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ABSTRACT 
Radio Network planning is the most 
important part of the whole network design 
owing to its proximity to mobile users. 
However, earlier radio network approaches 
failed to account for the right selection of 
training parameters for diverse 
environmental circumstances in radio 
communications networks, resulting in 
poor reliability and unreliable coverage. 
Hence, a novel Radio Network TETRA Path 
Loss Calculation by statistical Polynomial 
Kernel Radial Wavelet Network Models for 
RSSI Predication and Comparison in 
Undulating Area has been designed for TETRA path loss calculation by deterministic, empirical RSSI Predication and effectively select the 
parameters in different environment. In existing techniques, the parameter selection, such as radio wave path calculation, frequency, antenna 
heights, distance, and angle elevation, are not analyzed accurately. Hence, a novel technique, namely Polynomial Kernel Radial Wavelet Network 
(PKRWN), has been designed in which the attenuation clustering radio environment to estimate the value of path loss and radio 
telecommunication 5G network and provide statistical descriptions of the relationship between path loss and propagation parameters. Moreover, 
it suffers from low stability because the Received Signal Strength Indicator (RSSI) is easily blocked and easily interfered by objects, environmental 
effects, and climatic conditions. Hence, a novel technique, Arid-Terrain-Ridge Integrational Radio Sensor Network, has been designed to get good 
stability of RSSI in various environmental effects such as urban, suburban, rural, hilly, plain, and desert areas. Also, the Deterministic and empirical 
statistical approaches are used to estimate the field strength. As a result, it accurately estimates the appropriate parameters in radio 
telecommunication networks with various environments with good stability and predictions of RSSI.  
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INTRODUCTION 
A radio network is a significant component of a mobile 

telecommunication system that uses a radio connection to connect 
individual devices to other portions of a network. A radio network 
is a fundamental strategy for resolving the contradiction between 
exponential traffic growth and severe spectrum scarcity.1,2 

The main aim of radio network planning is to provide a cost‐
effective solution for the radio network regarding coverage, 
capacity, and quality.3 The detailed radio network plan can be 
subdivided into five sub‐plans: link budget calculation, coverage, 

capacity planning, spectrum efficiency, and parameter planning.4 
The major change in the radio network planning in the TETRA 
network is due to the introduction of the Complex modulation 
scheme, Access Point (AP) terrain relation and signal fading 
schemes.5 Radio signal path loss is simply the drop in power density 
of an electromagnetic wave as it travels through the environment. 
Path loss prediction models are survey techniques that estimate 
signal strength at various places. They aid in determining the signal 
strength of an area before installing equipment.  
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Path loss is signal blurring caused by reduced signal strength 
between the receiving and sending stations. Radio waves traveling 
through the lower atmosphere are used in wireless communication 
systems.6,7 The transmission path between a transmitter and a 
mobile receiver varies depending on where you are, ranging from a 
straightforward view path to one with obstacles such as hills, trees, 
buildings, and other man-made structures.8 In mobile 
communication, propagation loss due to reflection, refraction, 
diffraction, and scattering affects the electric field intensity of 
signals emerging from a transmitter, resulting in weak received 
signals and route loss due to a drop in the power density of an 
electromagnetic wave as it transmits from the broadcasting antenna 
to the receiving antenna.9 Path loss is signal fading caused by signal 
power reduction between receiving and transmitting stations. 
Predicting path loss (PL) is critical for forecasting transmitter 
coverage and enhancing wireless network efficiency.10,11 An 
empirical or deterministic method is used to estimate 
the environment-related path loss. Empirical models often 
comprise a set of equations generated from extensive field data, 
whereas site-specific deterministic models employ physical 
principles of radio propagation to forecast signal intensity or path 
loss at a given place.12,13 

Modeling signal propagation and losses is a critical component 
in planning and deploying mobile communication systems.14 The 
mobile system is based on electric radio connections placed inside 
the troposphere, the seat of many meteorological and climatic 
phenomena (rain, snow, fog, etc.), or above the ground with 
numerous obstructions (structures, vegetation, etc.) inside 
buildings.15 With new wireless communication technologies and 
the increasing size of radio networks, network planning and 
resource optimization tasks are becoming more and more 
challenging. This is because radio resources are scarce these days 
due to the increasing number of subscribers and the many different 
types of networks operating within the limited frequency spectrum. 
Secondly, deploying and operating a large network is expensive and 
requires careful network dimensioning to ensure high resource 
utilization. 

As a consequence, manual network design and tuning for 
improving radio resource allocation are most likely to fail in current 
and future networks. This necessitates developing algorithms, 
models or tools. The goal is to identify relevant problems for each 
path loss model and method, formalize the problems, and find 
reasonable solutions. The novel Radio Network TETRA Path Loss 
Calculation by Deterministic, Empirical, Polynomial Kernel Radial 
Wavelet Network Models for RSSI Predication and Comparison in 
Undulating Area has been designed to overcome these issues. The 
main contributions of this paper are as follows:  
 In Radio Networks, a Polynomial Kernel Radial Wavelet 

Network has been introduced to estimate the value of path loss and 
radio telecommunication network and provide statistical 
descriptions of the relationship between path loss and propagation 
parameters such as frequency, antenna-separation distance, and 
antenna heights. 
 In the radio telecommunication network, the Arid-

Terrain-Ridge Integrational Radio Sensor Network has been 
introduced to get good stability of RSSI in various environmental 

effects such as urban, suburban, rural, hilly, plain, and desert areas. 
Also, the Deterministic and empirical statistical approach is used to 
estimate the field strength (or signal power) directly from the path 
profile and provide estimations of field strengths (or power) and 
knowledge of the terrain profile. 

LITERATURE REVIEW 
Anusha P C et al16 presented a lightweight position detection 

approach that leverages the RSSI of the anchor nodes to determine 
distance using GPS from the sensor. This distance is calculated 
using a unique method in which 2D distance equations are 
employed to predict the relative layout of the node. The designed 
technique was evaluated using simulation, and the method was 
discovered to have an acceptable amount of inaccuracy. The 
methodology can calculate the position using only four detector 
nodes. However, still need to find any malicious activity in the 
wireless sensor network (WSN). 

Sana Messous et al17 proposed various localization methods are 
the basis of numerous wireless sensor network applications. Multi-
hop localization algorithms are applied to reduce the substantial 
localization error in the original. The received signal strength 
indication (RSSI) and the polynomial approximation are used to 
calculate the distance between unknown nodes and anchors. 
Furthermore, their proposed algorithm employs a recursive 
calculation of the localization process to increase location estimate 
accuracy. However, there is a need to consider the same 
communication radius, the average localization error. 

Nasir Faruk et al18 collected data to develop path loss models 
based on artificial neural network (ANN), adaptive neuro-fuzzy 
inference system (ANFIS), and Kriging techniques.  Empirical 
propagation models are prone to introducing large forecast errors. 
Many heuristic algorithms and geographic approaches have been 
developed to minimize path loss prediction errors. This work 
assesses and discusses the effectiveness of empirical, heuristic, and 
geospatial approaches for predicting signal fading in the very high 
frequency (VHF) and ultra-high frequency (UHF) bands in typical 
metropolitan contexts. However, there is a need to consider 
heuristic methods which help to reduce the large prediction errors 
associated with empirical models. 

Jawad et al19 developed two reliable path-loss models where 
work based on the connection between RSSI and distance in a farm 
field. The path-loss models were developed using the MATLAB 
curve fitting tool and RSSI data gathered in a Lucerne farm field. 
The performance of the regression line was greatly enhanced by 
achieving an ideal straight-line fitting over the RSSI data using the 
EXP-PSO and POLY-PSO path-loss models. An accurate path-loss 
model was required for smart agricultural applications to assess the 
behaviour of propagated signals and to arrange the nodes in the 
WSN in such a way that data transmission occurs without extra 
packet loss between nodes. However, increasing the number of 
POLY coefficient equations increases the complexity of PSO and 
the execution time to identify the optimum fitness function. 

Nahla Nurelmadina et al20 aim to assess the different 
technologies and protocols for industrial IoT applications. A 
thorough evaluation was done by comparing various technologies 
while keeping essential parameters like frequency, data rate, power, 
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coverage, mobility, pricing, and QoS in mind. The Low Power 
Wide Area Network (LPWAN) uses Information Systems and 
Communication by Radio Waves (Sigfox), Narrowband Internet of 
Things (NBIoT), and Long-Range Wide Area Network 
(LoRaWAN) technologies to create low-power communication for 
IoT sensors. A cognitive low-energy architecture is introduced to 
provide efficient and reliable communications in a heterogeneous 
IIoT. It will secure the network layer by providing clients an 
effective platform for renting AI and different LPWAN technology. 
However, a model that allows for less energy, longer-running 
devices, and the greatest feasible data throughput utilizing the 
cognitive Internet of Things must be established. 

Kunal Sankhe et al21 presented the design and performance of 
ORACLE, a method for finding a unique radio from a huge pool of 
bit-similar devices (identical hardware, protocol, physical address, 
MAC ID) using just IQ samples at the physical layer. ORACLE 
trains a convolutional neural network (CNN) that balances 
computational time and accuracy. However, need to improve the 
classification accuracy in a dynamic environment is required. 

Carlos Baquero Barneto et al22 analyzed and illustrated the 
potential of OFDM-waveform-based radio sensing in 5G NR base 
stations, focusing on millimeter Wave (mmW) use scenarios. 
Initially, a basic target range and velocity estimate resolution 
analysis for various carrier bandwidths and observation time 
windows is performed, demonstrating that near-to-centimeter-level 
ranging precision may be attained. Thereby, when performing the 
receiver and transmitting simultaneously, special focus is placed on 
analyzing and suppressing direct self-interference. Finally, actual 
RF measurements in the 28 GHz working band, including self-
interference cancellation and radar processing solutions, are 
supplied and examined. The results show that direct self-
interference cancellation may be performed successfully and that 
targets can be accurately detected and tracked. However, further 
need to assess and visualize the potential of the 5G NR network for 
sensing.  

Alok Kumar et al23 analyzed a cognitive radio (CR) sensing 
performance assessed in terms of false-alarm probability (Pf) and 
detection probability (Pd). IEEE 802.22 wireless regional area 
network is a common cognitive radio standard for accessing 
underutilized licensed TV band frequencies. According to this 
standard, the false-alarm probability of CR should be B 0.1, and the 
detection probability should be C 0.9. Moreover, the detection and 
false-alarm probabilities in the spectrum sensing technique are 
highly influenced by the threshold value used, and threshold 
selection is a critical step in determining the status 
(presence/absence) of PU. The threshold is determined by fixing 
one parameter (Pf or Pd) while optimizing the other (Pd or Pf). 
Moreover, despite attaining one of the intended sensing parameters 
at low SNR, the other sensing parameter suffers significantly. 
However, the multiband spectrum sensing method must be 
considered when PU changes its condition throughout the sensing 
time. 

Amjad Ali et al24 presented a strategy for lowering the SU 
channel switching rate and increasing channel selection 
adaptability. Moreover, making channel-switching judgments 
based on crisp logic is not an appropriate technique in brain-

empowered CR networks (CRNs), as sensing input is imprecise and 
erroneous and entails a significant amount of uncertainty. To 
improve the overall throughput of CRNs, this paper presented a 
fuzzy logic-based decision support system (FLB-DSS) that deals 
with channel selection and switching. However, if the SU switches 
channels repeatedly, its performance suffers greatly. 

From the analysis, it is clear that Anusha et.al.16 design need to 
find out any malicious activity in WSN,17 need to consider the same 
communication radius as the average localization error,18 need to 
consider heuristic methods which help to reduce the large 
prediction errors associated with empirical models,19 it increases 
the computation time, [20] need to establish a model that allows for 
less energy, longer-running devices, and the greatest feasible data 
throughput utilizing the cognitive Internet of Things,21 need to 
improve the classification accuracy in a dynamic environment,22 
further need to assess and visualize the potential of the 5G NR 
network for sensing,23 need to consider multiband spectrum sensing 
method when PU changes its condition throughout the sensing 
time,24 if the SU switches channels repeatedly, its performance 
suffers greatly. 

RADIO NETWORK TETRA PATH LOSS CALCULATION BY 
DETERMINISTIC, EMPIRICAL, POLYNOMIAL KERNEL 
RADIAL WAVELET NETWORK MODELS FOR RSSI 
PREDICATION AND COMPARISON IN UNDULATING AREA 

Path loss (PL) is a critical statistic in communication systems 
because it shows a radio wave's decrease in power density as it 
travels through the channel. Previous methods did not consider the 
appropriate selection of training parameters in radio 
communications networks with distinct types of environments. 
Hence, a novel Radio Network TETRA Path loss calculation by 
deterministic, empirical, AI models for RSSI prediction and 
comparison in an undulating area has been designed for TETRA 
path loss calculation by deterministic, empirical also RSSI 
Predication and Comparison in Undulating Area effectively select 
the parameters in different environments.  Existing methodologies 
did not correctly analyze parameter choices such as radio wave path 
computation, frequencies, antenna heights, distance, and angle 
elevation. Hence, a novel technique, namely Polynomial Kernel 
Radial Wavelet Network, has been designed in which the 
attenuation clustering radio environment is utilized to estimate the 
value of path loss and radio telecommunication 5G network and 
provide statistical descriptions of the relationship between path loss 
and propagation parameters such as frequency, antenna-separation 
distance, antenna heights. 

Moreover, it has poor stability only because the Received Signal 
Strength Indicator (RSSI) is easily blocked and interfered with by 
objects, environmental factors, and weather conditions. Hence, a 
novel technique, Arid-Terrain-Ridge Integrational Radio Sensor 
Network, has been designed to get good stability of RSSI in various 
environmental effects such as urban, suburban, rural, hilly, plain, 
and desert areas. Also, the Deterministic and Empirical statistical 
approach to analyze the propagation of radio waves in the 
environment considers the mechanisms described above and is used 
to estimate the field strength (or signal power) directly from the 
path profile (profile of the terrain between the transmitter and the 
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receiver). These methods adjust the terrain elevation to take account 
of the earth's curvature and are intended to provide estimations of 
field strengths (or power) and knowledge of the terrain profile. 

  

 
Figure 1: Architectural diagram of the designed model 

 
Figure 1 represents the architecture diagram of the radio network 

tetra path loss calculation by deterministic, empirical, polynomial 
kernel radial wavelet network models for RSSI prediction and 
comparison in undulating areas. Here, the AI model named a 
polynomial kernel radial wavelet network in which the attenuation 
clustering radio environment estimates the tetra path loss 
calculation and analyse the radio telecommunicating 5G network, 
arid-terrain-ridge based integrational radio sensor network in which 
the deterministic and empirical statistical approach get good 
stability of RSSI in various environmental effects such as urban, 
suburban, rural, hilly, plain, desert area analyze the propagation of 
radio waves in the environment. 

These models were developed from data obtained from extensive 
measurements in different environments. These models use simple 
equations with little dependence on the cartographic data and are 
only valid for short ranges of frequencies and specific environments 
(urban, suburban, open/rural, sea, etc.). There are two types of input 
features: system-dependent parameters and environment-
dependent parameters. System-dependent parameters are 
independent of the propagation environment, such as carrier 
frequency, transmitter and receiver heights and location. Other 
system-dependent properties, such as the antenna separation 
distance and the angle between the line-of-sight path and the 
horizontal plane, may be obtained using the parameters above. The 
physical environment and weather patterns influence environment-
dependent parameters. Terrain, building conditions, and vegetation 
conditions are examples of geographical environment parameters. 
Most are available through three-dimensional (3D) digital maps, 

topographic databases, and land cover databases. Temperature, 
humidity, and precipitation rate are among the weather parameters. 

 
Polynomial Kernel Radial Wavelet Network 

Polynomial Kernel Radial Wavelet Network is utilized to select 
the appropriate parameters, compute the parameters such as radio 
wave path, frequency, antenna heights, distance, and angle 
elevation, and estimate the value of path loss.  It is deployed to the 
network edge. To address individual devices' limiting computation, 
storage, and power, 5G design should explore exploiting scattered 
computing capabilities across network edges and end-devices via 
multiple access edge computing.  

 

 
Figure 2: Architecture diagram of Polynomial Kernel Radial Wavelet 
Network 

 
Figure 2 represents the polynomial kernel radial wavelet network 

AI-based model in which the attenuation clustering radio 
environment accurately selects the appropriate parameters estimate 
the value of pathloss and compute the parameters such as radio 
wave path, frequency, antenna height, distance, angle elevation and 
estimate 5G network. 

Here, Polynomial Kernel Radial Wavelet Network is introduced 
for the selection of appropriate parameters and to estimate the value 
of path loss and radio telecommunication 5G network. 

 
𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑎𝑎𝑚𝑚,𝑎𝑎𝑛𝑛) = (𝑎𝑎𝑚𝑚.𝑎𝑎𝑛𝑛 + 𝑥𝑥)𝑦𝑦                                  (1) 

 
In equation (1), where 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the polynomial kernel 

characterizes the relationship between the training data in the 
feature space and the polynomials of the frequencies, x is to 
calculate the distance and y is to calculate height of the antenna, m 
and n is the angle elevation. 

 
𝑎𝑎(𝑔𝑔) = 1

𝐿𝐿
∑ 𝑎𝑎�𝑖𝑖𝐿𝐿
𝑒𝑒=1 (𝑔𝑔)    (2)    

                                            
In equation (2) 𝑎𝑎(𝑔𝑔) denotes the predicted path loss value at the 

radial network, L is the total number of parameters selected. Radio 
waves are used to transport data across space. At the transmitting 
end, some transducer converts the information to be transferred into 
a time-varying electrical signal known as the modulation signal; 
thus, the relationship is extracted. They provide statistical 
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descriptions of the relationship between path loss and propagation 
parameters such as frequency, antenna-separation distance, and 
antenna heights. In 5G communication applications, it quickly 
collected a substantial volume of measured data at these new 
frequencies and was time-consuming and expensive.  

 
𝑎𝑎𝑟𝑟(𝑓𝑓) = ∑ 𝑝𝑝𝑖𝑖[𝑟𝑟]𝑞𝑞𝑒𝑒(2𝑖𝑖𝑖𝑖 𝐹𝐹� )𝑓𝑓𝑅𝑅−1

𝑖𝑖=0      (3) 
 

Equation 3 determines the wavelet network, where 𝑎𝑎𝑟𝑟(𝑓𝑓) is the 
summation of the number of complex-valued sinusoids K, f 
period in the continuous-time domain, R denotes the discrete-time 
index, The data symbol is 𝑝𝑝𝑖𝑖[𝑟𝑟]. Intelligent services in 5G are 
expected to extend from data centres to edge networks and 
consumer devices. Applications operating on network edges predict 
user behaviour and environmental conditions, acting as perspective 
assistants to centralized AI based control systems. Meanwhile, 
federated learning may be used to train data locally and learn the 
global model by sharing learning models from dispersed devices to 
address data privacy and security concerns about distributed 
training on edge devices. 

Then need to estimate and predict RSSI relation with Path loss it 
is used to receive signal strength power is described in Equation 
(4). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = −10𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛10𝑑𝑑 + 𝐴𝐴                           (4) 
 

Where n is the path loss exponent calculated using the 
polynomial kernel radial wavelet network method, d is the distance 
between the transmitter and receiver and A is the received power at 
a one-meter distance. Attenuation clustering radio environment 
estimates the path loss exponent (n) value.  

 
∑ 1��KHm(di) − KHm(di)�(ai − ai)�m
i

∑ 1(ai − ai)2m
i

  

      (5)                                                                                   
ai = 10log10(di)(𝑎𝑎𝑟𝑟(𝑓𝑓))                                   (6) 

Where m is the number of measurement points, n is the path 
loss exponent; KHm is the measured path loss, and (ai − ai)2  is 
the average measured path loss.  

Then the Attenuation Clustering Radio Environment is essential 
for path loss models because a wireless network design requires a 
specific size and shape of the areas covered by the access points. 
To this end, the link budget is performed: 

 
𝐾𝐾𝑄𝑄𝑄𝑄 = 𝐾𝐾𝐷𝐷𝐷𝐷 + 𝐾𝐾𝑃𝑃𝑃𝑃 + 𝐾𝐾𝑉𝑉𝑉𝑉 − (𝐴𝐴𝑇𝑇𝑇𝑇 + 𝐴𝐴𝑅𝑅𝑅𝑅 + 𝐴𝐴)  (7) 

 
where 𝐾𝐾𝑄𝑄𝑄𝑄 is the received power, 𝐾𝐾𝐷𝐷𝐷𝐷 is the broadcast power, 

𝐾𝐾𝑃𝑃𝑃𝑃 is the power gain of the transmitting antenna, 𝐾𝐾𝑉𝑉𝑉𝑉 is the 
power gain of receiving antenna, 𝐴𝐴𝑇𝑇𝑇𝑇 is transmitting antenna cable 
attenuation, 𝐴𝐴𝑅𝑅𝑅𝑅  is receiving antenna cable attenuation, 𝐴𝐴 is the 
route of EM wave propagation attenuation. 

The most difficult to determine part of the link budget is the 
attenuation loss A of the Propagation route. If the wireless systems 
environment is located in an undulating area and irregular terrain or 
dense building structure. In such conditions, the mechanism of 
propagation of the EM waves is very complex. The designation of 
the attenuation of a route in such conditions is extremely difficult 
to predict. The multipath creates the most difficult problem in the 
digital broadcast environment which is explained in the next 

subsection using the novel technique Arid-Terrain-Ridge Based 
Integrational Radio Sensor Network. 

 
Arid-Terrain-Ridge Based Integrational Radio Sensor 
Network 

The radio wave propagation environment is analysed using 
environmental characteristics collected from the restricted 
environmental kinds, which replaces the complicated 3D 
environment modelling.  

 

 
Figure 3: Architecture diagram of Arid-Terrain-Ridge Based 
Integrational Radio Sensor Network 
 

Figure 3 represents the Architecture diagram of an Arid-Terrain-
Ridge Based Integrational Radio Sensor Network to get good 
stability of RSSI in various environmental effects such as urban, 
suburban, rural, hilly, plain, and desert areas. Also, the 
Deterministic and Empirical statistical approach is utilized to 
analyze the propagation of radio waves in the environment taking 
into account the mechanisms described above and used to estimate 
the field strength (or signal power) directly from the path profile 
(profile of the terrain between the transmitter and the receiver). 
These methods adjust the terrain elevation to take account of the 
earth's curvature and are intended to provide estimations of field 
strengths (or power) and knowledge of the terrain profile. 

Moreover, diverse environmental variables and information 
combinations are employed to create multiple datasets to train and 
assess path loss prediction models. Deterministic models, also 
called geometrical models, estimate the field strength (or signal 
power) directly from the path profile. These methods adjust the 
terrain elevation to take account of the earth's curvature. In addition 
to free space losses, these models also take account of losses due to 
diffraction in cases where there is insufficient clearance between 
the radio path and the terrain (or structures on the terrain). Site-
specific geometry information is essential for the dielectric 
properties of materials and other terrain factors. Time-consuming 
computation procedure again once the propagation environment 
has changed. 

Arid-Terrain-Ridge Based Integrational Radio Sensor Network 
was designed to predict the path loss values for heterogeneous 
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networks, in which several frequencies and environments include 
urban, suburban, and rural. Also, used for predicting radio-wave 
path loss values in suburban environments.  

 
𝑦𝑦(𝑘𝑘,𝜎𝜎) = ∑ 𝑥𝑥𝑡𝑡(𝑘𝑘)exp{𝑞𝑞𝜏𝜏𝑡𝑡(𝑘𝑘)}𝐺𝐺

𝑖𝑖=0 𝛾𝛾{𝜎𝜎 − 𝜎𝜎𝑡𝑡(𝑘𝑘)}   (8) 
 

In Equation (8) where 𝑘𝑘,𝜎𝜎 are the observation and application 
times of the impulse, respectively; 𝑥𝑥𝑡𝑡 , 𝜏𝜏𝑡𝑡 , 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝑡𝑡 are the time-
varying amplitude, propagation delay, and phase shift, various 
environments, dry place, wet place of the tth multipath component 
respectively; and G is the number of multipath components of the 
channel of interest. 

Then the Empirical models (also called statistical) were 
originally intended to provide estimations of field strengths (or 
power) in cases where there was insufficient knowledge of the 
terrain profile. These models were developed from data obtained 
from extensive measurements in different environments. Empirical 
models mainly rely on measurements in a given frequency range.  

Parameters of empirical models are extracted from measured 
data. Empirical models can only represent the path loss statistics at 
a given distance.  

 In Equation (9) empirical data to determine path loss (KHm ) for 
a typical environment according to the value of environmental 
correction factor (CA) 

 
KHm (𝑑𝑑𝑑𝑑) = 𝐴𝐴 + 𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙10𝑑𝑑 + 𝐶𝐶𝐶𝐶                          (9) 

  
Where, 
 

A = 69.55 + 26.16. log10   (f)  −13.82. log10(hb) − a(hm) 
𝐵𝐵 = 4.9 − 6.55. 𝑙𝑙𝑙𝑙𝑙𝑙10 (ℎ𝑏𝑏) 

 
The ℎ𝑏𝑏 is the antenna height in meters and f is the frequency in 

MHz The correction factors a(ℎ𝑚𝑚) are for the antenna height ℎ𝑚𝑚 in 
meters and d is the distance in meters. 

Equation (10) is utilized to calculate the urban area CA=0 for 
medium – small city  

 
a(hm) = (1.1. log10(f) − 0.7). hm − (1.56. log10 (f) − 0.8)             
       

              (10) 
 
Equation (11) is utilized to calculate large city (f>400MHz) 
 
𝑎𝑎(ℎ𝑚𝑚) = 8.29. ( 𝑙𝑙𝑙𝑙𝑙𝑙10 1.54. ℎ𝑚𝑚)2 − 1.1                               (11) 
 
     Equation (12) is utilized to calculate the suburban area. 
 
CA = −2. (log10 �

f
28
�)2 − 5.4                                              (12) 

 
 Equation (13) is utilized to calculate the open area. 
 

CA = 4.78. (log10 (f))2 + 18.33. log10(f) − 40.94     (13)                                                 
 

𝑃𝑃𝑃𝑃 = 92.4 + 20𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑) + 20𝑙𝑙𝑙𝑙𝑙𝑙(𝑓𝑓) + 20.41 + 9.83𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑) +
7.89𝑙𝑙𝑙𝑙𝑙𝑙(𝑓𝑓) + 9.56(𝑙𝑙𝑙𝑙𝑙𝑙(𝑓𝑓))2 + 𝑙𝑙𝑙𝑙𝑔𝑔 � ℎ𝑏𝑏

200
� (13.958 +

5.8. 𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑))2 + 𝐺𝐺                    (14)    
                                                 

Equation (14) is utilized to calculate the path loss. Empirical 
models are utilized for the dependency on cartographic data and are 
only valid for short frequency ranges and different contexts such as 
urban, suburban, open, plain, desert, rural, marine, and so on, and 
to analyze the propagation of radio waves in the environment taking 
into account the mechanisms described above and used to estimate 
the field strength (or signal power) directly from the path profile 
(profile of the terrain between the transmitter and the receiver). 
These methods adjust the terrain elevation to take account of the 
earth's curvature and are intended to provide estimations of field 
strengths (or power) and knowledge of the terrain profile.  

Overall, the designed model polynomial kernel radial wavelet 
network in which the attenuation clustering radio environment 
properly selects the appropriate parameters in a radio 
telecommunication network. Arid-terrain-ridge based integrational 
radio sensor network in which the deterministic and empirical 
statistical approach utilized for the selection of various parameters 
such as radio wave path calculation, frequency, antenna heights, 
distance, and angle elevation are analyzed accurately with 
environments such as urban, suburban, sea, rural, desert, hilly, 
terrain and with good stability and predications of RSSI.  

RESULTS AND DISCUSSION  
This section includes a thorough discussion of the 

implementation results, as well as the performance of the designed 
system and a comparison section to ensure that the designed system 
is applicable for Radio Network TETRA Path Loss Calculation by 
Deterministic, Empirical, and Polynomial Kernel Radial Wavelet 
Network Models for RSSI Predication and Comparison in 
Undulating Area. 

 
System configuration 

The designed system is simulated in python, and this section 
provides a detailed description of the implementation results and 
the performance of the designed system and a comparison section 
to ensure that the designed system performs valuable. 

This work has been implemented in the working platform of 
Python with the following system specification and the simulation 
results are discussed below. 

OS  : Windows 10 
software : Python 
RAM                 : 8 GB RAM  
Processor : Intel i5 
 

Simulated output of designed model 
Table 1 represents the parameters and the value used in the 

designed model, such as base station transmits power (Pt), 
Frequency, Handheld transmit power, Mobile station dynamic 
range, Shadow fading correlation, Standard deviation for the 
Shadow, MS/BS noise figures, Transmitter tower height, Channel 
profile, Transmission antennas (GBS), Handheld antennas (GCPE), 
Handheld speeds. 
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Table 1: Parameters used in the model 
Parameter Value 

Base station transmit power (Pt) 20 W 
Frequency 455MHz 

Handheld transmit power 300 mW 
Mobile station dynamic range 70 dB 

Shadow fading correlation 50% 
Standard deviation for the Shadow 6 dB 

MS/BS noise figures 7 dB/5 dB 
Transmitter tower height 60 feet 

Channel profile ITU vehicular 
Transmission antennas (GBS) 65° / 17 dBi 
Handheld antennas (GCPE) Omni / 1.5 dBi 

Handheld speeds 0.3 km/h and 50 km/h 
 

 

 

  

 
Figure 4: Geographical location of the designed model 

Figure 4 represents Lavasa’s smart city areas selected to obtain 
the measurements. The measurements were conducted during the 
daytime. The site is geographically located at latitude (N18 25 34.9) 
north of the equator and longitude (E73 31 25.3) east of the prime 
meridian on the map of INDIA base stations were selected within 
the area of LAVASA. 

Figure 5 represents the measurement system consisting of a 
Laptop with Test Equipment Signal Hound BB60C investigation 
software installed, a Tetra handset with pocket software installed, 
and a GPS receiver.  

 

 

 
Figure 5: Measurement system of the designed model 

 
Performance metrics of the designed system 

This section provides a detailed explanation of the suggested 
technique's effectiveness and the result. 

 

 
Figure 6: Emitted power of the designed model 
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The emitted power of the designed system for varying the 
number of input samples has been shown in figure 6. In the TETRA 
radio network, the transmitted power is proportional to the distance 
between the transmitter and the receiver. The emitted power of the 
designed system achieves a maximum value of -50 (dBm) when the 
distance (Km) is reduced and attains a minimum value of -58 (dBm) 
when the distance (Km) is increased. This connection 
emphasizes the dynamic adjustment of emitted power depending on 
shifting distances within the TETRA network, with the goal of 
maintaining the required signal intensity for optimal 
communication, particularly in undulating terrain where 
topographical variations impair signal propagation. 

 

 
Figure 7: BS Antenna Gain of the designed model 

 
The BS Antenna Gain of the designed system for varying the 

number of input samples has been shown in figure 7. The BS 
Antenna Gain of the designed system achieves a maximum value 
of -10 (dBm) when the number of distance (Km) is reduced and 
attains a minimum value of -15 (dBm) when the number of distance 
(Km) is increased. The designed Polynomial Kernel Radial 
Wavelet Network approach reduces BS Antenna Gain by 
considering comprehensive characteristics such as radio wave 
route, frequency, antenna heights, distance, and angle elevation. It 
accomplishes this by accurately assessing the value of route loss, 
resulting in increased system performance and optimized network 
resource allocation. 

 

 
Figure 8: Receiver Antenna Gain of the designed model. 

The receiver antenna gains of the designed system for varying 
the number of input samples have been shown in figure 8. The 
receiver antenna gain of the designed system achieves a maximum 
value of 10 (dBm) when the distance (Km) is increased and attains 
a minimum value of -15 (dBm) when the distance (Km) is reduced. 
The receiver antenna gain of the designed system has been reduced 
because of the novel technique Polynomial Kernel Radial Wavelet 
Network by computing the parameter of distance. As the distance 
between the transmitter and receiver increases, the signal spreads 
across a greater region, resulting in a lower power density, which is 
often adapted to increasing the receiving antenna gain to maintain 
a proper signal-to-noise ratio. 

 

 
Figure 9: Root Mean Square Error of the designed model. 

 
The root mean square error of the designed system for varying 

the number of input samples has been shown in figure 9. The root 
mean square error of the designed system achieves a maximum 
value of 2.4 when the number is reduced and attains a minimum 
value of 1.59 when the number is increased. The Radio Network 
TETRA Path Loss Calculation employs statistical polynomial 
kernel and radial wavelet network models to forecast RSSI values; 
by combining these models, the RMSE in undulating areas is 
minimized. This combination allows for more exact and 
trustworthy RSSI forecasts, reducing the total difference between 
projected and real RSSI values. 

 

 
Figure 10: Mean Absolute Error of the designed model. 
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The mean absolute error of the designed system for varying the 
number of input samples has been shown in figure 10. The mean 
absolute error of the designed system achieves a maximum value of 
1.32 when the number is reduced and attains a minimum value of 
1.21 when the number is increased. The PKRWN 
models efficiently manage fluctuations and uncertainties in the 
RSSI data by including statistical analysis inside the framework, 
resulting in a more robust prediction of route loss. This robustness 
serves to reduce the MAE, which improves the accuracy of the 
TETRA route loss computation in undulating regions. 

 

 
Figure 11: Mean Absolute Percentage Error of the designed model. 

 
The mean absolute percentage error of the designed system for 

varying the number of input samples has been shown in figure 11. 
The mean absolute percentage error of the designed system 
achieves a maximum value of 0.98 when the epochs number is 
reduced and attains a minimum value of 0.91 when the number is 
increased. The integration of the radial wavelet network, which 
successfully captures both local and global fluctuations in the signal 
propagation environment, is the designed approach for reducing 
MAPE. It allows for a more accurate representation of the 
complicated path loss features in undulating terrain, resulting in a 
decrease in MAPE by successfully minimizing the errors associated 
with classic path loss models in such circumstances. 

 
Comparison of Designed Model with Previous Models 

This section emphasizes the effectiveness of the designed model 
by comparing it with the outcomes of existing methodologies and 
illustrating their outcomes based on several metrics. The 
comparisons are made from the previous techniques with the 
various Mean Absolute Errors, Root Mean Square Errors, Mean 
Absolute Percentage Errors, and Path loss. Comparisons are made 
with the existing techniques such as AdaBoost, Random Forest, 
Support Vector Machine (SVM), and Back-propagation Neural 
Network.25 

Figure 12 compares the designed model's Mean Absolute Error 
with existing techniques such as AdaBoost, Random Forest, SVM, 
and Back-propagation Neural Network.  

Whereas the comparison of mean absolute error attains a 
maximum value of AdaBoost, Random Forest, SVM, and BPNN 
are 6.6, 6.0, 4.0, and 3.2 respectively. The designed model has a 

lower mean absolute error of 3.0 than existing models even though 
the number of nodes increased. As a result, it is noticed that the 
designed system has the lowest mean absolute error by using 
Deterministic and Empirical statistical approaches. 

 
Figure 12: Comparison of Mean Absolute Error 

 
Figure 13: Comparison of Root Mean Square Error 

 
Figure 13 compares the designed model's Root Mean Square 

Error with existing techniques such as AdaBoost, Random Forest, 
SVM, and Back-propagation Neural Network. Whereas the 
comparison of root mean square error attains a maximum value of 
AdaBoost, Random Forest, SVM, and BPNN are 6.8, 6.5, 5.0, and 
3.7 respectively. The designed model has a lower root mean square 
error of 3.5 than existing models even though the number of nodes 
increased. As a result, it is noticed that the designed system has the 
lowest root mean square error by using Deterministic and Empirical 
statistical approaches.25 

 

 
Figure 14: Comparison of Mean Absolute Percentage Error  
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Figure 14 compares the designed model's Mean Absolute 
Percentage Error with existing techniques such as AdaBoost, 
Random Forest, SVM, and Back-propagation Neural Network. 
Whereas the comparison of mean absolute percentage error attains 
a maximum value of AdaBoost, Random Forest, SVM, and BPNN 
are 10.8, 10, 6.3, 5.2 respectively. The designed model has a lower 
mean absolute percentage error of 4.8 than existing models, even 
though the number of nodes increased. As a result, it is noticed that 
the designed system has the lowest mean absolute percentage error 
by using arid-terrain-ridge based integrational radio sensor 
network. 

 

 
Figure 15: Path Loss comparison 

 
Figure 15 compares the designed model's Path Loss with existing 

techniques such as AdaBoost, Random Forest, SVM, and Back-
propagation Neural Network. Whereas the comparison of path loss 
attains a maximum value of AdaBoost, Random Forest, SVM, and 
BPNN are 10.8, 10, 6.3, and 5.2 respectively. The designed model 
has a lower mean absolute percentage error of 4.8 than existing 
models even though the number of nodes increased. As a result, it 
is noticed that the designed system has the lowest mean absolute 
percentage error by using arid-terrain-ridge-based integrational 
radio sensor network. 

The table 2 shows the comparison of the designed model with 
the existing models such as AdaBoost, random forest, SVM, and 
BPNN, compared with existing models the designed model 
achieves a low MAE of 3%, RMSE of 3.5%, MAPE of 4.8%, and 
path loss of 4.8%.  

 
Table 2: Comparison table of various models 

Techniques MAE RMSE MAPE Path loss 
AdaBoost [25] 6.6 6.8 10.8 10.8 

Random Forest [25] 6.0 6.5 10 10 
SVM [25] 4.0 5.0 6.3 6.3 
BPNN [25] 3.2 3.7 5.2 5.2 
Designed 3.0 3.5 4.8 4.8 

 
Overall, the designed model shows that it is more efficient to 

predict path loss when compared to other existing techniques such 
as AdaBoost, Random Forest, SVM, and BNPP. The designed 
Radio Network Path Loss Prediction based on the Polynomial 
Kernel Radial Wavelet Neural Network has a low path loss of 

45dB, low Mean Absolute Percentage Error (MAPE) of 4%, low 
Root Mean Square Error (RMSE) of 3.5dB and low Mean Absolute 
Error of 3.0 dB. The overall performance of the designed model 
outperforms all existing models.  

CONCLUSION 
To Predict the RSSI and optimize the path loss in radio networks 

in various environments, a novel Radio Network TETRA Path Loss 
Calculation by Polynomial Kernel Radial Wavelet Network Models 
for RSSI Predication and Comparison in Undulating Area has been 
designed and enhanced for TETRA path loss calculation by 
deterministic, empirical RSSI Predication and Comparison in 
Undulating Area and effectively select the parameters in different 
environment. The designed model utilizes the artificial intelligence 
model namely Polynomial Kernel Radial Wavelet Network to 
select the appropriate parameters and to compute the parameters 
such as radio wave path, frequency, antenna heights, distance, angle 
elevation to estimate the value of path loss. Arid-Terrain-Ridge 
Based Integrational Radio Sensor Network was designed to predict 
the path loss values for heterogeneous networks, in which several 
frequencies and environments include urban, suburban, and rural. 
Also, used for predicting radio-wave path loss values in suburban 
environments using propagation loss prediction model. The data is 
gathered from the empirical and deterministic statistical approach 
model. Also used to anticipate radio-wave route loss values in 
suburban settings and Model for predicting loss propagation. The 
overall performance of the designed model outperforms all existing 
models. Thus, the designed model attains more efficient results in 
predicting path loss compared to other existing techniques such as 
AdaBoost, Random Forest, SVM, and BNPP. The designed Radio 
Network Path Loss Prediction based on Polynomial Kernel Radial 
Wavelet Neural Network has a low path Loss of 45dB, low Mean 
Absolute Percentage Error (MAPE) of 4%, low Root Mean Square 
Error (RMSE) of 3.5dB and low Mean Absolute Error of 3.0 dB.  

REFERENCES 
1. G. Soós, D. Ficzere, T. Seres, S. Veress, I. Németh. Business opportunities 

and evaluation of non-public 5G cellular networks – a survey. 
Infocommunications J. 2020, 12(3), 31-38. 

2. D. Zhao, H. Qin, B. Song, B. Han, X. Du, M. Guizani. A graph 
convolutional network-based deep reinforcement learning approach for 
resource allocation in a cognitive radio network. sensors 2020, 20(18), 
5216.  

3. A. Srivastava, M.S. Gupta, G. Kaur. Energy efficient transmission trends 
towards future green cognitive radio networks (5G): Progress, taxonomy 
and open challenges. J. Network Comp. Appl. 2020, 168, 102760. 

4. M.I. Nashiruddin, M.A. Nugraha, P. Rahmawati, A.T. Hanuranto, A. 
Hikmaturokhman. Techno-Economic Assessment of 5G NSA Deployment 
for Metropolitan Area: A Greenfield Operator Scenario. J. Commun. 2022, 
17(12).  

5. T.M.F. Duarte. Evaluation of Antennas Location on Trains for Mobile 
Communications. 2019. 

6. O.E. Jackson, M. Uthman, S. Umar. Performance Analysis of Path Loss 
Prediction Models on Very High Frequency Spectrum. Eur. J. Engineering 
Technol. Res. 2022, 7(2), 87-91. 

7. Jo, H.S., Park, C., Lee, E., Choi, H.K. and Park, J., 2020. Path loss 
prediction based on machine learning techniques: Principal component 
analysis, artificial neural network, and Gaussian process. Sensors, 20(7), 
p.1927. 



Mamta Tikaria et. al. 

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(3), 758             Pg  11 

8. J.I. Agbinya, Radio Wave Propagation Models for Cellular 
Communications. In 4G Wireless Communication Networks. 2022, 37-66. 
River Publishers. 

9. J. Idogho, G. George. Path Loss Prediction Based On Machine Learning 
Techniques: Support Vector Machine, Artificial Neural Network, And 
Multilinear Regression Model. Open J. Physical Sci., 2022, 3(2), 1-22. 

10. S.I. Popoola, A. Jefia, A.A. Atayero, O. Kingsley, N. Faruk, O.F. Oseni, 
R.O. Abolade. Determination of neural network parameters for path loss 
prediction in very high frequency wireless channel. IEEE access 2019, 7, 
150462-150483. 

11. L. Wu, D. He, B. Ai, J. Wang, H. Qi, K. Guan, Z. Zhong, Artificial neural 
network-based path loss prediction for wireless communication 
network. IEEE access 2020, 8, 199523-199538. 

12. N. Raj. Indoor RSSI prediction using machine learning for wireless 
networks. In 2021 International Conference on COMmunication Systems & 
NETworkS (COMSNETS) IEEE 2021, January, 372-374. 

13. M. Ayadi, A. Ben Zineb, S. Tabbane. A uhf path loss model using learning 
machine for heterogeneous networks. IEEE Transactions on Antennas and 
Propagation 2017, 65(7), 3675–3683. 

14. J. Thrane, D. Zibar, H.L. Christiansen. Model-aided deep learning method 
for path loss prediction in mobile communication systems at 2.6 GHz. IEEE 
Access 2020, 8, 7925-7936. 

15. M. Alnatoor, M. Omari, M. Kaddi. Path Loss Models for Cellular Mobile 
Networks Using Artificial Intelligence Technologies in Different 
Environments. Appl. Sci. 2022, 12(24), 12757. 

16. P.C. Anusha, S. Anand, S. Sinha. RSSI-based localization system in 
wireless sensor network. Int. J. Engineering Adv. Technol. 2019, 8(5). 

17. S. Messous, H. Liouane, O. Cheikhrouhou, H. Hamam. Improved recursive 
DV-hop localization algorithm with RSSI measurement for wireless sensor 
networks. Sensors 2021, 21(12), 4152. 

18. N. Faruk, S.I. Popoola, N.T. Surajudeen-Bakinde, A.A. Oloyede, A. 
Abdulkarim, L.A. Olawoyin, M. Ali, C.T. Calafate, A.A. Atayero. Path loss 
predictions in the VHF and UHF bands within urban environments: 
experimental investigation of empirical, heuristics and geospatial 
models. IEEE access 2019, 7, 77293-77307. 

19. Jawad, H.M., Jawad, A.M., Nordin, R., Gharghan, S.K., Abdullah, N.F., 
Ismail, M. and Abu-AlShaeer, M.J., Accurate empirical path-loss model 
based on particle swarm optimization for wireless sensor networks in smart 
agriculture. IEEE Sensors J., 2019, 20(1), 552-561.  

20. N. Nurelmadina, M.K. Hasan, I. Memon, R.A. Saeed, K.A. Zainol Ariffin, 
E.S. Ali, R.A. Mokhtar, S. Islam, E. Hossain, M.A. Hassan. A systematic 
review on cognitive radio in low power wide area network for industrial IoT 
applications. Sustainability 2021, 13(1), 338. 

21. K. Sankhe, M. Belgiovine, F. Zhou, S. Riyaz, S. Ioannidis, K. Chowdhury. 
ORACLE: Optimized radio classification through convolutional neural 
networks. In IEEE INFOCOM 2019-IEEE Conference on Computer 
Communications. IEEE 2019, April, 370-378. 

22. C.B. Barneto, M. Turunen, S.D. Liyanaarachchi, L. Anttila, A. Brihuega, 
T. Riihonen, M. Valkama. High-accuracy radio sensing in 5G new radio 
networks: Prospects and self-interference challenge. In 2019 53rd Asilomar 
Conference on Signals, Systems, and Computers. IEEE 2019, November, 
1159-1163.  

23. A. Kumar, P. Thakur, S. Pandit, G. Singh. Analysis of optimal threshold 
selection for spectrum sensing in a cognitive radio network: an energy 
detection approach. Wireless Networks 2019, 25(7), 3917-3931.  

24. A. Ali, L. Abbas, M. Shafiq, A.K. Bashir, M.K. Afzal, H.B. Liaqat, M.H. 
Siddiqi, K.S. Kwak. Hybrid fuzzy logic scheme for efficient channel 
utilization in cognitive radio networks. IEEE Access 2019, 7, 24463-24476. 

25. Y. Zhang, J. Wen, G. Yang, Z. He, J. Wang. Path loss prediction based on 
machine learning: Principle, method, and data expansion. Appl. Sci. 2019, 
9(9), 1908.

 
 

 
 
 
 
 


	Received on: 12-Jul-2023, Accepted and Published on: 10-Nov-2023
	ABSTRACT
	Introduction
	Literature Review
	Radio Network Tetra Path Loss Calculation By Deterministic, Empirical, Polynomial Kernel Radial Wavelet Network Models For Rssi Predication And Comparison In Undulating Area
	Results and Discussion
	Conclusion
	References


