
offer additional features.

Figure 2. Example of map reduce work flow

Like in-memory processing and more flexible data processing

paradigms.8

LITERATURE REVIEW
A consistent global checkpoint refers to a collection of states

where no message is simultaneously recorded as received in one
process and not yet sent in another process. Such checkpoints serve
the purpose of facilitating rollbacks in the event of process failures.
It is imperative that a consistent global checkpoint be acquired
whenever any process initiates a checkpoint.9 This paper
introduces a checkpoint algorithm wherein the volume of
information piggybacked on program messages remains
independent of the number of mobile processes.

The algorithm aims to minimize the number of checkpoints
based on two key assumptions: firstly, that a single consistent
global checkpoint suffices for concurrent checkpoint initiations,
and secondly, that a checkpoint is triggered at each handoff by
mobile processes. Under these assumptions, the algorithm proves
to be optimal among the generalizations of Chandy and Lamport's
distributed snapshot algorithm.10

 The contemporary banking sector holds significant
importance in the lives of almost every individual, requiring
interactions either in person or through online channels. However,
in these interactions, both customers and banks are vulnerable to
potential fraud schemes perpetrated by malicious actors. Various
types of fraud, such as insurance fraud, credit card fraud, and
accounting fraud, pose risks. Effectively detecting fraudulent
activities becomes crucial to mitigate associated costs.11 This paper
focuses on addressing bank fraud detection through the application
of data-mining techniques, including association, clustering,
forecasting, and classification. The objective is to analyze customer
data, unveiling patterns indicative of fraudulent behavior. Once
these patterns are identified, enhancing banking processes with an
additional layer of verification/authentication can be
implemented.12

In recent years, IoT (Internet of Things) technology has found
applications in the finance sector, leveraging generated data such as

S.A. Chorey et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(3), 773 Pg 3

real-time information from chattel mortgage supervision using
GPS, sensors, network cameras, mobile devices, and more. This
data is utilized to enhance the financial credit risk management of
bank loans.13 Financial credit risk stands out as one of the most
significant challenges faced by commercial banks. However, as the
volume of financial data grows exponentially from diverse sources
like the Internet, mobile networks, and IoT, traditional statistical
and neural network models may struggle to operate fairly or
accurately in assessing credit risk with such varied data.14

Consequently, there is a pressing need to establish more robust
risk prediction models employing artificial intelligence based on
big data analytics. The goal is to predict default behaviors with
improved accuracy and capacity. This article proposes a big data
mining approach using Particle Swarm Optimization (PSO) based
Back propagation (BP) neural network for financial risk
management in commercial banks deploying IoT. The approach
constructs a nonlinear parallel optimization model using Apache
Spark and Hadoop HDFS techniques on datasets encompassing on-
balance sheet and off-balance sheet items.14

Experimental results demonstrate that this parallel risk
management model exhibits a fast convergence rate and formidable
predictive capacity, proving efficient in identifying default
behaviors. Furthermore, the distributed implementation on big data
clusters significantly reduces the processing time for model training
and testing.15

Time series data has become a focal point in contemporary
research and is prevalent in various datasets. The prediction of time
series phenomena is achieved through the exploration of time series
data, allowing for the understanding of the developmental
processes and patterns of socio-economic phenomena reflected
over time.16 This understanding aids in extrapolating and predicting
the trends in their development. In the era of big data, there is an
increasing emphasis on time series prediction, particularly in
accurately forecasting trends.

This paper delves into various time series models, including
autoregressive (AR) models, moving average (MA) models, and the
ARIMA model, which combines both AR and MA components. As
a fundamental application of time series prediction, accurate trend
prediction is crucial.17 The study applies the ARIMA model to
predict risks in the National SME Stock Trading (New Third Board)
in specific scenarios. Case studies demonstrate that our analysis
results are generally consistent with the actual situation,
significantly contributing to the prediction of financial risks.18

The occurrence of compute node failures has become a
commonplace occurrence in many long-running and scalable MPI
applications.19 adhering to MPI standards and leveraging existing
fault tolerance methods, we have devised a methodology that
enables applications to withstand failures by implementing semi-
coordinated checkpoints within the RADIC architecture. In pursuit
of this goal, we have created the ULSC2-RADIC middleware,
which segregates the application into independent MPI worlds,
with each MPI world corresponding to a compute node. These
independent worlds utilize the DMTCP checkpoint library within a
semi-coordinated environment.20

Through experimentation with scientific applications and the
NAS Parallel Benchmarks, we have assessed the overhead and

functionality in the event of a node failure. Our evaluation focuses
on comparing the computational cost of semi-coordinated
checkpoints with coordinated checkpoints, providing insights into
the efficiency and efficacy of our approach.21

As the scale of High-Performance Computing (HPC) clusters
continues to grow, their increasing failure rates and energy
consumption levels are emerging as serious design concerns.22
Efficiently running systems at such large scales critically relies on
deploying effective, practical methods for fault tolerance while
having a good understanding of their respective performance and
energy overheads. The most commonly used fault tolerance method
is checkpoint/restart. Checkpoint scheduling policies, however,
have been traditionally optimized and analyzed from one angle:
application performance. In this work, we provide an extensive
analysis of the performance, energy and I/O costs associated with a
wide array of check pointing policies. We consider practical
deployment issues and show that simple formulas can be used to
accurately estimate wasted work in a system. We propose methods
to optimize checkpoint scheduling for energy savings and evaluate
the runtime-optimized and energy-optimized policies using
simulations based on failure logs from 10 production HPC clusters.
Our results show ample room for achieving high quality
energy/performance tradeoffs when using methods that exploit
characteristics of real world failures. We also analyze the impact of
energy-optimized check pointing on the storage subsystem and
identify policies that are optimal for I/O savings.23

FAULT TOLERANCE IN MAP REDUCE

Figure 3. Fault Tolerance in Map Reduce

Fault tolerance is a crucial aspect of the Map Reduce framework,

as it ensures that the processing of large-scale data continues
uninterrupted even in the presence of hardware failures, software
errors, or other disruptions. Map Reduce achieves fault tolerance
through several mechanisms that maintain the reliability and
completion of tasks:

a. Data Replication
b. Task Redundancy
c. Task Monitoring and Reassignment
d. Heartbeat Mechanism
e. Speculative Execution
f. Backup Task Attempts
g. Check pointing
h. Task Logs

S.A. Chorey et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(3), 773 Pg 4

FORMULATE THE CONCEPT OF RAPID RECOVERY MAP
REDUCE. (FAR-MR)

 In our quest to enhance the existing fault tolerance capabilities
of the Map Reduce framework, we introduce an innovative
approach known as Fast Recovery Map Reduce (FAR-MR). This
study specifically focuses on the development of Dispersed FAR-
MR, incorporating check pointing and a proactive push technique,
both aimed at accelerating the recovery process in Map Reduce
environments. In Dispersed FAR-MR, the primary mechanism is
the utilization of distributed check pointing.24 This involves the
periodic marking of individual map tasks' progress as they
complete, with the results stored in a distributed data repository.
This approach ensures that in the event of a task or node failure, re-
assigned tasks can swiftly access the most up-to-date progress
information from the distributed storage. Consequently, tasks that
are being recovered have the option to recommence computation
from the point of failure, rather than initiating processing from
scratch. Notably, the proactive nature of FAR-MR extends to the
map output results. In this scenario, the map tasks, for example, M1
and M2, proactively transmit their output results to node S3, where
the corresponding reduce task R1 for the same job is hosted.25 This
preemptive transmission of data ensures that the reduce tasks can
benefit from incomplete map outputs generated by failed map tasks,
should those map tasks not have completed their calculations.26
This eliminates the necessity for recomposing specific data blocks,
contributing to efficiency gains results are then proactively pushed
from M1 and M2 to node S3, where reduce task R1 resides. In the
unfortunate event of a failure in map task M1, the recovery
mechanism seamlessly leverages the previously stored progress
information to initiate recovery and efficiently resume processing.
Through the strategic combination of distributed check pointing
and proactive push techniques, Dispersed FAR-MR offers a
promising pathway to significantly expedite failure recovery within
the Map Reduce paradigm. This innovative approach holds the
potential to enhance the efficiency, reliability, and overall
performance of Big Data applications operating in challenging
distributed environments.

FAR-MR IMPLEMENTATION
 The implementation of FAR-MR involves several key

components and strategies to enhance the efficiency and fault
tolerance of Map Reduce jobs. Here's a high-level overview of the
FAR-MR implementation:

Check pointing Technique:
FAR-MR utilizes check pointing to record the progress of map

task computations. Checkpoints are created at strategic points, such
as when a spill file is flushed to the local hard disk. Checkpoints
capture essential details related to the computing job and task,
including job_ID, task_ID, attempt_ID, spill_ID, and input_offset.

Distributed Check pointing:
FAR-MR goes beyond traditional check pointing by

implementing a distributed check pointing mechanism. This means
that checkpoints are not stored locally but are distributed across the
cluster.

 The distributed nature of checkpoints ensures redundancy and
fault tolerance, allowing for recovery even if a node fails.

Proactive Pushing Mechanism:
- FAR-MR introduces a proactive pushing mechanism to

optimize task recovery. Partial map output is proactively pushed to
individual reducers, allowing them to be accessed and combined
with partitions generated by the recovered task. This mechanism
reduces the need for recompilation , as the recovered task can
resume processing from the latest computing progress.

Handling Task and Node Failures
In the event of a single task failure, FAR-MR enables the

recovered task to resume processing from the last known progress,
avoiding redundant computations. For node failures, the distributed
check pointing and proactive pushing mechanisms allow tasks to be
rapidly recovered from any node in the cluster.

Performance Comparison
FAR-MR evaluates its performance by comparing it with

traditional Hadoop Map Reduce, particularly focusing on scenarios
involving task failure recovery. The evaluation demonstrates
significant performance improvements with FAR-MR, showcasing
its effectiveness in reducing computing time during failure
recovery.

DATASET-SPECIFIC NODE FAILURE HANDLING
FAR-MR adapts its approach based on the size of the dataset and

the number of data blocks. It considers the number of node failures
that can be handled for each dataset size, tailoring its fault tolerance
mechanisms accordingly.

We have incorporated the designed distributed check pointing
into FAR-MR depends on Hadoop Map Reduce, and proactive push
mechanism. We employ a Redis cluster to save the checkpoints in
the context of distributed check pointing. The distributed memory
to enable both locally and remotely quick failure recoveries. Redis
stores checkpoint Rows as strings data structures with attempt ID
spill ID input of set as the value and job ID task ID as the unique
key. The record is written as key, value > to the Redis cluster
whenever a new checkpoint is generated. If a record with the
resemblance key already exists in Redis, the new value replaces it.
We have devised an independent process that the map job will
invoke for the proactive push mechanism at each spill occurrence.27
before sending each part to the node responsible for the relevant
reducers, this procedure initially divides the spill flow into multiple
partitions, each aligning with distinct reducers. It's important to
note that this push process operates independently of the system
and does not effect the current work map and decrease tasks,
ensuring that their completion timeline remains unaffected.28 To
facilitate the prompt initiation of data transfer from map tasks to
reduce tasks in support of the push mechanism, it is imperative for
the scheduler to initiate reduction jobs early. In the case of FAR-
MR, we have configured the necessary settings to initiate reduce
job scheduling as soon as the map output becomes available.

EVALUATION OF PERFORMANCE
We established a computing cluster comprising 24 nodes to

conduct a performance evaluation comparing FAR-MR and
Hadoop Map Reduce, with a specific focus on examining FAR-
MR's performance at the context of failure recovery. This cluster is
composed of 223 slave virtual machine nodes, each equipped with

S.A. Chorey et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(3), 773 Pg 5

4 Central Processing Unit cores and 16 Giga Byte of memory, along
with 2 master nodes. To support the distributed checkpoint storage,
FAR-MR deploys a Redis cluster. Both FAR-MR and Hadoop Map
Reduce were tasked with executing Text analysis task to evaluate
their respective examine in the context of fault recovery. They
incrementally increased the size of the input dataset from 256 MB
to 2 GB, with each data block or chunk being 256 MB in size. In
the case of FAR-MR and Hadoop Map Reduce, we intentionally
created scenarios involving Work disruption and system node
breakdown within the cluster. Subsequently, we measured the
period required to finish the Word Count jobs during the fault
recovery process. To induce map task failures during job execution,
we introduced erroneous records into the input data. These flawed
records were strategically inserted into the data blocks, positioned
at distances of 96%, 62%, and 35% from the beginning of each
block. To mimic node failure scenarios, we alter the node
management. We evaluate the system's performance under
conditions of up to four concurrent node failures. To calculate the
average performance result for each measurement, we execute the
Word Count tasks four times with identical settings, ensuring the
cache is cleared between each run. For performance comparison,
we also conduct equivalent tests using both FAR-MR and Hadoop
Map Reduce.

Failure of Task
In the context of task failure recovery, we conducted a

performance comparison between FAR-MR and Hadoop Map
Reduce while evaluating the completion time for Word Count
computing jobs with 1, 2, and 3 failures. Our findings reveal that
FAR-MR significantly outperforms Hadoop MapReduce,
particularly in the realm of failure recovery.

In instances of a single task failure, FAR-MR demonstrates an
impressive 55% performance improvement compared to the
original Hadoop Map Reduce across all datasets. This superiority
is attributed to FAR-MR's ability to retain the latest computing
progress, enabling recovered tasks to resume from that specific
point. In contrast, Hadoop Map Reduce necessitates the re-
computation of data blocks from the beginning in the event of task
failure. FAR-MR further enhances efficiency by proactively
transmitting partial map output to individual reducers. These
outputs can then be accessed by the reducers and seamlessly
integrated with partitions generated by the recovered task. In cases
of single task failure, the break point data block is approximately
95%, allowing the recovered task in FAR-MR to compute only the
remaining 5% during the map phase, resulting in a significant
reduction in computing time.

 The evaluation results indicate that FAR-MR continues to yield
performance improvements over Hadoop Map Reduce as the
number of task failures increases. This can be attributed to FAR-
MR's consistent ability to shorten computing times with each
failure occurrence. The cumulative effect of multiple failures
results in even greater performance improvements achieved by
FAR-MR compared to scenarios involving a single failure.

Failure Node
Node failures occur primarily in larger datasets, as smaller

datasets are distributed across a restricted number of nodes in
HDFS. Specifically, for a 256 MB dataset comprising a single data

block, we exclusively assess performance in the context of a single
node failure. In the case of a 512 MB dataset with two data blocks,
performance evaluation extends to scenarios involving up to 2 node
failures. This pattern continues, with performance measurements
accommodating up to 4 node failures for 1 GB and 2 GB datasets,
respectively.

This notable enhancement is primarily attributed to the fact that
FAR-MR ensures the map task continually maintains the most up-
to-date computational progress. Consequently, when a task needs
to recover, it can resume its operation from this point. In contrast,
with Hadoop Map Reduce, the recovered task must recomputed the
entire data block from scratch. Furthermore, FAR-MR employs a
proactive approach by transmitting partial map output to individual
reducers. This design allows these outputs to be readily accessible
by the reducers and seamlessly integrated with the partitions
generated by the recovered task.

Our innovative FAR-MR approach leverages the check pointing
technique to log computing progress, expediting the recovery of
Map Reduce jobs in a manner akin to existing strategies. However,
FAR-MR distinguishes itself by incorporating distributed check
pointing and proactive pushing mechanisms, setting it apart from
conventional strategies. These novel mechanisms not only facilitate
swift recovery from both task and node failures in Map Reduce jobs
but also enable the rapid recovery of tasks from any node within the
cluster.

CONCLUSION
The current failure tolerance strategy within Hadoop Map

Reduce imposes need for computing entire data blocks when
dealing with recovered tasks, resulting in a substantial performance
penalty and resource inefficiency during the recovery process. To
tackle this challenge, this research paper introduces Fast Recovery
Map Reduce (FAR-MR), which focuses on implementing a failure
tolerance approach for big data applications that allows tasks to be
resumed from where they left off. FAR-MR leverages check
pointing and distributed storage technologies to enable recovered
tasks to recommence their computations from their previous noted
growth. The suggested FAR-MR system is put into practice and
assessed on a server cluster comprising 23 nodes. It is evaluated in
scenarios involving both task fault recovery and node fault
recovery. The efficiency assessment clearly demonstrates that, in
comparison to Hadoop Map Reduce, FAR-MR achieves substantial
improvements, with efficiency enhancements of up to 62% in the
case of task fault recovery and 45% in the case of node failure
recovery. Moreover, the efficiency advantage of FAR-MR over
Hadoop Map Reduce becomes more pronounced as the number of
task failures increases. These findings underscore the potential of
FAR-MR to deliver enhanced efficiency when confronted with
failures in the processing of big data tasks.

ACKNOWLEDGMENTS
 The research was not funded by any specific grants from

public, commercial, or not-for-profit sectors. The authors express
their gratitude to G. H. Raisoni University, Amravati for their
support and provision of all the necessary lab facilities to
conduct this research.

S.A. Chorey et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(3), 773 Pg 6

CONFLICT OF INTEREST STATEMENT
Authores do not have any conflict of interest in publishing of this

work.

REFERENCES AND NOTES
1. I. Ud Din, M. Guizani, S. Hassan, et al. The Internet of Things: A Review

of Enabled Technologies and Future Challenges. IEEE Access 2019, 7,
7606–7640.

2. T.A. Ahanger, A. Aljumah. Internet of things: A comprehensive study of
security issues and defense mechanisms. IEEE Access 2019, 7, 11020–
11028.

3. T. Qiu, J. Liu, W. Si, D.O. Wu. Robustness Optimization Scheme with
Multi-Population Co-Evolution for Scale-Free Wireless Sensor Networks.
IEEE/ACM Trans. Netw. 2019, 27 (3), 1028–1042.

4. R. Wang, C. Yu, J. Wang. Construction of Supply Chain Financial Risk
Management Mode Based on Internet of Things. IEEE Access 2019, 7,
110323–110332.

5. C. Shepherd, F.A.P. Petitcolas, R.N. Akram, K. Markantonakis. An
exploratory analysis of the security risks of the internet of things in finance.
Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics) 2017, 10442 LNCS, 164–179.

6. Q. Zhang, P. Shi, A. Zeng, Y. Ma, X. Yuan. Dynamic control analysis of
intensified extractive distillation process with vapor recompression. Sep.
Purif. Technol. 2020, 233, 116016.

7. C. Amornbunchornvej, T.Y. Berger-Wolf. Mining and modeling complex
leadership–followership dynamics of movement data. Soc. Netw. Anal.
Min. 2019, 9 (1), 1–17.

8. N. Losada, G. Bosilca, A. Bouteiller, P. González, M.J. Martín. Local
rollback for resilient MPI applications with application-level checkpointing
and message logging. Futur. Gener. Comput. Syst. 2019, 91, 450–464.

9. N. Losada, P. González, M.J. Martín, et al. Fault tolerance of MPI
applications in exascale systems: The ULFM solution. Futur. Gener.
Comput. Syst. 2020, 106, 467–481.

10. D. Zhong, X. Luo, A. Bouteiller, G. Bosilca. Runtime level failure detection
and propagation in HPC systems. In ACM International Conference
Proceeding Series; 2019; pp 1–11.

11. X. Tang, J. Zhai, B. Yu, et al. An efficient in-memory checkpoint method
and its practice on fault-tolerant HPL. IEEE Trans. Parallel Distrib. Syst.
2018, 29 (4), 758–771.

12. Z. Liu, T. Liu, J. Han, et al. Signal Model-Based Fault Coding for
Diagnostics and Prognostics of Analog Electronic Circuits. IEEE Trans.
Ind. Electron. 2017, 64 (1), 605–614.

13. Z. Gao, C. Cecati, S.X. Ding. A survey of fault diagnosis and fault-tolerant
techniques-part I: Fault diagnosis with model-based and signal-based
approaches. IEEE Trans. Ind. Electron. 2015, 62 (6), 3757–3767.

14. H. Miao, B. Li, C. Sun, J. Liu. Joint Learning of Degradation Assessment
and RUL Prediction for Aeroengines via Dual-Task Deep LSTM Networks.
IEEE Trans. Ind. Informatics 2019, 15 (9), 5023–5032.

15. R. Iqbal, T. Maniak, F. Doctor, C. Karyotis. Fault Detection and Isolation
in Industrial Processes Using Deep Learning Approaches. IEEE Trans. Ind.
Informatics 2019, 15 (5), 3077–3084.

16. D. Binu, B.S. Kariyappa. RideNN: A New Rider Optimization Algorithm-
Based Neural Network for Fault Diagnosis in Analog Circuits. IEEE Trans.
Instrum. Meas. 2019, 68 (1), 2–26.

17. L. Ramalho, I. Freire, C. Lu, M. Berg, A. Klautau. Improved LPC-based
fronthaul compression with high rate adaptation resolution. IEEE Commun.
Lett. 2018, 22 (3), 458–461.

18. Z. Chen, J. Xu, J. Tang, K. Kwiat, C. Kamhoua. G-Storm: GPU-enabled
high-throughput online data processing in Storm. In Proceedings - 2015
IEEE International Conference on Big Data, IEEE Big Data 2015; 2015;
pp 307–312.

19. G. Levitin, L. Xing, Y. Dai. Optimal backup frequency in system with
random repair time. Reliab. Eng. Syst. Saf. 2015, 144, 12–22.

20. R. Jhawar, V. Piuri. Fault Tolerance and Resilience in Cloud Computing
Environments. In Computer and Information Security Handbook; Elsevier,
2017; pp 165–181.

21. Y. Sharma, B. Javadi, W. Si, D. Sun. Reliability and energy efficiency in
cloud computing systems: Survey and taxonomy. J. Netw. Comput. Appl.
2016, 74, 66–85.

22. S. Chorey, N. Sahu. Failure recovery model in big data using the checkpoint
approach. J. Integr. Sci. Technol. 2023, 11 (4), 564.

23. P. Chorey, N. Sahu. Enhancing efficiency and scalability in Blockchain
Consensus algorithms: The role of Checkpoint approach. J. Integr. Sci.
Technol. 2024, 12 (1), 706.

24. K. Mohror, A. Moody, G. Bronevetsky, B.R. De Supinski. Detailed
modeling and evaluation of a scalable multilevel checkpointing system.
IEEE Trans. Parallel Distrib. Syst. 2014, 25 (9), 2255–2263.

25. T. Ozaki, T. Dohi, H. Okamura, N. Kaio. Distribution-free checkpoint
placement algorithms based on min-max principle. IEEE Trans.
Dependable Secur. Comput. 2006, 3 (2), 130–140.

26. H. Wang, L.S. Peh, E. Koukoumidis, S. Tao, M.C. Chan. Meteor shower:
A reliable stream processing system for commodity data centers. In
Proceedings of the 2012 IEEE 26th International Parallel and Distributed
Processing Symposium, IPDPS 2012; 2012; pp 1180–1191.

27. C. Xu, M. Holzemer, M. Kaul, J. Soto, V. Markl. On Fault Tolerance for
Distributed Iterative Dataflow Processing. IEEE Trans. Knowl. Data Eng.
2017, 29 (8), 1709–1722.

28. S. Jayasekara, S. Karunasekera, A. Harwood. Enhancing the Scalability and
Performance of Iterative Graph Algorithms on Apache Storm. In
Proceedings - 2018 IEEE International Conference on Big Data, Big Data
2018; 2018; pp 3863–3872.

29. S. Chorey, N. Sahu. Securing the Crash Failures and Accidentally
Destroyed of Large Data using Checkpoint Approach. 13th Int. Conf. Adv.
Comput. Control. Telecommun. Technol. ACT 2022 2022, 8, 146–152.

	Received on: 12-Oct-2023, Accepted and Published on: 14-Dec-2023
	ABSTRACT
	Introduction
	Key features that define RR-MR include:
	Literature Review
	Fault Tolerance in Map Reduce
	Formulate the concept of Rapid Recovery Map Reduce. (FAR-MR)
	FAR-MR Implementation
	Dataset-Specific Node Failure Handling
	Evaluation of Performance
	Conclusion
	Acknowledgments
	Conflict of Interest Statement
	References and notes

