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ABSTRACT 
 

The rapid growth of Big Data 
applications has brought forth 
unprecedented opportunities 
for insights and innovation, but 
it has also exposed the inherent 
vulnerabilities of data 
processing pipelines to failures. 
Hardware glitches, software 
anomalies, and network interruptions can disrupt the smooth execution of critical tasks, leading to extended downtimes, compromised reliability, 
and increased operational costs. In response to these challenges, we introduce Rapid Recover Map Reduce (RR-MR), an innovative framework 
designed to revolutionize failure recovery mechanisms within the context of Big Data applications.  RR-MR addresses the shortcomings of 
conventional Map Reduce frameworks by presenting a novel approach to failure recovery that focuses on expeditious restoration of processing 
tasks. By leveraging advancements in distributed systems, fault tolerance, and parallel processing techniques, RR-MR introduces a multi-faceted 
strategy that enhances both the efficiency and reliability of recovery processes. 
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INTRODUCTION 
 In the fast-evolving landscape of Big Data applications, 

ensuring efficient and robust failure recovery is paramount to 
maintaining the reliability and performance of data processing 
tasks. This need has led to the innovation of Rapid Recover Map 
Reduce (RR-MR), a groundbreaking approach designed to elevate 
failure recovery mechanisms within the realm of Big Data 
processing.1 In the realm of Big Data, where vast amounts of 
information are processed to extract valuable insights, the 
occurrence of failures is not uncommon. Hardware glitches, 
software bugs, network interruptions, and other unforeseen issues 
can disrupt the seamless execution of data processing jobs, leading 
to delays, data loss, and increased operational costs. Traditional 

Map Reduce frameworks, while capable, often struggle to swiftly 
recover from such failures, resulting in prolonged downtimes and 
hindered productivity.2 RR-MR emerges as a game-changing 
solution to these challenges, heralding a new era of rapid and 
efficient failure recovery in Big Data applications. At its core, RR-
MR re imagines the way failure recovery is approached within the 
Map Reduce paradigm. By harnessing innovative techniques drawn 
from distributed systems, fault tolerance, and parallel processing, 
RR-MR optimizes the recovery process, significantly reducing 
downtime and enabling applications to resume processing with 
minimal disruption.3   

KEY FEATURES THAT DEFINE RR-MR INCLUDE: 
• Enhanced Fault Detection 
• Dynamic Task Redistribution 
• Localized Recovery 
• Adaptive Fault Tolerance 

 In the dynamic landscape of Big Data applications, the 
processing and analysis of large datasets have become a 
cornerstone of decision-making, innovation, and business growth. 
However, the sheer scale and complexity of these operations expose 
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them to a range of challenges, including hardware failures, software 
glitches, and network disruptions. The occurrence of such failures 
can lead to significant downtimes, data loss, and increased 
operational costs, underscoring the critical importance of efficient 
failure recovery mechanisms. Traditional Map Reduce 
frameworks, pioneered by Google and popularized by systems like 
Apache Hadoop, have long been the workhorses of Big Data 
processing. They provide a structured model for distributing 
processing tasks across a cluster of machines, enabling parallel 
computation and fault tolerance.4 However, as the scale of Big Data 
applications has grown exponentially, the limitations of these 
traditional frameworks in terms of failure recovery have become 
increasingly evident. In many conventional Map Reduce 
implementations, failure recovery is a time-taking and resource 
intensive process. When a node fails during processing, the entire 
task needs to be restarted from scratch, causing delays and wasting 
precious computing resources.5 Furthermore; the recovery process 
itself can introduce additional overhead, further prolonging the time 
taken to complete jobs. As a result, the efficiency and reliability of 
Big Data processing applications have been compromised, 
hindering their ability to deliver timely insights and meet the 
demands of rapidly evolving industries.6  

The Hadoop Map Reduce workflow is a fundamental process in 
the Hadoop ecosystem  
 

            
Figure 1: Map Reduce Work Flow 

  
Designed for processing and analyzing large datasets in a 

distributed and parallel manner.7 It follows a two-phase model 
consisting of the Map phase and the Reduce phase. The workflow 
is designed to harness the power of a cluster of commodity 
hardware to efficiently process vast amounts of data. Here's an 
overview of each phase and how they fit together: 

• Map Phase 
• Shuffling and Sorting 
• Reduce Phase 
 

Throughout the Map Reduce workflow, fault tolerance is 
achieved through mechanisms like task reassignment and data 
replication. If a map per or reducer task fails, it can be rescheduled 
to run on another node using the same input data. Additionally, 
intermediate data produced by map per is temporarily stored on 
local disks and replicated to ensure data availability even in the 
event of hardware failures. It's important to note that while the Map 
Reduce workflow provides a powerful way to process large 

datasets, it might not be the most efficient or suitable approach for 
all types of data processing tasks. As a result, the Hadoop 
ecosystem has expanded to include various tools and frameworks 
(such as Apache Spark) that build upon the Map Reduce model and 
offer additional features.  
 

Figure 2. Example of map reduce work flow  
 
Like in-memory processing and more flexible data processing 

paradigms.8 

LITERATURE REVIEW 
A consistent global checkpoint refers to a collection of states 

where no message is simultaneously recorded as received in one 
process and not yet sent in another process. Such checkpoints serve 
the purpose of facilitating rollbacks in the event of process failures. 
It is imperative that a consistent global checkpoint be acquired 
whenever any process initiates a checkpoint.9   This paper 
introduces a checkpoint algorithm wherein the volume of 
information piggybacked on program messages remains 
independent of the number of mobile processes. 

The algorithm aims to minimize the number of checkpoints 
based on two key assumptions: firstly, that a single consistent 
global checkpoint suffices for concurrent checkpoint initiations, 
and secondly, that a checkpoint is triggered at each handoff by 
mobile processes. Under these assumptions, the algorithm proves 
to be optimal among the generalizations of Chandy and Lamport's 
distributed snapshot algorithm.10 

         The contemporary banking sector holds significant 
importance in the lives of almost every individual, requiring 
interactions either in person or through online channels. However, 
in these interactions, both customers and banks are vulnerable to 
potential fraud schemes perpetrated by malicious actors. Various 
types of fraud, such as insurance fraud, credit card fraud, and 
accounting fraud, pose risks. Effectively detecting fraudulent 
activities becomes crucial to mitigate associated costs.11 This paper 
focuses on addressing bank fraud detection through the application 
of data-mining techniques, including association, clustering, 
forecasting, and classification. The objective is to analyze customer 
data, unveiling patterns indicative of fraudulent behavior. Once 
these patterns are identified, enhancing banking processes with an 
additional layer of verification/authentication can be 
implemented.12 

In recent years, IoT (Internet of Things) technology has found 
applications in the finance sector, leveraging generated data such as 
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real-time information from chattel mortgage supervision using 
GPS, sensors, network cameras, mobile devices, and more. This 
data is utilized to enhance the financial credit risk management of 
bank loans.13 Financial credit risk stands out as one of the most 
significant challenges faced by commercial banks. However, as the 
volume of financial data grows exponentially from diverse sources 
like the Internet, mobile networks, and IoT, traditional statistical 
and neural network models may struggle to operate fairly or 
accurately in assessing credit risk with such varied data.14 

Consequently, there is a pressing need to establish more robust 
risk prediction models employing artificial intelligence based on 
big data analytics. The goal is to predict default behaviors with 
improved accuracy and capacity. This article proposes a big data 
mining approach using Particle Swarm Optimization (PSO) based 
Back propagation (BP) neural network for financial risk 
management in commercial banks deploying IoT. The approach 
constructs a nonlinear parallel optimization model using Apache 
Spark and Hadoop HDFS techniques on datasets encompassing on-
balance sheet and off-balance sheet items.14 

Experimental results demonstrate that this parallel risk 
management model exhibits a fast convergence rate and formidable 
predictive capacity, proving efficient in identifying default 
behaviors. Furthermore, the distributed implementation on big data 
clusters significantly reduces the processing time for model training 
and testing.15 

Time series data has become a focal point in contemporary 
research and is prevalent in various datasets. The prediction of time 
series phenomena is achieved through the exploration of time series 
data, allowing for the understanding of the developmental 
processes and patterns of socio-economic phenomena reflected 
over time.16 This understanding aids in extrapolating and predicting 
the trends in their development. In the era of big data, there is an 
increasing emphasis on time series prediction, particularly in 
accurately forecasting trends. 

This paper delves into various time series models, including 
autoregressive (AR) models, moving average (MA) models, and the 
ARIMA model, which combines both AR and MA components. As 
a fundamental application of time series prediction, accurate trend 
prediction is crucial.17   The study applies the ARIMA model to 
predict risks in the National SME Stock Trading (New Third Board) 
in specific scenarios. Case studies demonstrate that our analysis 
results are generally consistent with the actual situation, 
significantly contributing to the prediction of financial risks.18 

The occurrence of compute node failures has become a 
commonplace occurrence in many long-running and scalable MPI 
applications.19 adhering to MPI standards and leveraging existing 
fault tolerance methods, we have devised a methodology that 
enables applications to withstand failures by implementing semi-
coordinated checkpoints within the RADIC architecture. In pursuit 
of this goal, we have created the ULSC2-RADIC middleware, 
which segregates the application into independent MPI worlds, 
with each MPI world corresponding to a compute node. These 
independent worlds utilize the DMTCP checkpoint library within a 
semi-coordinated environment.20 

Through experimentation with scientific applications and the 
NAS Parallel Benchmarks, we have assessed the overhead and 

functionality in the event of a node failure. Our evaluation focuses 
on comparing the computational cost of semi-coordinated 
checkpoints with coordinated checkpoints, providing insights into 
the efficiency and efficacy of our approach.21 

As the scale of High-Performance Computing (HPC) clusters 
continues to grow, their increasing failure rates and energy 
consumption levels are emerging as serious design concerns.22 
Efficiently running systems at such large scales critically relies on 
deploying effective, practical methods for fault tolerance while 
having a good understanding of their respective performance and 
energy overheads. The most commonly used fault tolerance method 
is checkpoint/restart. Checkpoint scheduling policies, however, 
have been traditionally optimized and analyzed from one angle: 
application performance. In this work, we provide an extensive 
analysis of the performance, energy and I/O costs associated with a 
wide array of check pointing policies. We consider practical 
deployment issues and show that simple formulas can be used to 
accurately estimate wasted work in a system. We propose methods 
to optimize checkpoint scheduling for energy savings and evaluate 
the runtime-optimized and energy-optimized policies using 
simulations based on failure logs from 10 production HPC clusters. 
Our results show ample room for achieving high quality 
energy/performance tradeoffs when using methods that exploit 
characteristics of real world failures. We also analyze the impact of 
energy-optimized check pointing on the storage subsystem and 
identify policies that are optimal for I/O savings.23 

FAULT TOLERANCE IN MAP REDUCE 

 
Figure 3. Fault Tolerance in Map Reduce 

 
Fault tolerance is a crucial aspect of the Map Reduce framework, 

as it ensures that the processing of large-scale data continues 
uninterrupted even in the presence of hardware failures, software 
errors, or other disruptions. Map Reduce achieves fault tolerance 
through several mechanisms that maintain the reliability and 
completion of tasks: 

a. Data Replication  
b. Task Redundancy 
c. Task Monitoring and Reassignment 
d. Heartbeat Mechanism 
e. Speculative Execution  
f. Backup Task Attempts  
g. Check pointing 
h. Task Logs 
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FORMULATE THE CONCEPT OF RAPID RECOVERY MAP 
REDUCE. (FAR-MR) 

 In our quest to enhance the existing fault tolerance capabilities 
of the Map Reduce framework, we introduce an innovative 
approach known as Fast Recovery Map Reduce (FAR-MR). This 
study specifically focuses on the development of Dispersed FAR-
MR, incorporating check pointing and a proactive push technique, 
both aimed at accelerating the recovery process in Map Reduce 
environments. In Dispersed FAR-MR, the primary mechanism is 
the utilization of distributed check pointing.24 This involves the 
periodic marking of individual map tasks' progress as they 
complete, with the results stored in a distributed data repository. 
This approach ensures that in the event of a task or node failure, re-
assigned tasks can swiftly access the most up-to-date progress 
information from the distributed storage. Consequently, tasks that 
are being recovered have the option to recommence computation 
from the point of failure, rather than initiating processing from 
scratch. Notably, the proactive nature of FAR-MR extends to the 
map output results. In this scenario, the map tasks, for example, M1 
and M2, proactively transmit their output results to node S3, where 
the corresponding reduce task R1 for the same job is hosted.25 This 
preemptive transmission of data ensures that the reduce tasks can 
benefit from incomplete map outputs generated by failed map tasks, 
should those map tasks not have completed their calculations.26 
This eliminates the necessity for recomposing specific data blocks, 
contributing to efficiency gains results are then proactively pushed 
from M1 and M2 to node S3, where reduce task R1 resides. In the 
unfortunate event of a failure in map task M1, the recovery 
mechanism seamlessly leverages the previously stored progress 
information to initiate recovery and efficiently resume processing.  
Through the strategic combination of distributed check pointing 
and proactive push techniques, Dispersed FAR-MR offers a 
promising pathway to significantly expedite failure recovery within 
the Map Reduce paradigm. This innovative approach holds the 
potential to enhance the efficiency, reliability, and overall 
performance of Big Data applications operating in challenging 
distributed environments.  

FAR-MR IMPLEMENTATION 
 The implementation of FAR-MR involves several key 

components and strategies to enhance the efficiency and fault 
tolerance of Map Reduce jobs. Here's a high-level overview of the 
FAR-MR implementation: 

Check pointing Technique: 
FAR-MR utilizes check pointing to record the progress of map 

task computations. Checkpoints are created at strategic points, such 
as when a spill file is flushed to the local hard disk. Checkpoints 
capture essential details related to the computing job and task, 
including job_ID, task_ID, attempt_ID, spill_ID, and input_offset. 

Distributed Check pointing: 
FAR-MR goes beyond traditional check pointing by 

implementing a distributed check pointing mechanism. This means 
that checkpoints are not stored locally but are distributed across the 
cluster. 

   The distributed nature of checkpoints ensures redundancy and 
fault tolerance, allowing for recovery even if a node fails. 

Proactive Pushing Mechanism:   
- FAR-MR introduces a proactive pushing mechanism to 

optimize task recovery. Partial map output is proactively pushed to 
individual reducers, allowing them to be accessed and combined 
with partitions generated by the recovered task. This mechanism 
reduces the need for recompilation , as the recovered task can 
resume processing from the latest computing progress. 

Handling Task and Node Failures 
In the event of a single task failure, FAR-MR enables the 

recovered task to resume processing from the last known progress, 
avoiding redundant computations. For node failures, the distributed 
check pointing and proactive pushing mechanisms allow tasks to be 
rapidly recovered from any node in the cluster. 

Performance Comparison 
FAR-MR evaluates its performance by comparing it with 

traditional Hadoop Map Reduce, particularly focusing on scenarios 
involving task failure recovery. The evaluation demonstrates 
significant performance improvements with FAR-MR, showcasing 
its effectiveness in reducing computing time during failure 
recovery. 

DATASET-SPECIFIC NODE FAILURE HANDLING 
FAR-MR adapts its approach based on the size of the dataset and 

the number of data blocks. It considers the number of node failures 
that can be handled for each dataset size, tailoring its fault tolerance 
mechanisms accordingly. 

We have incorporated the designed distributed check pointing 
into FAR-MR depends on Hadoop Map Reduce, and proactive push 
mechanism. We employ a Redis cluster to save the checkpoints in 
the context of distributed check pointing. The distributed memory 
to enable both locally and remotely quick failure recoveries. Redis 
stores checkpoint Rows as strings data structures with attempt ID 
spill ID input of set as the value and job ID task ID as the unique 
key. The record is written as key, value > to the Redis cluster 
whenever a new checkpoint is generated. If a record with the 
resemblance key already exists in Redis, the new value replaces it. 
We have devised an independent process that the map job will 
invoke for the proactive push mechanism at each spill occurrence.27 
before sending each part to the node responsible for the relevant 
reducers, this procedure initially divides the spill flow into multiple 
partitions, each aligning with distinct reducers. It's important to 
note that this push process operates independently of the system 
and does not effect the current work map and decrease tasks, 
ensuring that their completion timeline remains unaffected.28 To 
facilitate the prompt initiation of data transfer from map tasks to 
reduce tasks in support of the push mechanism, it is imperative for 
the scheduler to initiate reduction jobs early. In the case of FAR-
MR, we have configured the necessary settings to initiate reduce 
job scheduling as soon as the map output becomes available. 

EVALUATION OF PERFORMANCE 
We established a computing cluster comprising 24 nodes to 

conduct a performance evaluation comparing FAR-MR and 
Hadoop Map Reduce, with a specific focus on examining FAR-
MR's performance at the context of failure recovery. This cluster is 
composed of 223 slave virtual machine nodes, each equipped with 
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4 Central Processing Unit cores and 16 Giga Byte of memory, along 
with 2 master nodes. To support the distributed checkpoint storage, 
FAR-MR deploys a Redis cluster. Both FAR-MR and Hadoop Map 
Reduce were tasked with executing Text analysis task to evaluate 
their respective examine in the context of fault recovery. They 
incrementally increased the size of the input dataset from 256 MB 
to 2 GB, with each data block or chunk being 256 MB in size. In 
the case of FAR-MR and Hadoop Map Reduce, we intentionally 
created scenarios involving Work disruption and system node 
breakdown within the cluster. Subsequently, we measured the 
period required to finish the Word Count jobs during the fault 
recovery process. To induce map task failures during job execution, 
we introduced erroneous records into the input data. These flawed 
records were strategically inserted into the data blocks, positioned 
at distances of 96%, 62%, and 35% from the beginning of each 
block. To mimic node failure scenarios, we alter the node 
management. We evaluate the system's performance under 
conditions of up to four concurrent node failures. To calculate the 
average performance result for each measurement, we execute the 
Word Count tasks four times with identical settings, ensuring the 
cache is cleared between each run. For performance comparison, 
we also conduct equivalent tests using both FAR-MR and Hadoop 
Map Reduce.  

Failure of Task 
In the context of task failure recovery, we conducted a 

performance comparison between FAR-MR and Hadoop Map 
Reduce while evaluating the completion time for Word Count 
computing jobs with 1, 2, and 3 failures. Our findings reveal that 
FAR-MR significantly outperforms Hadoop MapReduce, 
particularly in the realm of failure recovery. 

In instances of a single task failure, FAR-MR demonstrates an 
impressive 55% performance improvement compared to the 
original Hadoop Map Reduce across all datasets. This superiority 
is attributed to FAR-MR's ability to retain the latest computing 
progress, enabling recovered tasks to resume from that specific 
point. In contrast, Hadoop Map Reduce necessitates the re-
computation of data blocks from the beginning in the event of task 
failure. FAR-MR further enhances efficiency by proactively 
transmitting partial map output to individual reducers. These 
outputs can then be accessed by the reducers and seamlessly 
integrated with partitions generated by the recovered task. In cases 
of single task failure, the break point data block is approximately 
95%, allowing the recovered task in FAR-MR to compute only the 
remaining 5% during the map phase, resulting in a significant 
reduction in computing time. 

 The evaluation results indicate that FAR-MR continues to yield 
performance improvements over Hadoop Map Reduce as the 
number of task failures increases. This can be attributed to FAR-
MR's consistent ability to shorten computing times with each 
failure occurrence. The cumulative effect of multiple failures 
results in even greater performance improvements achieved by 
FAR-MR compared to scenarios involving a single failure. 

Failure Node 
Node failures occur primarily in larger datasets, as smaller 

datasets are distributed across a restricted number of nodes in 
HDFS. Specifically, for a 256 MB dataset comprising a single data 

block, we exclusively assess performance in the context of a single 
node failure. In the case of a 512 MB dataset with two data blocks, 
performance evaluation extends to scenarios involving up to 2 node 
failures. This pattern continues, with performance measurements 
accommodating up to 4 node failures for 1 GB and 2 GB datasets, 
respectively. 

This notable enhancement is primarily attributed to the fact that 
FAR-MR ensures the map task continually maintains the most up-
to-date computational progress. Consequently, when a task needs 
to recover, it can resume its operation from this point. In contrast, 
with Hadoop Map Reduce, the recovered task must recomputed the 
entire data block from scratch. Furthermore, FAR-MR employs a 
proactive approach by transmitting partial map output to individual 
reducers. This design allows these outputs to be readily accessible 
by the reducers and seamlessly integrated with the partitions 
generated by the recovered task. 

Our innovative FAR-MR approach leverages the check pointing 
technique to log computing progress, expediting the recovery of 
Map Reduce jobs in a manner akin to existing strategies. However, 
FAR-MR distinguishes itself by incorporating distributed check 
pointing and proactive pushing mechanisms, setting it apart from 
conventional strategies. These novel mechanisms not only facilitate 
swift recovery from both task and node failures in Map Reduce jobs 
but also enable the rapid recovery of tasks from any node within the 
cluster. 

CONCLUSION 
The current failure tolerance strategy within Hadoop Map 

Reduce imposes need for computing entire data blocks when 
dealing with recovered tasks, resulting in a substantial performance 
penalty and resource inefficiency during the recovery process. To 
tackle this challenge, this research paper introduces Fast Recovery 
Map Reduce (FAR-MR), which focuses on implementing a failure 
tolerance approach for big data applications that allows tasks to be 
resumed from where they left off. FAR-MR leverages check 
pointing and distributed storage technologies to enable recovered 
tasks to recommence their computations from their previous noted 
growth. The suggested FAR-MR system is put into practice and 
assessed on a server cluster comprising 23 nodes. It is evaluated in 
scenarios involving both task fault recovery and node fault 
recovery. The efficiency assessment clearly demonstrates that, in 
comparison to Hadoop Map Reduce, FAR-MR achieves substantial 
improvements, with efficiency enhancements of up to 62% in the 
case of task fault recovery and 45% in the case of node failure 
recovery. Moreover, the efficiency advantage of FAR-MR over 
Hadoop Map Reduce becomes more pronounced as the number of 
task failures increases. These findings underscore the potential of 
FAR-MR to deliver enhanced efficiency when confronted with 
failures in the processing of big data tasks. 
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