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ABSTRACT 
 

Smart antenna systems play a pivotal role in 
modern wireless communication by 
dynamically adjusting antenna radiation 
patterns to enhance signal reception or 
transmission. This paper explores the 
application of adaptive algorithms and 
machine learning techniques in optimizing the 
direction of arrival (DOA) estimation for smart 
antennas. We review related work in the field, including studies on antenna design, gain enhancement, and multiple-input multiple-output 
(MIMO) systems. The methodology section details the use of algorithms such as Least Mean Squares (LMS) and Long Short-Term Memory (LSTM) 
networks to improve DOA estimation and beamforming. Our extensive result analysis demonstrates the effectiveness of these algorithms in 
various scenarios, including different numbers of antennas and angles of signal arrival. Through AOA analysis, we highlight how machine learning 
and deep learning techniques can significantly enhance the capabilities of smart antenna systems, making them adaptable to diverse signal 
environments. 
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INTRODUCTION 
In a smart antenna system, the radiation pattern of the antenna is 

adjusted using specific algorithms processed by digital signal 
processors. The inputs to these antenna arrays consist of the desired 
signal, interfering signals, and Gaussian noise. Through adaptive 
algorithms, the weights of the array are fine-tuned, leading to a 
reduction in the output error.1 

This error is derived by subtracting the output signal from a 
reference signal. By optimizing the adaptive algorithms, one can 
control this error by adjusting the weights. A well-designed 
adaptive algorithm can either maximize or minimize the signal-to-
interference ratio, depending on various optimization criteria such 
as variance, mean squared error (MSE), interference nulling, and 

directing the main beam towards the user. Two key components of 
the smart antenna system are the estimation of the direction of 
arrival (DOA) and digital beamforming (DBF).2 The Direction of 
Arrival (DOA) is alternatively referred to as spectral estimation, 
bearing estimation, or Angle of Arrival (AOA) estimation. When 
dealing with adaptive array processing, if multiple transmitters are 
functioning simultaneously, each transmitter creates numerous 
propagation paths and AOAs at the receiving end.3  

As a result, the antenna array is tasked with discerning the 
accurate AOA by filtering out interference and noise signals to 
achieve higher fidelity. An M-element array consists of "M" 
potential weights and "N" incoming plane waves from "N" in 
different directions, with the condition that  N<M. Each of these 
waves includes adaptive white Gaussian noise (AWGN).  
The output of the array can be represented as follows: 

𝑦𝑦(𝑡𝑡) = 𝑊𝑊� ∗ �̅�𝑍(𝑡𝑡) (1) 
where 𝑊𝑊� = [𝑤𝑤1,𝑤𝑤2, … .𝑤𝑤𝑛𝑛] array weights, �̅�𝑍(𝑡𝑡)= incident signals 
vector. 

Smart antennas can be broadly categorized into two types: the 
Switched Beam Antenna and the Adaptive Beamforming. 
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As per various literature sources, a switched-beam system selects 
from a set of predefined patterns to enhance the received signal 
quality. Upon detecting an incoming signal, the base station 
identifies which beam is best aligned with the direction of the signal 
of interest. The system then switches to the optimal beam for 
communication with the user. This approach, while simpler and 
faster, offers limited flexibility as the system is constrained by 
predefined patterns. 

Contrary to the switched-beam system, an adaptive array offers 
a virtually infinite number of patterns. These patterns are 
dynamically adjusted in real time based on the prevailing radio 
environment, i.e., the channel condition. This type of array consists 
of multiple antenna elements. It continually modifies its radiation 
pattern based on feedback from the surrounding environment, 
ensuring that the array always operates in an optimal state. 

When the angles of the desired signals vary over time, it's crucial 
to have a mechanism that can persistently update the array weights. 
This is where adaptive beamforming shines, as it can track mobile 
users consistently in a changing RF environment. Some of the 
adaptive beamforming, are such as LMS (Least Mean Squares), 
NLMS (Normalized Least Mean Squares), and RLS (Recursive 
Least Squares). 

RELATED WORK 
Salhane, M. et al.1 developed the gain of a smart antenna from 

4×4 to multiple patches. In this study, we have developed a 
sensitive smart switched beam multiple patch antenna system at the 
5.8 GHz frequency. To achieve this system, we first optimized and 
validated a two-element patch antenna array. To provide the 
necessary phase shift between the antenna elements to fit the 
radiation pattern, we have designed and built a smart switching 
beam antenna based on analog beamforming technology. It is a 
spatial filtering design using the Butler matrix. To improve the 
transmission system and increase its ability to serve targets in an 
optimal and directive way, an intelligent system based on a 4×4 
planar Butler array connected to eight patch antennas has been 
designed. The proposed system has a very high gain of the order of 
74.41 dB around the resonant frequency compared to a smart 
antenna with four patches, whose gain is equal to 17.98 dB. 

R. Ullah et al.2 presented an eight-element array antenna with a 
single-layer frequency selective surface (FSS) to obtain high gain. 
The eight elements are fed by a single port. The FSS consists of 14 
× 6 unit cells with one unit cell size is 5 × 5 mm 2 having wideband 
behavior. The eight-element antenna integrated with the FSS 
reflector, which results in an improvement in the gain level from 12 
dB to 15 dB at 28 GHz, from 10 dB to 12 dB at 38 GHz, and from 
9.5 to 11 dB at 60 GHz. The dimensions of the antenna are 65 × 27 
× 0.857 mm 3. The proposed antenna shows stable gain and 
directional radiation patterns. The simulation findings are 
experimentally confirmed, by testing the fabricated prototypes of 
the proposed antenna system. 

 X. L. Chang et al.3 described for the first time, that the ionic 
polymer metal composite (IPMC) actuator is integrated with a radio 
frequency identification (RFID) tag antenna for achieving 
frequency reconfiguration in the ultrahigh-frequency (UHF) band. 
Here, the IPMC movable flap serves as an actuator that can 

effectively tune the tag resonant frequency. Numerical and 
experimental data confirm that the tip displacement of the IPMC 
actuator can be enhanced up to 266% with the use of the two-layer-
crenelated structure. The IPMC actuator allows the resonant 
frequency of the tag antenna to be tuned back by as much as 35 
MHz, after deviating due to placing on an unintended object. UHF 
RFID application is also performed using a portable commercial 
RFID reader. Good frequency reconfiguration and broad tuning 
range, along with far-read distances, have been achieved with our 
tunable UHF RFID tag antenna. 

 Vidya P. et al.4 presented the design of an 8-element linear array 
for Adaptive Antenna applications using the Least Mean Square 
(LMS) algorithm towards improving the directive gain, beam 
steering capabilities, half-power beam width, sidelobe level, and 
bandwidth of array. A conventional patch antenna is optimized to 
operate at 3.6 GHz (5G applications) with two symmetrical slots 
and a Quarter Wave Transformer for feeding, and this design is 
extended up to 8 elements using CST Microwave Studio 
parameterization. The Return Loss (S11), Directivity, HPBW, and 
VSWR of the antenna array are observed for the 2, 4, and 8-element 
adaptive arrays. Further, the LMS algorithm is used to compute the 
optimal complex weights, considering different angles for the 
desired User (+45˚ and -45˚) and Interferer (+20˚ and -20˚) during 
MATLAB simulation, and then these optimal weights are fed to 
antenna elements using CST for beam steering in a different 
direction. Maximas in the direction of the user and nulls in the 
direction of the interferer are obtained using CST software and 
found closely matching with MATLAB results. 

 R. Ullah, S. et al.5 presented a 10-port, hybrid multiple-input 
multiple-output (MIMO) antenna system for 5G Smartphone 
applications. The overall dimensions of the proposed antenna 
system are 150 × 80 mm 2. The proposed antenna system is 
fabricated and tested. Experimental results show reflection 
coefficients better than -6 dB and -10 dB for multi-band and single-
band modules, respectively, with high isolation levels between the 
antenna elements in both modules. Moreover, the measured 
envelope correlation coefficients (ECC) are well below 0.3 and 0.1 
for the proposed multi-band and single-band modules, respectively. 
In addition, single antenna elements in both modules show good 
radiation characteristics with maximum peak gain between 2 dBi 
and 4 dBi. Finally, 43 bps/Hz channel capacity is achieved in the 
single-band module. With these characteristics, the proposed 
antenna system can be a good candidate for modern mobile 
communication systems. 

N. Shoaib et al.6 presented the design of 8×8 multiple-input 
multiple-output (MIMO) antennas for future 5G devices, such as 
smartwatches and dongles. Each antenna is fed from the bottom 
layer of the substrate through vias to avoid any spurious radiation. 
The MIMO antennas resonate at 25.2 GHz with a 6-dB percentage 
bandwidth of 15.6%. The gain attained by the antennas in the entire 
bandwidth is above 7.2 dB with a maximum value of 8.732 dB at 
the resonant frequency. Likewise, the value of efficiency attained 
by the antennas in the entire bandwidth is above 65% with a 
maximum value of 92.7% at the resonant frequency. The simulation 
and measurement results have substantiated the good performance 
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of the MIMO antennas, thus making them suitable for compact 5G 
devices. 

 S. H. Kiani, et al.7 discussed in this work, a simple, low-cost, 
dual wideband sub6GHz Multiple Input Multiple Output (MIMO) 
antenna system for a smartphone is presented. The antenna system 
is fabricated using an inexpensive and commercially easily 
available 0.8 mm thick FR4 substrate. The presented system 
consists of a single main board and two side boards containing eight 
antennas and feedings. The radiating elements are etched on the 
side boards to provide space for other electronic components RF 
systems and sub-systems. Moreover, various key performance 
parameters such as envelope correlation coefficient (ECC), mean 
effective gain (MEG), channel capacity (CC), specific absorption 
rate (SAR), gain, and efficiency are also presented. It is found that 
the peak gain of the system is 5.8 dBi, ECC is lower than 0.015, 
efficiency ranges between 58% to 78%, peak SAR is 1.28 W/Kg, 
and the maximum CC is 40.2 bps/Hz within the frequency band of 
interest. In addition, to further demonstrate the usefulness of such a 
structure as a smart mobile terminal, single and dual-hand scenarios 
are also presented. 

 Y. -Y. Wang et al.8 discussed A dual-loop antenna with massive-
input–massive-output (MIMO) operation within the fourth-
generation Long Term Evolution (LTE) bands for smart glasses 
applications is proposed. For each single-loop antenna to excite 
four resonant modes so that it can yield a desirable −6 dB 
impedance matching across the desired low band (LB), 824–960 
MHz, and high band (HB), 1710–2690 MHz, of LTE operations, a 
simple matching circuit is loaded into the open section of the loop 
antenna. Further measurements show good efficiency and isolation 
across the LB and HB for the dual-loop antenna. Finally, the 
calculated envelope correlation coefficient and ergodic channel 
capacity of the 2 × 2 MIMO antenna are also discussed. 

 L. Sun et al.9 presented a wideband orthogonal-mode dual-
antenna pair with a shared radiator for fifth-generation (5G) 
multiple-input multiple-output (MIMO) metal-rimmed 
smartphones. By arranging four such dual-antenna pairs at two side 
edges of the smartphone, an 8 × 8 MIMO system is fulfilled. Both 
the simulation and measurement results show that the proposed 8 × 
8 MIMO system could offer an isolation of better than 12.0 dB and 
an envelope correlation coefficient of lower than 0.11 between all 
ports. The measured average antenna efficiencies are 74.7% and 
57.8% for the two antenna elements of the dual-antenna pair. We 
portend that the proposed design scheme, with the merits of the 
shared radiator, wide bandwidth, and metal rim compatibility, has 
the potential for the application of future 5G smartphones. 

 M. Usman et al.10 described In this article, a compact dual-port 
single-element MIMO antenna is presented for millimeter wave 
(mmWave) 5G wireless applications. The presented antenna design 
consists of an annular ring slot that is fed by a Substrate Integrated 
Waveguide (SIW) at the two opposite sides of the substrate. The 
antenna resonates at 28GHz and its 10dB impedance bandwidth is 
400MHz. The isolation between the ports is reduced by introducing 
an additional annular slot that acts as a cavity which results in an 
isolation better than 20dB at 28GHz. The measured gain of both 
ports is 6.9 dBi which is the highest gain per unit element at 28GHz 
in the literature. The measured diversity gain and envelope 

correlation coefficient are 9.98dB and 0.065, respectively, at the 
band of interest. The measured and simulated results are in good 
agreement. 

Mohapatra et al.11 presented an improved LMS algorithm for tap 
detection in communication systems, showing enhanced 
convergence rate and bandwidth efficiency through simulation. 

Romeu et al.12 developed a 16-beam lens antenna for 5G 
systems, offering wide coverage and high performance in specific 
frequency ranges. 

Wei et al.13 demonstrated how attackers can exploit 
programmable metasurfaces in passive and active modes to 
intercept or manipulate wireless communications, highlighting 
security risks in next-gen networks. 

Dinesh Kumar et al.14 proposed a proactive flow control 
technique for Wireless Network-on-Chip, using adaptive 
beamforming and fuzzy logic for efficient data traffic management 
and improved QoS. 

Ranjeet Yadav et al.15 enhanced 5G beamforming using 3D-
MIMO and SVM, achieving better throughput and SNR, addressing 
challenges in dense user environments. 

Biswas et al.16 improved bandwidth using stacked DRA 
antennas, showing significant enhancement with air gap 
introduction. 

Komeylian et al.17 implemented LCMV beamforming for 
cylindrical antenna arrays, achieving high efficiency and signal 
resolution in digital wireless communications. 

Shome et al.18 created a miniaturized quad-element MIMO 
antenna for IoT applications using UWB technology, achieving 
high performance with low mutual coupling. 

Bandewar et al.19 focused on improving communication modules 
for digitalization in smart environments, experimenting with 
different PCB antenna designs. 

Aboualalaa et al.20 proposed a multi-band rectenna for IoT, 
combining energy harvesting and data communication capabilities. 

Jabbar et al.21 explored the potential of 60 GHz mmWave 
technology for URLLC in industrial applications, emphasizing its 
importance in Industry 4.0. 

METHODOLOGY USED 
Optimal Direction of Arrival (DOA) estimation is a critical 

aspect of digital beamforming. By accurately determining the 
DOA, a system can focus its resources and attention in the direction 
of the desired signal, enhancing performance and minimizing 
interference. With the rise of machine learning (ML) techniques, 
there's a growing interest in leveraging these methods to improve 
DOA estimation. The flowchart of the proposed methodology is 
presented in figure 1. 

Adaptive beamforming, which involves adjusting the phases and 
amplitudes of signals in an antenna array to improve signal 
reception or transmission in specific directions, can benefit 
significantly from the application of machine learning (ML) 
algorithms. Traditional algorithms like Least Mean Squares (LMS) 
have been foundational, but with the advent of machine learning, 
there's potential for significant enhancement.  
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Figure 1. Flowchart of design 

Digital Beamforming using Machine Learning 

The Least Mean Squares (LMS) algorithm, which is adaptive by 
nature, has been a primary method for weight calculation in 
beamforming. By using LMS as a basis, you can develop a dataset 
capturing the relationship between input signals and the optimal 
weights determined by LMS. 

Array Factor Optimization Using ANN 

Artificial Neural Networks (ANN) can be employed to model 
complex relationships. In the context of beamforming: 

The ANN can be trained on the dataset generated using LMS to 
predict weights for different inputs. The flexibility of ANN allows 
it to adjust its learning rate, potentially leading to faster and more 
accurate weight prediction compared to traditional LMS. Once 
trained, the ANN model can quickly determine optimal weights for 
incoming signals without needing iterative weight adjustments like 
traditional LMS. 

A Multilayer Perceptron (MLP) is a type of feedforward artificial 
neural network (ANN), as presented in figure 2. 

 

 
Figure 2. ANN Architecture [22] 
 

Here's a basic overview: 
Input Layer: This is where you feed your data into the network. 

The number of neurons in this layer corresponds to the number of 
input features. 

Hidden Layers: An MLP can have one or multiple hidden layers. 
Each neuron in a hidden layer is a linear combination of the outputs 

from the previous layer, passed through a non-linear activation 
function. 

Output Layer: The final layer, where the result is produced. For 
regression tasks, there's typically one neuron. For classification 
tasks, there might be multiple neurons (one for each class), 
especially if it's a multi-class problem. 

Activation Functions: Common activation functions include the 
sigmoid, hyperbolic tangent (tanh), and ReLU (rectified linear 
unit). The activation function introduces non-linearity into the 
model, enabling it to learn complex relationships. 

Backpropagation: It's the algorithm used to train MLPs. During 
training, the error between the predicted outputs and the true 
outputs is calculated and then propagated back through the network 
to update the weights. 

Training: The training of an MLP typically involves defining a 
loss function (like mean squared error for regression or cross-
entropy for classification) and then using an optimization algorithm 
(like gradient descent) to adjust the weights and biases in the 
network to minimize the loss. 

While MLPs are foundational and can solve a wide array of 
problems, specialized neural network architectures are often 
preferred for specific problem domains. 

Array Factor Optimization using Deep Learning  

Long Short-Term Memory (LSTM) networks, a type of recurrent 
neural network (RNN), are well-suited for sequences and time-
series data. Given the temporal nature of signals, LSTM can capture 
long-term dependencies in the data, making it apt for predicting 
weights based on a sequence of past signals. By adding regression 
layers after LSTM layers, the network can be tailored to predict 
continuous values, like the weights in beamforming. This deep 
learning model can be trained on sequences of input signals and 
their corresponding optimal weights (determined by LMS or 
another method) to predict weights for new sequences of input 
signals. 

LSTM models are a sort of recurrent neural network RNN that 
may learn order dependency in sequence prediction challenges. 
This is a need in a variety of complicated issue areas, including 
machine translation, voice commands, and others. LSTMs interact 
including both Long Term Memory (LTM) as well as Short Term 
Memory (STM), and the notion of gates is used to make the 
computations normally effective and efficient. 

Forget Gate: When LTM enters the forget gate, it discards 
information that is no longer helpful. 

Learn Gate: The event (current inputs) with the STM is merged 
such that the relevant information from the STM may be used 
upon the current input. 

Remember Gate: LTM information one which we don't want to 
forget, as well as STM with Event information, were also merged 
in Remember Gate, which functions as the latest LTM. 

Use Gate: This gate predicts the outcome of the current event 
using LTM, STM, and Event, and acts as an upgraded STM. 

Deep learning's LSTMs are a complicated topic. 
The first segment determines whether the information from the 

preceding timestamp is significant and should be remembered or 
ignored. The cell attempts to learn new valuable learning from the 

Start 

Stop 

Digital Beamforming 

Optimal AOA Estimation 

Learning Model 
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input in the second section. Finally, the cell sends new information 
from the current and then to the next timestamp in component 
number 3. The gates are the 3 components of an LSTM cell. The 
Forget gate is the very first section, the Input gate second one then 
the Output gate is the last one i.e. third one. 

Long-Short Term Memory (LSTM) is an acronym for Long-
Short Term Memory. In terms of memory, LSTM is a sort of 
Recurrent neural network RNN that outperforms standard RNN. 
LSTMs behave far better when it comes to learning specific 
patterns. 

An LSTM, like a basic RNN, contains a hidden state, with H(t-
1) representing the former timestamp's hidden state where Ht shows 
the present timestamp's hidden state. LSTMs also contain a cell 
state, which is expressed by C(t-1) and C(t), accordingly, for past 
and current timestamps. STM refers to the hidden state, whereas 
LTM refers to the cell state. Take a look at the illustration below. 
It's worth noting that the cell state contains all of the information as 
well as all of the timestamps. 

The initial step in an LSTM network cell is to select either to 
retain or discard the information out of the preceding timestamp. 
This forgets gate equation is as follows. 

𝑓𝑓𝑡𝑡 =  𝜎𝜎�𝑋𝑋𝑡𝑡 ∗ 𝑈𝑈𝑓𝑓 + 𝐻𝐻𝑡𝑡−1 ∗ 𝑊𝑊𝑓𝑓� (2) 
Here 
Xt: input to the current timestamp. 
Uf: weight associated with the input 
Ht-1: The hidden state of the previous timestamp 
Wf: It is the weight matrix associated with the hidden state 
A sigmoid function is then applied to it. As a result, it will be a value 
between 0 & 1. 

Furthermore, LSTM is a modern, improved division that solves 
the issue of long-term dependency. Despite this, RNN predicts the 
present state using the stored data as information from the past. 
Whenever the gap between the present state and the prior state from 
which the information must be gathered is considerable, it fails to 
connect the information. Four layers in the network are employed. 
An amplitude value is supplied into the LTSM cell for every timestep, 
which therefore quantifies the hidden vector and sends it on to another 
timestep. Depending on the latest current input at the usual recent 
hidden vector ht-1, the currently hidden vector of timestep ht is 
calculated. That is how a RNN captures sequential information: 

LSTM can be used for classification similar to how you would 
use other network architectures such as CNN or Connected 
networks for classification: By appending a final fully connected 
layer to the LSTM, with the number of classes being the output 
dimension of the fully connected layer and training the entire 
network with a cross-entropy loss. 

In terms of the inputs to the final fully-connected layer, that 
depends on your applications. We can send the states from just the 
last LSTM cell or concatenate states from multiple LSTM cells. 
Finally, we would use an LSTM for classification only if we have 
sequential data and believe that our data's temporally correlated 
features are useful for classifying your sequential data. 

RESULT ANALYSIS 
In Figure 3 AOA analysis is presented for the NLMS algorithm 

with 5 antennas. The x-axis represents AOA and the y-axis 

represents amplitude. The study evaluated the amplitude response 
of a beamforming algorithm by varying the number of antenna 
elements and the distance between them. The precise positions of 
these peaks may vary slightly due to the different algorithms in use. 
Figure 4 shows an AOA analysis for a machine learning algorithm with 
5 antennas that effectively detects and responds to signals from 
different directions. This behavior is typical of an adaptive 
beamforming system, which can focus its reception or transmission 
capabilities in multiple directions based on the incoming signal 
environment. 
 

 
Figure 3. AOA Analysis for NLMS Algorithm with 5 Antennas 

 

 
Figure 4. AOA Analysis for ML Algorithm with 5 Antennas 

 

 
Figure 5. AOA Analysis for Deep Learning Algorithm with 5 
Antennas 

 
Figure 5 shows AOA analysis for deep learning algorithm with 

5 antennas. This behavior is typical of an adaptive beamforming 
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system, which can focus its reception or transmission capabilities 
in multiple directions based on the incoming signal environment. 

 
Figure 6. AOA Analysis for NLMS Algorithm with 10 Antennas 
 

Figure 6 shows AOA analysis for the NLMS algorithm with 10 
antennas that effectively detect and respond to signals from 
different directions. Figure 7 shows AOA analysis for an ML 
algorithm with 10 antennas that effectively detects and responds to 
signals from different directions. Figure 8 shows AOA analysis for 
the DL algorithm with 10 antennas that effectively detect and 
respond to signals from different directions. Figure 9 shows AOA 
analysis for the NLMS algorithm with 15 antennas that effectively 
detect and respond to signals from different directions. Figure 10 
shows AOA analysis for an ML algorithm with 15 antennas that 
effectively detects and responds to signals from different directions. 

 
 

 
Figure 7. AOA Analysis for ML Algorithm with 10 Antennas 

 

 
Figure 8. AOA Analysis for DL Algorithm with 10 Antennas 

 
Figure 9. AOA Analysis for NLMS Algorithm with 15 Antennas 

 

 
Figure 10. AOA Analysis for ML Algorithm with 15 Antennas 
 

 
Figure 11. AOA Analysis for DL Algorithm with 15 Antennas 
 

Figure 11 shows AOA analysis for the DL algorithm with 15 
antennas that effectively detect and respond to signals from 
different directions. 
 

 
Figure 12. AOA Analysis for NLMS Algorithm with 20 Antennas 



S. Bandewar & V.S. Chaudhary 

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(3), 771             Pg  7 

Figure 12 shows AOA analysis for the NLMS algorithm with 20 
antennas that effectively detects and responds to signals from 
different directions. 
 

 
Figure 13. AOA Analysis for ML Algorithm with 20 Antennas 
 

Figure 13 shows an AOA analysis for an ML algorithm with 20 
antennas that effectively detects and responds to signals from 
different directions. 
 

 
Figure 14. AOA Analysis for DL Algorithm with 20 Antennas 
 

Figure 14 shows AOA analysis for the DL algorithm with 20 
antennas that effectively detect and respond to signals from 
different directions. 

 

 
Figure 15. AOA Analysis for NLMS Algorithm with 𝟑𝟑𝟑𝟑° Antennas 
Angle 
 

Figure 15 shows AOA analysis for the NLMS algorithm with 
30° antenna angle that effectively detects and responds to signals 
from different directions. 

 
Figure 16. AOA Analysis for ML Algorithm with 𝟑𝟑𝟑𝟑° Antennas Angle 
 

Figure 16 shows AOA analysis for ML algorithm with 30° 
antennas angle that effectively detects and responds to signals from 
different directions. 
 

 
Figure 17. AOA Analysis for DL Algorithm with 𝟑𝟑𝟑𝟑° Antennas Angle 
 

Figure 17 shows AOA analysis for DL algorithm with 30° 
antennas angle that effectively detects and responds to signals from 
different directions. 

 

 
Figure 18. AOA Analysis for NLMS Algorithm with 𝟒𝟒𝟒𝟒° Antennas 
Angle 

 
Figure 18 shows AOA analysis for the NLMS algorithm with 

45° antenna angle that effectively detects and responds to signals 
from different directions. Figure 19 shows AOA analysis for the 
ML algorithm with 45° antenna angle that effectively detects and 
responds to signals from different directions. 

Figure 20 shows AOA analysis for the DL algorithm with 45° 
antenna angle that effectively detects and responds to signals from 
different directions. 
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Figure 19. AOA Analysis for ML Algorithm with 𝟒𝟒𝟒𝟒° Antennas 
Angle 

 

 
Figure 20. AOA Analysis for DL Algorithm with 𝟒𝟒𝟒𝟒° Antennas 
Angle 

 

 
Figure 21. AOA Analysis for NLMS Algorithm with 𝟔𝟔𝟑𝟑° Antennas 
Angle 

 
Figure 22. AOA Analysis for ML Algorithm with 𝟔𝟔𝟑𝟑° Antennas Angle 
Figure 22 shows AOA analysis for an ML algorithm with 60° antenna 
angle that effectively detects and responds to signals from different 
directions. 

 
Figure 23. AOA Analysis for DL Algorithm with 𝟔𝟔𝟑𝟑° Antennas 
Angle 

 
Figure 21 shows AOA analysis for the NLMS algorithm with 

60° antenna angle that effectively detects and responds to signals 
from different directions. 

Figure 23 shows AOA analysis for the DL algorithm with 60° 
antenna angle that effectively detects and responds to signals from 
different directions. 

The series of AOA (Angle of Arrival) analyses across various 
figures demonstrates the effectiveness of NLMS, ML, and DL 
algorithms in adaptive beamforming systems. Each algorithm, 
applied with varying numbers of antennas (5, 10, 15, 20) and at 
different antenna angles (30°, 45°, 60°), consistently shows the 
capability to effectively detect and respond to signals from multiple 
directions. This indicates the robustness and adaptability of these 
algorithms in handling diverse signal environments, regardless of 
the number of antennas or their orientation, which is crucial for 
efficient wireless communication systems. 

CONCLUSION  
In the era of advanced wireless communication, smart antenna 

systems stand as key enablers for achieving high-quality signal 
reception and transmission. This study has shed light on the 
potential of adaptive algorithms and machine learning techniques 
to optimize the direction of arrival (DOA) estimation, a critical 
aspect of smart antenna operation. By reviewing related work, we 
observed the ongoing efforts to improve antenna design, gain 
enhancement, and MIMO systems in the field. Our methodological 
exploration highlighted the effectiveness of algorithms such as 
Least Mean Squares (LMS) and Long Short-Term Memory 
(LSTM) networks in enhancing DOA estimation and adaptive 
beamforming. The comprehensive AOA analysis showcased the 
remarkable capabilities of machine learning and deep learning 
algorithms in adapting to various scenarios, including changes in 
the number of antennas and angles of signal arrival. These findings 
suggest that the integration of artificial intelligence techniques into 
smart antenna systems holds great promise for addressing the 
challenges of today's dynamic and complex wireless 
communication environments. In conclusion, this research 
underscores the importance of continued innovation in smart 
antenna technology, with a particular focus on leveraging machine 
learning and deep learning to enhance DOA estimation and 
adaptive beamforming. As wireless communication continues to 
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evolve, these advancements will play a pivotal role in ensuring 
seamless connectivity and improved user experiences. 
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