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ABSTRACT 
Identifying moving objects in video 
sequences is crucial for various 
applications, including underwater 
surveillance, biomedical detection, 
threat identification, defence, and 
navy. When comparing images and 
videos captured in an oceanic 
environment to those captured in an 
air, the physical properties of the 
water medium usually cause 
degradation, leading to unstable or 
lost features. Although there are many applications of underwater object detection, researchers find it difficult to extract objects from 
underwater images due to problems like water body turbidity, blurring, and low image quality. In static background conditions, the background 
remains stationary, while in dynamic background conditions, both the background and foreground exhibit motion, making it difficult to 
differentiate between them. The differentiation of both the background and the foreground object is very difficult in dynamic as compared to 
static.  Therefore, the suggested system offers a deep learning-based solution for underwater fish detection that employs three models: YOLOv3, 
SSD Mobile net v2, and Faster R-CNN ResNet50, all of which were trained on a bespoke dataset called Fish4knowledge. The algorithms have been 
taught to recognize and reliably pinpoint fish species in underwater photos and videos. To improve performance, data pre-treatment, model 
selection, and hyperparameter adjustment are carried out. The best-performing model is chosen after evaluation on a different validation 
dataset. Model updates and adaption to changing undersea conditions are required for long-term accuracy and performance enhancement. The 
precision value for the Faster R-CNN ResNet50, YOLOv3 and SSD MobileNetV2 is 45.06%, 79% and 98.21% respectively. The research results 
demonstrate that the SSD MobileNetV2 model gives the highest precision value as compared to the YOLOv3 and Faster R-CNN ResNet50 models.  
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INTRODUCTION 
The identification of moving items in video arrangements is 

among the main challenges for many video processing systems. 
Numerous uses, including underwater surveillance, biomedicine, 
the identification of dangers, and the detection of unauthorized 
entrants in the defence and navy, all benefit greatly from the 
automation of detecting systems.1 Research and surveillance 
applications can take new directions through the analysis of 

underwater images. However, the health of the ocean, water 
quality, biodiversity, climatic change, and the impact of the food 
chain, ocean pollution, invasive species, sustainability, and 
biodiversity of the species that survive underwater may all be 
ascertained through the analysis of underwater video. When 
compared to images captured in the air, images and videos captured 
in a marine normally suffer from the physical characteristics of the 
water medium. Since light is strongly attenuated when it travels 
through water, as depth increases, captured scenes become lower 
contrasty and obscure. As depth increases, not only does brightness 
decrease, but colour quality also begins to deteriorate gradually 
based on colour wavelength. Images and videos appear bluish 
because blue light has a shorter wavelength and travels longest in 
water. There are many applications of underwater object detection, 
however extracting items from underwater images seems to be a 
difficult task for researchers due to problems like water body 
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turbidity, blurring, and low image quality. In the proposed work 
fish is a moving object. Fish are a crucial component of human 
culture, industry, and marine ecosystems. Over three billion 
individuals around the world eat fish regularly.1 Pollution, 
excessive fishing, and habitat loss, on the other hand, cause species 
to become extinct or be replaced. To assist in the preservation and 
regulatory actions that guarantee good stocks of fish and 
environments, it is crucial to monitor the abundance and frequency 
of fish species.2,3 Based on the scope, the classification of fish 
species can be broadly classified into three application categories4,5: 

• Identification of fish species on dead fish. (For instance, how 
industries classify conveyor belts.) 

• Identification of fish species in artificial habitats, such as 
aquariums and water tanks. 

• Identification of fish types in their native environments, such 
as oceans and seas. 

For monitoring at-risk fish, sonar, and video data paired with the 
latest breakthroughs in machine learning offer a possible substitute 
for aggressive fish tags.6 Several surveillance systems use 
hydroacoustic sensors to identify fish however because of 
inadequate resolution, they are restricted to contrasting relative 
biomass across period or recognizing big fish schools. 
Additionally, complicated sorting is required by relative biomass 
techniques to eliminate distortion from non-fish resources, such as 
tidal embedded air, that might else seem to be a huge number of 
fish.7 An automated, comprehensive monitoring system might 
greatly cut labour costs while boosting throughput and accuracy, 
hence improving the precision of approximations of fish stocks, fish 
distribution, and biodiversity in common.8 Effective computer 
vision (CV) processes are required for the implementation of such 
systems. As an outcome, a substantial study has been undertaken 
on the implementation of observing tools and approaches based on 
CV algorithms for evaluating how fish exploit diverse maritime 
settings and discriminating among fish species.9 In the disciplines 
of image analysis and CV, deep neural networks (DNNs) have 
regularly generated cutting-edge outcomes in a wide range of uses, 
from medicine to agriculture.10-15 

Particularly, the footage is made up of visuals or frames that have 
undergone image analysis processing. As a result, picture and 
video-based monitoring tasks can be performed using DL models 
like as convolutional neural networks (CNNs), which use an image 
(frame) as input. As a result, the approaches described for image-
based jobs apply to both photos and videos.16 Deep learning 
techniques are now often employed for fish visual feature detection 
and classification.17 According to An, D. et al.18 deep learning 
methods have established themselves as a significant knowledge for 
creating smart aquaculture systems and providing crucial data for 
changing and improving fish breeding.  As of right now, there are 
two types of deep convolutional neural networks: (1) two-stage 
techniques, and (2) one-stage approaches.19 The two-stage 
techniques are correct, but because of the complex computation 
required, they are too sluggish.20 For identifying fish behaviour 
based on in-the-moment fish movements, one-stage techniques 
have proven to be quite effective. The YOLO (You Only Look 
Once) family's one-stage system combines the region proposal 

network with the detection of objects,21 RetinaNet22, or Single Shot 
Multi-Box Detector (SSD),23 to streamline detection and speed up 
computations. For instance, Sung, et al.24 monitored fish in an 
actual breeding farm using a YOLOv3 network with the bottleneck 
of MobileNetV1. 

To devalue the training model, the conventional DenseNet model 
was initially swapped out for a MobileNet model. The image 
features were then extracted using a smaller dataset made up of 16 
species that were obtained from "ImageNet". It may be seen by 
contrasting the backbone with other bone procedures that the 
suggested technique accurately estimates the number of fish 
present. Cao, et al.25 proposed an online YOLO-based underwater 
video fish recognition system in another study. For fish detection, 
the network has an accuracy of 0.93, an intersection over the union 
of 0.634, and a frame rate of 16.7 FPS. Liu, et al.26 implemented 
reliable, real-time recognition of live crabs submerged using a 
lightweight MobileNetV2 as the foundation of the SSD. The test 
results demonstrate that the faster MSSDLite is superior to 
conventional SSD in terms of performance. Among the foremost 
standard single-stage systems for tracking fish behaviour is the 
YOLO series since its compact system may be installed on a device 
at the edge (like a Raspberry Pi).27 The performance of the classic 
YOLO series is excellent to forecast tiny goals at multiple scales, 
but because the characteristic map used for detection remains 
unchanged without implementing the field of reception into 
account, it performs poorly for large and medium-sized objects.28 

Considering the foregoing, the overarching objective of the 
present task aims to create a completely automated system for 
tracking fish activity in an integrated hybridization environment as 
well as to offer solid conceptual justification for smart, online 
supervision in aquaculture, ensuring fish welfare and productivity. 
This is accomplished by describing and quantifying fish activity 
from visual images employing an inexpensive submarine camera 
technology. The network combines the enhanced YOLOv3-Lite 
with the MobileNetV2 backbone, which offers an improved spatial 
pyramid pooling block and a loss function based on the intersection 
over union (IoU), to address the shortcomings of classic YOLO 
families. The primary contributions of this paper are 
• Moving object detection in video sequences is crucial for 

various applications, therefore, the suggested method offers a 
deep learning-based solution for underwater fish recognition 
that employs three models: YOLOv3, SSD MobileNetV2, and 
Faster R-CNN ResNet50. 

• The YOLOv3, SSD MobileNetV2 and Faster R-CNN 
ResNet50 models are implemented for fish recognition in 
dynamic background and performance metric parameters are 
measured. These three models trained on Fish4knowledge 
dataset.  

• The algorithms have been taught to recognize and reliably 
pinpoint fish species in underwater photos and videos. 

• The analysis and comparison of the experimental results with 
other state of the art methods. 

LITERATURE SURVEY 
Knausgard, et.al.29 provide a two-step, pre-filter-free deep 

learning method for identifying and classifying temperate fishes. 
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The YOLO object recognition process is used in the primary stage 
to find distinct fish in a frame. Each fish is classified in the second 
stage using a CNN with a squeeze-and-excitation (SE) design. 
Accuracy is increased by using transfer learning. On a publicly 
available dataset, the network is trained using ImageNet and the 
fish classifier, with post-training weights derived from pre-training. 
The approach demonstrates its viability with a larger dataset by 
achieving a modern accuracy of 99.27% utilizing the pre-training 
model and 83.68% and 87.74% with and without image 
augmentation. Furthermore, deep learning models may fail to adjust 
to modifications in the environment, such as illumination, water 
quality, or fish behaviour patterns, which might have an impact on 
their performance. 

Jalal et al.30 present a fusion technique that merges optical flow 
and Gaussian mixture models with a YOLO deep neural network to 
recognize as well as categorize fish in unconstrained underwater 
footage. Initially, YOLO-based object recognition systems were 
utilized to catch only static as well as visible fish instances. Using 
time-based data obtained from Gaussian mixture models and 
optical flow, overwhelmed YOLO's limitation and enabled it to 
recognize liberally swimming fish that are masked in the 
background. On both datasets, it attains fish recognition F-scores of 
95.47% and 91.2%, respectively, and fish class categorization 
accuracies of 91.64% and 79.8%. However, there are several cases 
where the suggested method fails to recognize fish or misclassifies 
types owing to great differences in submerged settings.  

Testolin et al.,31 offer a deep-learning method for detecting a 
swimming fish pattern from the replications of an active sound 
emitter. This paper uses CNN, which allows for the concurrent 
labelling of a huge barrier of signal models, to enable real-time 
detection. This permits the assembly of the reflecting signal from 
the moving objective to be captured and separated from clutter 
reflections. When evaluated on actual signals, the network skilled 
on simulated forms demonstrated non-trivial finding abilities, 
implying that transfer learning could be a feasible strategy in these 
settings, where labelled information is frequently unavailable. 
However, by training the network directly on real-world reflections 
using data augmentation approaches, it can achieve a more 
favourable precision-recall trade-off, nearing an optimal detection 
bound. The proposed model does not represent an automated or 
efficient approach for monitoring marine ecosystems.’ 

Chhabra, et al.,32 present a fish categorization system that 
operates in the normal submerged atmosphere and aids in the 
detection of fish with medical or nutritious value. This work 
employs a fused deep learning model that employs a pre-trained 
VGG16 model for feature extraction and a Stacking ensemble 
model to recognize and categorize fishes from photos. The system 
was tested using separate classes of 8 diverse fish species, such as 
cod and mackerel, and 435 photos. The author built their dataset 
because there was no public dataset linked to these fish species. 
When compared to various existing processes (kNN, SVM, RF, and 
Tree), the proposed approach beat them with a categorization 
accuracy of 93.8%. 

However, the process became more difficult due to the lack of a 
previous dataset on fish with nutritional as well as beneficial 
relevance. 

Han, et al.33 investigate a deep learning-based jellyfish 
recognition technique that depends on CNN theory and digital 
image processing technologies. Using underwater image 
processing methods, it detects 10 jellyfish and fish species. The 
results suggest that dark channel prior, quadratic merging gray 
world, seamless reflection, and contrast-limited adaptive histogram 
equalization algorithms increase image quality. With an ordinary 
detection accuracy of 74.96%, the GoogLeNet backbone network 
exceeds AlexNet in jellyfish categorization. The study contributes 
to the development of jellyfish monitoring technology and marine 
biologist research by providing a hypothetical and methodological 
framework for real-time underwater jellyfish optical imaging. 
However, it is difficult to classify and detect jellyfish photos owing 
to the low superiority of underwater imagery and the diversity of 
jellyfish. 

METHODOLOGY 
This work aims to investigate the use of three sophisticated 

object detection models YOLOv3, SSD MobileNetV2, and Faster 
R-CNN ResNet50 for the detection of underwater fish using a 
specific dataset (Fish4knowledge). The distinctive qualities of each 
model are used to overcome the difficulties of fish detection in 
changing aquatic conditions. YOLOv3 is capable of catching fish 
that are moving quickly since it has real-time performance and 
quick detection. The SSD MobileNetV2 version exhibits 
effectiveness and multi-scale detection, allowing precise 
identification of fish of various sizes. Accuracy and accurate object 
localization are prioritized by the quicker R-CNN ResNet50, which 
helps with the detailed recognition of each fish. This study 
advances our knowledge of aquatic ecosystems and conservation 
efforts by shedding light on the best model selection for precise, 
real-time, and resource-efficient underwater fish detection. The 
overall system flow description of the suggested method is 
presented in Fig 1. 

 
Figure 1: Flow Chart for Dataset Management and Detection. 

3.1 System Specifications 
The suggested deep learning-based technique is tested against 

the Fish4Knowledge dataset using simulations, data pre-
processing, and Python 3 modules (such as the NumPy, pandas, 
seaborn, and Sk learn packages). The model was created using 
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Tensor Flow 2.10 and the Keras Python library. The proposed deep-
learning approaches were used for underwater acoustic image 
analysis for the automatic detection of moving underwater fish. The 
dataset containing underwater films as well as ground truth frames 
was used to evaluate the system.  

3.2 Dataset Description 
The Fish4Knowledge audio-visual collection of data is 

provided in a video file version. The audio-visual files are 
transformed into images, which are subsequently labelled with the 
labelling tool. A total of 2500 frames were acquired and manually 
labelled using the LableImg tool. The frames have been labelled 
using the YOLO design that incorporates the left bottom as the 
foundation and includes the object class, bounding box coordinates, 
and the height and width of the image. The dataset was split among 
30% testing and 70% training. 

3.3 Deep Learning Method for Detecting 
Underwater Fish 

In this following section, the three pre-defined deep learning 
models such as YOLOv3, SSD MobileNetV2, and Faster R-CNN 
are discussed in detail for underwater fish detection by using an 
improved dataset called Fish4knowledge. 

3.4 YOLOv3 (You Only Look Once) 
As demonstrated in Fig. 2, the YOLO architecture is built on 

CNN. Before YOLOv3, there were three previous versions. The 
single-phase finder model was first implemented as YOLOv1, 
which used batch normalization, a leaky ReLU activation 
operation, and reduction layers of size 1x1 in addition to 
convolutional layers of length 3x3. The system is made by using 
twenty-four convolutional layers for feature extraction and two 
fully connected (FC) layers for predicting bounding boxes as well 
as class probability. The result is a 7x7x30 tensor made up of 
bounding boxes. This system has been trained to identify 49 
objects, though, it has a great degree of fault when it comes to 
localizing them. 

YOLOv2 is an advanced form of YOLOv1, with an emphasis on 
condensed localization faults. YOLOv2 eliminated the final FC 
layers as well as implemented batch normalization to entire 
convolutional layers, resulting in network resolution independence 

as well as lesser localization fault. YOLOv2 used darknet-19, a 
network with 19 levels and an additional 11 layers, to find objects.  

Because neither of the earlier YOLO methods could identify 
more than twenty classes, the YOLO9000 model was designed to 
identify and categorize more items and classes. These systems were 
later refined by using additional characteristics such as residual 
blocks, skip connections, and up-sampling as well as dubbed 
YOLOv3, which used a 53-layered network trained on the 
Fish4Knowledge dataset. 

YOLOv3 is not intended to be an image classifier but a 
multiscale detector. As a result, a detection head is added to this 
design in place of the classification head for object detection. The 
result is a vector with the bounding box coordinates and probability 
classes from this point forward. The foundation of YOLOv3 is 
Darknet-53, a method for training 53-layer neural networks. A total 
of -106 layers of fully convolutional architecture—106 in all—are 
added on top of it for the object detection task. YOLOv3 employs 
3 feature maps of various scales for target detection thanks to its 
multiscale feature fusion layers. 

3.4.1. Bounding Box Prediction 
Because YOLOv3 employs a distinct channel for characteristics 

abstraction, the entire frame is given to the convolutional system, 
which generates a square outcome named the network where the 
bounding boxes are fastened. The network cell and anchor have the 
same centroid. 𝑡𝑡𝑥𝑥 , 𝑡𝑡𝑦𝑦,  𝑡𝑡𝑤𝑤, 𝑡𝑡ℎ, Objectness scores, and class likelihood 
are all predicted by the YOLO algorithm. The objectness 
score indicates the degree of certainty that an object exists within 
the enclosing box, while the class probability indicates whether the 
object belongs perfectly. The forecasts belong to the bounding box 
coordinates, with (𝐶𝐶𝑥𝑥 ,  𝐶𝐶𝑦𝑦) representing the upper-left angle in 
addition to 𝑃𝑃ℎ as well as 𝑃𝑃𝑤𝑤 representing the breadth as well as 
height, as shown in Fig. 3 as well as evaluated as stated in Eq. 1-4. 

 
𝑏𝑏𝑥𝑥 = 𝜎𝜎( 𝑡𝑡𝑥𝑥) + 𝐶𝐶𝑥𝑥                           (1) 

                                       𝑏𝑏𝑦𝑦 = 𝜎𝜎� 𝑡𝑡𝑦𝑦� + 𝐶𝐶𝑦𝑦                           (2) 
𝑏𝑏𝑤𝑤 = 𝑃𝑃𝑤𝑤 𝐶𝐶𝑡𝑡𝑤𝑤                                    (3) 

 𝑏𝑏ℎ =  𝑃𝑃ℎ                                                 (4)                        

 
Figure 2: 106-layer fully convolutional architecture 
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Figure 3: Bounding box  
𝑏𝑏𝑥𝑥 denotes the x-axis, 𝑏𝑏𝑦𝑦 denotes the y-axis, as well as 𝑏𝑏𝑦𝑦and 

𝑏𝑏 ℎ  are the height and breadth. Logistic regression is used to 
compute the objectness score, which is a count of the overlying of 
ground truth and bounding box. Value "1" denotes a seamless 
overlap of the bounding box and ground truth or overlap over a 
threshold, while value "0" indicates that the overlap is a fault and is 
under a threshold, and the bounding box is disregarded. 

Initially, the objectness score aids in the selection of the ideal 
bounding box. In general, bounding boxes having a higher 
objectness value than the threshold is eliminated initially and 
formerly examined for additional filtering. Most object detection 
algorithms have the issue of recognizing similar items at diverse 
times in multiple images, causing worse presentation. To tackle the 
problem of numerous detections of the same image, YOLO 
employs non-maximal suppression (NMS). NMS employs a 
specific function known as Intersection of Union (IOU) by 
specifying the lowest IOU threshold, which is typically set at 0.5. 
If 𝐵𝐵1 and 𝐵𝐵2 are dual bounding boxes, the IOU is calculated as the 
proportion of the joining of the ranges of 𝐵𝐵1 and 𝐵𝐵2 to the entire 
range of 𝐵𝐵1 and 𝐵𝐵2. 

3.4.2 Prediction of Class 
YOLOv3 employs a multilabel classification system. Instead of 

the SoftMax function, independent logistic classifiers are utilized 
here to decrease calculational complexity, which enhances system 
performance. An item may be labelled as both a fish and an 
underwater object in complex settings, such as when using an open 
Fish4Knowledge dataset, suggesting that there are many overlaying 
labels. SoftMax performs poorly since it forecasts the existence of 
a single class, which may not be the intended outcome; thus, binary 
cross entropy is employed in YOLOv3. 

3.4.3 Predictions across scales 
Three alternative scales are used to make predictions: 13x13, 

26x26, and 52x52. The feature pyramid system is employed to 
gather characteristics, and then are processed by darknet53. The 
final phase of the forecast is a 3-D tensor that encodes the bounding 
box, the confidence rate which yields the objective score, and the 
likelihood that the item belongs to a specific class. 

3.4.4 Feature extractor 
For feature extraction, YOLOv3 employs the Darknet53 

network, a fusion network resulting from Darknet19, and the 
residual network. This network has an aggregate of 53 
convolutional layers and is known as darknet-53. Fig. 4 depicts the 
design of DarkNet53. For feature extraction, YOLOv2 uses 
darknet-19, while YOLOv3 employs darknet53 with 53 
convolutional layers. Batch normalization is used in cooperation 
with YOLOv3 as well as YOLOv2. 

 
Figure 4: Architecture of Darknet53  
 

3.5 SSD MobileNetV2 
The SSD image detection system combines detection and 

categorization into a system as in Fig. 5 to enable end-to-end 
training. The fundamental to training is to allocate the label data to 
one specific result in the predefined detector return collection. After 
this label is made, the function of loss is used from beginning to 
end to back-propagate to alter the weight of the network layer. The 
loss function used by the SSD detector is made up of regression as 
well as classification. The regression component that fails aspires 
to have as similar of a variance between the projected and default 
box gap and the ground truth as well as the default box as possible. 
This technique guides network learning by calculating the variance 
between the expected value and the ground truth value. 

The MultiBox objective function is expanded by the SSD 
detector to include a loss function that can deal with several object 
types. The procedure is depicted in Fig. 7. Using the Jaccard 
coefficient, which calculated how similar each default box was to 
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the ground truth box. The candidate default box can only be 
identified as the default box with a threshold superior to 0.5. The 
Jaccard coefficient of the i-th default box corresponding to the j-th 
ground truth box of class p is represented by 𝑥𝑥𝑖𝑖,𝑗𝑗 

𝑝𝑝  if there exist Ns 
default boxes with a corresponding degree larger than 0.5. The 
value of 𝑥𝑥𝑖𝑖,𝑗𝑗 

𝑝𝑝  is 0 if they do not match; else, it is 1. Numerous default 
boxes correspond to the j-th ground truth. box if the sum of 𝑥𝑥𝑖𝑖,𝑗𝑗 

𝑝𝑝  is 
greater than or equal to 1. The weighted sum of the Lconf, as well 
as Lloc, is therefore the overall objective function, where is the 
weighting term for the Lloc. The Smooth L1 loss of the mismatch 
among the expected (l) as well as ground-truth box (g) is known as 
the Lloc the SSD ignores the negative example matching and solely 
penalizes the prediction box of the positive sample matching. 
According to the existing method, the Lconf is the prediction class's 
Sigmoid Focal loss. The class imbalance brought on by too much 
background can be corrected by this new classification loss. Then 
calculated the loss using the confidence score for the related class 
for every positive example matching prediction and the loss 
depending on the confidence score for the class "0" which cannot 
include the item for each negative example matching prediction. 
The Lconf plays a more important role in object detection for small 
and medium items than the Lloc. By using cross-validation, the 
SSD adjusts the weight value of the Lloc to 1 by default. The 
dataset's fish dimensions are not particularly big, though. As a 
result, it is changed the weight value from 0.8 to get rid of the 
missed detection phenomena. 

 

 
Figure 6: SSD MobileNetV2 

3.5.1 Extracting multi-scale features with the 
MobileNetV2 

Deeper and more sophisticated networks can be used to obtain 
higher accuracy. These networks do not, however, guarantee size 
and speed efficiency. For instance, the automatic feeding boat's fish 
identification operation in real-world applications must be 
implemented in real time on a constrained computer platform. As a 
result, it must build a multi-scale feature extraction system that is 
compact and quick as shown in Figure 6. To achieve this, the 
lightweight MobileNetV2 network as shown in Figure 7 is directly 
trained the highest factoring deconstruction capacity of the depth 
wise split convolution and the reversed residual topology with a 
strong memory inference method. Additionally, the prediction layer 
replaces normal convolution with depth wise separated 
convolution. This slightly lengthens the calculation period while 
guaranteeing that every extracted layer has the right determination 
as well as robust semantic characteristics. 

 
Figure 7: Mobile Net V2 Architecture 

 
Figure 5: SSD Architecture 
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3.5.1.1. Depth-wise separable convolution 
With depth-wise divisible convolution, the normal convolution 

process is split into two phases: filtering as well as combining. It is 
hypothesized that the N-channel 𝐷𝐷𝑜𝑜 ∗ 𝐷𝐷𝑜𝑜feature map would be 
produced after the M-channel 𝐷𝐷𝑖𝑖  ∗  𝐷𝐷𝑖𝑖 input image had passed 
using a convolutional kernel of size 𝐷𝐷 𝑘𝑘 ∗  𝐷𝐷𝑘𝑘  . Using 𝑁𝑁 
convolution kernels, the conventional standard convolution method 
continually extracts the source raw image's characteristics to create 
a result of N-channels, from which it is inevitable that many 
repeating characteristics will be retrieved. However, a single depth-
wise separable convolution kernel can be used to extract features 
and produce multi-channel feature maps. Stage III's feature map 
addition is skipped if stages I and II are identical. Instead, filtering 
depth-wise convolution is used to directly stack the M-channel 
characteristic maps are overlaid with the one-channel characteristic 
maps. 

The feature maps are then translated from the linear space of M 
dimensions to the space of N dimensions using a mixture of point-
wise convolution, which uses 𝑁𝑁 convolution kernels of size 1 ∗
 1. Depthwise differentiated convolution, as contrasted with regular 
convolution, utilizes 𝑁𝑁 1 * 1 convolution kernels for linear mapping 
and just one 𝐷𝐷 𝑘𝑘 ∗  𝐷𝐷𝑘𝑘  convolution kernel for feature extraction. In 
other words, they are reduced to 1/𝐷𝐷𝑘𝑘2  +  1/𝑁𝑁 of the normal 
convolution. The number of parameters is  

𝑀𝑀 ∗  𝑁𝑁 +  𝑀𝑀 ∗ 𝐷𝐷 𝑘𝑘 ∗  𝐷𝐷𝑘𝑘,                                                      (5) 
 and there are methods for addition and multiplication is 
𝐷𝐷 𝑘𝑘 ∗  𝐷𝐷𝑘𝑘 ∗  𝐷𝐷𝑜𝑜 ∗ 𝐷𝐷𝑜𝑜  ∗  𝑀𝑀 +  𝐷𝐷𝑜𝑜 ∗ 𝐷𝐷𝑜𝑜 ∗  𝑀𝑀 ∗  𝑁𝑁                    (6) 

 With the 3 * 3 convolution kernel utilized in this study, it can 
reduce the number of functions and variables to around 1/9 to 1/8 
of the classic convolution technique by only a small loss in 
accuracy. To eliminate parameter redundancy in depth-wise 
separable convolution, two essential hyper-parameters are also 
introduced. The feature maps' dimensions (number of channels) are 
dominated by the width multiplier [0, 1], while their resolution is 
dominated by the resolution multiplier. Thus, the depth-
wise differentiated convolution's complexity in computation can be 
written as 
𝐷𝐷 𝑘𝑘 ∗  𝐷𝐷𝑘𝑘 ∗  𝜌𝜌𝐷𝐷𝑜𝑜 ∗ 𝜌𝜌𝜌𝜌𝑜𝑜  ∗  𝛽𝛽𝛽𝛽 + 𝜌𝜌 𝐷𝐷𝑜𝑜 ∗ 𝜌𝜌𝐷𝐷𝑜𝑜 ∗  𝛽𝛽𝑀𝑀 ∗ 𝛽𝛽 𝑁𝑁     (7)  
 The network is successful in improving operational factors and 

minimizing redundant factors thanks to the interplay of these two 
hyper-parameters. 

3.5.1.2 Inverted residual bottleneck structure 
Due to the rectified linear unit's (ReLU) destruction of data 

properties, certain convolution kernels are vulnerable to training 
loss in real-world applications. ReLU processes on low dimensions 
can readily lead to data loss, while ReLU processes on high 
dimensions only lead to minimal data loss, according to the notion 
of manifolds of interest. To prevent data loss when employing 
ReLU for activation transformation in low-dimensional space, the 
author therefore thought about replacing the original non-linear 
activation transformation with a linear bottleneck structure. In 
addition, channel switching is not yet possible with depth-wise 
separable convolution. Because depth-wise segmented convolution 
is only able to filter spatial information in low-dimensional space 

channels per channel, the resultant characteristics are difficult to 
distinguish when there are limited channels of input. However, 
mapping channels, which can be utilized to increase as well as 
decrease their sizes, is a function of point-wise convolution. Using 
the lessons learned from the residual block, which is broad on both 
ends and narrower in the central area, a reversed residual bottleneck 
design was developed that is narrower on both ends and broad in 
the centre. To gradually expand the total amount of channels, point-
wise convolution is first utilized; in this case, the expansion factor 
is set at 6, which is generally 5–11 times. Then, a small amount of 
depth-wise convolution processing was employed to filter the 
spatial data from a vast-channels, and then gather their 
characteristics. Point-by-point channel reduction was then 
accomplished by reusing the point-wise convolution. A low-
dimensional linear bottleneck was created by this convolution using 
linear transformation. To reuse features, a shortcut structure like 
ResNet was included. This improved gradient propagation among 
multiplier layers and improved memory use efficacy. A 
fundamental component of MobileNetV2 is the designed depth-
wise separable inverted residual bottleneck structure. 

Additionally, the conventional non-linear activation function 
ReLU was enhanced by substituting ReLU6 for it, capping the 
highest output value at 6. By doing so, the section becomes further 
resilient in low-precision calculation and resolves the flaw that low-
precision float16/int8 of portable systems cannot adequately 
express the accuracy loss produced by large-scale standards. As a 
conventional convolution kernel size, a 3 ∗  3 convolution kernel 
was employed. A dropout mechanism is introduced to prevent over-
fitting and a batch normalization technique to change the activation 
value distribution during training. Finally, MobileNetV2 
performance was improved with minimal computational effort. 

3.6 Faster R-CNN  
The suggested underwater fish identification framework, Faster 

R-CNN, consists of binary modules. A deep fully convolutional 
network functions as the initial component, recommending areas, 
and a fast R-CNN detector functions as the next module, using the 
recommended areas. The whole system is a solitary, combined 
system for underwater fish identification (Figure 9). The RPN 
component tells the Fast R-CNN component where to look by using 
the recently popular terminology of neural systems with "attention" 
methods.  

3.6.1 Region Proposal Networks  
An image is input into a Region Proposal Network (RPN), which 

then generates several underwater item suggestions, every one of 
which has a rating for objectness. This section will address how a 
fully convolutional network is used to model this method. Since the 
ultimate objective is to exchange calculations with a Fast R-CNN 
underwater fish identification system, let us presume that the two 
nets use the same set of convolutional layers. For these studies, the 
Simonyan and Zisserman system (VGG-16) with 13 accessible 
convolutional layers and the Zeiler and Fergus system (ZF) with 5 
accessible convolutional layers were both studied. 

To create area proposals, slip a tiny network above the final 
shared convolutional layer's convolutional feature map. This tiny 
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network receives a 𝑛𝑛 × 𝑛𝑛 spatial window of the input convolutional 
feature map as input. Every sliding window corresponds to a lower-
dimensional feature (256-d for ZF and 512-d for VGG, 
respectively, with ReLU accordingly). This characteristic is input 
into two sibling fully connected layers, one for regression and one 
for classification. This research adopts n = 3 because the efficient 
receptive field on the input image is big (171 and 228 pixels for ZF 
and VGG, accordingly). Figure 8 depicts this mini-network in a 
single place. The fully connected layers are shared through each 
spatial place since the mini-network functions in a sliding window 
mode. This design is implemented naturally with a 𝑛𝑛 × 𝑛𝑛 
convolutional layer after two sibling 1x1 convolutional layers 
which are cls and reg. 

 
Figure 8: Region Proposal Network (RPN) 

3.6.2 Anchors  
It concurrently forecasts numerous area suggestions at every 

sliding-window location, where the amount of supreme feasible 
suggestions for every location is denoted as k. As an outcome, the 
reg layer has 4k results keeping the coordinates of k boxes, while 
the cls layer has 2k outputs estimating the likelihood of item or not 
item for every suggestion. The k suggestions are parameterized 
relative to k anchors, which are k reference boxes. A scale and 
aspect ratio are coupled with an anchor that is centered at the sliding 
window in question. It employs 3 scales and 3 feature proportions 
by default, producing 𝑘𝑘 = 9 anchors at each sliding point. There is 
overall  𝑊𝑊 × 𝐻𝐻𝐻𝐻 anchors for a convolutional feature map of size 
𝑊𝑊 × 𝐻𝐻 (generally 2,400). 

 
Figure 9: Faster R-CNN 

3.6.3. Translation-Invariant Anchors 
Translation invariance, in addition to regards to the computed 

functions and the anchor's suggestions comparative to the anchors, 
is a key characteristic of the proposed method. If an object in an 
image is translated, the proposal should translate as well, and the 
same function should be able to forecast the proposal in either 
place. The proposed method guarantees this translation-invariant 
property. In comparison, the MultiBox approach generates 800 
anchors that are not translation invariant using k-means. As a result, 
MultiBox cannot assurance that the similar suggestion is produced 
when an item is transformed. 

The model size is also decreased by the translation-invariant 
characteristic. When using k = 9 anchors, the proposed technique 
produces an output layer that is (4 + 2) 9-dimensional convolutional 
as opposed to MultiBox's (4 + 1) 800-dimensional fully-connected 
output layer. The output layer therefore has two orders of 
magnitude fewer parameters than MultiBox's output layer, which 
has 1536 (4 + 1) 800 for GoogleNet in MultiBox, or 2.8 104 
parameters (512 (4 + 2) 9 for VGG-16). This suggestion layers 
nevertheless have a substantially smaller number of attributes than 
MultiBox even when the feature projection layers are taken into 
account. It is anticipated that the proposed approach will be less 
likely to overfit tiny datasets like PASCAL VOC.34 

3.6.4. Regression References Using Multi-Scale 
Anchors 

A new approach to dealing with various scales (and aspect ratios) 
is presented by the suggested design of anchors. There are 2 
currently well-liked methods for multi-scale forecasts. The initial 
method depends on image/feature pyramids, such as in CNN-based 
algorithms as well as DPM. Multiple scales are used to resize the 
images, and for each scale, feature maps are generated. This method 
takes time but is frequently useful. The second method involves 
using sliding windows on the feature maps with various scales 
(and/or aspect ratios). For instance, DPM separately trains models 
with various aspect ratios using various filter sizes, such as 57 and 
75. This technique can be observed as a "pyramid of filters" if it is 
applied to numerous scales. The next technique is typically utilized 
alongside the first method. 

In contrast, the proposed anchor-based approach uses a pyramid 
of anchors, which is more economical. About anchor boxes with 
different sizes and aspect ratios, the proposed method categorizes 
and regresses bounding boxes. It only employs filters (slide 
windows on the feature map) of one size and only uses images and 
feature maps of one scale. This multi-scale design depending on 
anchors enables it to easily apply the convolutional features 
generated on a single-scale image, as is additionally performed by 
the Fast R-CNN detector. A crucial element for sharing features 
without incurring additional costs for addressing scales is the 
creation of multi-scale anchors. 
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Figure 10: Faster R-CNN ResNet50 
 

3.6.5 ResNet50 feature extraction: 
The feature extraction network in the Faster R-CNN model is 

often a pre-trained CNN. The ResNet50 has been applied to it in 
this work as shown in Fig. 10. ResNet50 is a 50-layer, pre-trained 
CNN model. Using the Fish4Knowledge dataset, this model was 
trained on more than 2000 photos. Images can be categorized into 
different object categories. A 224x224 picture is used as the 
network's input. 

ResNet50 has been used for the feature extraction step since the 
system has amassed extensive feature illustrations for a variety of 
images. Empirical analysis is the most effective method of selecting 
the best feature extraction layer. Stronger picture features are 
encoded by features that were retrieved further down the network. 

The first 40 of the 46 depths in this investigation were employed 
using pre-trained ResNet50 to prove the benefits of the decrease 
further clearly. Two scenarios have been run to examine the impact 
of the ResNet50 depths on producing feature maps. In the initial 
example, the system reduces the dimensions of the 224x224x3 
input image by 16 times. In the second case, the first 46 depths are 
used to reduce the input photos' dimension 32 times. After that, R-

CNN was used to run both situations, and the outcomes were 
compared. 

RESULT AND DISCUSSION 
This segment describes the performance of the suggested method 

as well as the outcomes of its implementation. The results of 
the comparison with three methods such as YOLOv3, SSD 
MobileNetV2, and Faster R-CNN ResNet50 models proposed in 
this study are also shown.  

4.1 Evaluation Indices 
The Fish4Knowledge dataset was utilized to train and test the 

network. The record file created for the period of the training stage 
can be used to determine the losses in each batch. The loss and 
mean Average Precision (mAP) are displayed against iteration in 
Fig. 12 as well as 13. With each cycle, the loss lowers as well as the 
mAP growths. The system can be trained more up to the average 
loss falls below 0.2, at this point, the network becomes overfitted, 
which can be prevented by quitting early. The 3 recognition layers, 
layer 82, layer 94, as well as layer 106, compute the following loss 
coefficients for the bounding box: mean squared error of centerX, 
centerY, width, and height; binary cross entropy of objectness 
score, no objectness score, and multi-class forecasts. As a result, 
the loss function has 4 pieces and can be measured as follows. 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗
 𝑆𝑆𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸((𝑏𝑏𝑏𝑏, 𝑏𝑏𝑏𝑏), (𝑏𝑏𝑏𝑏′, 𝑏𝑏𝑏𝑏)  ∗  𝑜𝑜𝑜𝑜𝑜𝑜_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)  +

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑 ∗
 𝑆𝑆𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸((𝑏𝑏𝑏𝑏, 𝑏𝑏ℎ), (𝑏𝑏𝑏𝑏 >, 𝑏𝑏ℎ′)  ∗

 𝑜𝑜𝑜𝑜𝑜𝑜_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) +  𝑆𝑆𝑆𝑆𝑆𝑆(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑜𝑜𝑜𝑜𝑜𝑜, 𝑜𝑜𝑜𝑜𝑜𝑜’)  ∗
 𝑜𝑜𝑜𝑜𝑜𝑜_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)  +  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ∗

 𝑆𝑆𝑆𝑆𝑆𝑆(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑜𝑜𝑜𝑜𝑜𝑜, 𝑜𝑜𝑜𝑜𝑜𝑜’)  ∗  (1 − 𝑜𝑜𝑜𝑜𝑜𝑜_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)  ∗
 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)  +

 𝑆𝑆𝑆𝑆𝑆𝑆(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐’))        (8) 

 
Where bx and by indicate the relative centroid and bx' and by' 

represent the straight projected centroid. The weight 
Lambda_Coord has a value of 5. The next term represents the 
height and width loss obtained by combining width(bw) and 
height(bh), followed by the object/non-objectness score loss, and 
lastly the classification loss. The mAP was developed to evaluate 
the object detection performance as shown in Table 1. After 1600 
iterations, the mAP was 98.51%, and an assurance level of 0.25 was 
established to evade obstruction of the bounding box. To acquire an 
enhanced outcome, mAP was evaluated with an IOU threshold of 
0.5. 

Both photos and videos were used to test the object detector. The 
outcomes attained by analysis the system by means of the Fish 4 
Knowledge visual files of 09min 35sec period show that the best 
accuracy is 95.15% by using SSD MobileNetV2, the average loss 
is 0.475593, the precision is 0.9821, the recall is 0.9683, the F1 
score is 0.9751, and the average IoU is 98.20, and the average 
detection time is 15 seconds, for confidence threshold = 0.25 and 
IoU threshold = 0.5. By considering the positive object class of fish 
in the background and the negative object class with a lack of fish 
in the background, the model's accuracy, precision, and recall are 
assessed. As indicated in (9), and (10), the mAP and IoU can be 



Vrushali Pagire et. al. 

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(3), 765             Pg  10 

determined. The qualitative analysis of three models of YOLOv3, 
SSD MobileNetV2, and Faster R-CNN ResNet50 using the 
Fish4Knowledge dataset is shown in Fig. 11. 

mAP =  1
𝑁𝑁𝑁𝑁.𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∑ Average precision𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
1           (9) 

IoU = B1∩B2
B1∪B2

        (10) 

          

          (A) 

     

  (B)

         

     (C) 
Figure 11: Qualitative Analysis of Models (A) YOLOv3 (B) SSD 
MobileNetV2 (C) Faster R-CNN ResNet50 

 

Table 1: Comparison of mAP (mean Average Precision) 
Models IoU Area MaxDets Average 

Precision 
(AP) 

 
SSD MobileNetV2 
 

0.50:0.95 all  100 0.718  
0.50       all  100 0.982 
0.75       all  100 0.876 

 
 Faster R-CNN 
ResNet50 

0.50:0.95 all  100 0.583 
0.50       all  100 0.926 
0.75       all  100 0.696 

 
YOLOv3 

0.50:0.95 all  100 0.681 
0.50       all  100 0.985  
0.75       all  100 0.820 

 

 
 (a) 

 
(b) 

 
(c) 

Figure 12: SSD MobileNetV2 (a) Precision (b) Recall (c) Loss 
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From Figure 12, the precision, recall, and loss of the proposed 
SSD MobileNetV2 model are shown under various conditions. The 
precision is calculated based on the mean average precision under 
various IOU values of the decision box such as small, large, 
medium, 50IOU, and 75IOU. Thus, the SSD MobileNetV2 model 
achieves a better precision of above 98% for 50IOU and a lower 
precision of 0% for small IOU values. Then the recall is calculated 
based on the different AR values such as 1, 10, 100, and 100 (small, 
large, and medium). Thus, the SSD MobileNetV2 model obtained 
a higher recall during the AR value is 10 and the lowest recall at 
100 (small) AR value. Similarly, the loss is calculated using 
different types of loss such as classification loss, localization loss, 
regularization loss, and total loss. Thus, the SSD MobileNetV2 
model achieves the lowest loss in terms of regularization loss. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 13: Faster R-CNN ResNet50 (a) Precision (b) Recall (c) Loss 

From Figure 13, the precision, recall, and loss of the proposed 
Faster R-CNN ResNet50 model is shown under various conditions. 
The precision is calculated based on the mean average precision 
under various IOU values of the decision box such as small, large, 
medium, 50IOU, and 75IOU. Thus, the Faster R-CNN ResNet50 
achieves a better precision of above 95% for 50IOU and a lower 
precision of 0% for small IOU values. Then the recall is calculated 
based on the different AR values such as 1, 10, 100, and 100 (small, 
large, and medium). Thus, the Faster R-CNN ResNet50 obtained a 
higher recall during the AR value is 10 and the lowest recall at 100 
(small) AR value. Similarly, the loss is calculated using different 
types of loss such as classification loss, localization loss, RPN loss, 
objectness loss, and total loss. Thus, the Faster R-CNN ResNet50 
achieves the lowest loss in terms of localization loss _ RPN loss. 

Accuracy is used to gauge how well the categorization model 
performs. It also refers to the percentage of reliable results (TP or 
TN). ACC is often acquired through  

(11) 
Wherein TP, FP, TN, as well as FN, denotes "true positives," 

"false positives," "true negatives," as well as "false negatives," 
accordingly. 

The proportion of confirmed positive cases among all expected 
positive patterns is known as precision. The formula below can be 
used to compute it. 

                      (12) 
The percentage of true positives received by a classifier is used 

to calculate recall, which indicates how successfully it can 
recognize positive class patterns. The process might be sensitive 
without being, or exact without being susceptible. The recall could 
be calculated using the formula 

                      (13) 
F1-score is a more accurate predictor of incorrectly detected 

patterns than ACC. It is determined by using                     10                             

                                                         (14) 
 
Table 2: Performance Estimation of the suggested models as 
YOLOv3, SSD MobileNetV2, Faster R-CNN ResNet50 

Parameters YOLOv3 SSD 
MobileNetV2 

Faster R-
CNN 

ResNet50 
Recall  0.99 0.9683 0.9647 

Precision   0.7
9 

0.9821 0.4506 

F-Score 0.88 0.9751 0.6142 
Accuracy 0.78 0.9515 0.4433 
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Figure 14: Performance Evaluation of the proposed models as 
YOLOv3, SSD MobileNetV2, Faster R-CNN ResNet50 

 
From Table 2, the proposed model-based performance metrics 

are evaluated using Accuracy, Precision, F1-Score, and Recall.  
Thus, the performance parameters of the models have the values of 
Accuracy 0.78, Precision 0.79, Recall 0.99, and F1-Score 0.88 for 
the YOLOv3 model, Accuracy 0.9515, Precision 0.9821, Recall 
0.9683, as well as F1-Score, is 0.9751 for the SSD MobileNetV2 
model, and Accuracy is 0.4433, Precision is 0.4506, Recall is 
0.9647 as well as F1-Score is 0.6142 for the Faster R-CNN 
ResNet50 model as depicted in Fig. 14. 

4.2. Comparison 
The following section provides the comparison outcomes 

regarding the precision, recall, as well as F-measure of the proposed 
method. The seven models such as MFI [35], MOG2, LSBP, 
Hybrid of MOG2 and LSBP, YOLOv3 (proposed), SSD 
MobileNetV2 (proposed), and Faster R-CNN ResNet50 (proposed) 
are using the Fish4Knowledge dataset which is equated on account 
of precision, recall and F-measure and the comparison results 
shows that the implemented SSD MobileNetV2 achieves best 
results as the recall is 0.9683, precision is 0.9821 and F-Measure is 
0.9751 as depicted in Table:3. 

 
Table 3: Comparison of proposed method based on Performance 
Metrics 

Sr
. 
N
o.
  

Perform
ance 

metric 
Paramet

ers 

M
FI 
[3
5]
  

MO
G2

  

LS
BP
  

Hyb
rid 
of 

MO
G2 
and 
LSB

P 

YO
LO 
v3 

 

SSD 
Mobile
Net V2 

Faster 
R-

CNN 
ResNe

t50 
 

1  Recall  0.5
7 

0.58 0.5
4 

0.61
1 

0.99 0.9683 0.964
7 

2 Precisio
n 

0.7
3 

0.97 0.9
5 

0.73 0.79 0.9821 0.450
6 

3 F-
Measure 

0.6
4 

0.72 0.6
8 

0.64 0.88 0.9751 0.614
2 

 

With real-time processing, multi-scale detection, reduced 
latency, object bounding boxes, and lighting situation adaptability, 
SSD MobileNetV2 is a compact and effective underwater fish 
detection system compared to YOLOv3 (and Faster R-CNN 
ResNet50. Its multi-scale detection skills enable it to recognize fish 
of varied sizes and orientations inside the same frame, and its 
lightweight architecture allows it to run effectively on autonomous 
underwater vehicles and fixed camera setups. Compared to multi-
stage methods, its single-shot architecture helps achieve lower 
latency.  Users can effectively observe fish behaviour and 
interactions in dynamic underwater habitats by carefully regulating 
variables such as dataset quality, fine-tuning, and accuracy trade-
offs. 

CONCLUSION 
Finally, using the unique dataset Fish4knowledge, this work 

investigated the effectiveness of YOLOv3, SSD MobileNetV2, and 
Faster R-CNN ResNet50 models for object detection in dynamic 
underwater backgrounds. The models' capabilities were assessed 
using performance indicators. The trial results demonstrated that 
the SSD MobileNetV2 method performed better than the YOLOv3 
as well as Faster R-CNN ResNet50 models in terms of precision 
due to the properties of SSD MobileNetV2 such as real-time 
processing, multi-scale detection, reduced latency, object bounding 
boxes, and lighting situation adaptability. When used to the 
Fish4knowledge dataset, this model produced promising results 
when compared to other cutting-edge approaches. SSD 
MobileNetV2's effectiveness in underwater fish detection 
demonstrates its real-world potential in marine biology research, 
environmental monitoring, and autonomous underwater systems. 
Continuous research and developments in deep learning 
methodologies will improve underwater fish detection techniques 
and lead to better knowledge and protection of underwater 
ecosystems. 
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