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ABSTRACT 
 
In the agricultural sector, 
timely identification of 
plant diseases is crucial to 
mitigate crop losses, 
ensure quality yields, and 
promote sustainable 
farming practices. Recent years have witnessed declining agricultural incomes due to the pervasive presence of bacterial, viral, and fungal 
infections, which progressively affect plants, resulting in crop loss, reduced fruit quality, and plant mortality. This paper investigates the 
application of IoT, Machine Learning, and Deep Learning techniques to detect disease symptoms at various stages, enabling proactive 
interventions to prevent extensive crop losses and disease propagation within agricultural plots. The primary objective of this study is to explore 
diverse approaches for early plant disease detection, addressing a critical gap in current research that predominantly focuses on leaves and fruits. 
Furthermore, this study extends its scope to include diseases originating from soil, offering a comprehensive approach to disease management 
in agriculture. This research holds significant implications by empowering farmers with predictive capabilities, reducing pesticide use, and 
fostering sustainable farming practices, ultimately contributing to food security and economic stability in the agricultural industry. 
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INTRODUCTION 
A significant portion of the world's population depends on 

agriculture for their livelihood. However, factors such as untimely 
rains, weather fluctuations, lack of soil fertility, and unscientific 
farming practices have hindered the farmers' ability to cultivate 
successful crops.1,2 The continuous reduction in agricultural income 
is a concerning trend, primarily as a consequence of the adverse 
impact of diseases and pests on agricultural products. While pest 
control measures such as pesticides and advanced techniques like 
ultrasonic pest repellents exist, diseases have emerged as a major 
problem in recent times.3 Some diseases lack effective medications 
for treatment, and many go undetected in their early stages. 

Infectious plant diseases, caused by bacteria, fungi, or viruses, can 
range in severity from mild leaf or fruit damage to plant death.4 

Unfortunately, farmers often struggle to detect the primary 
symptoms, spreading diseases across more than 50% of the total 
plant area. Observing plant leaves, fruits, and stems, and 
conducting soil testing can aid in disease identification.5 Soil-borne 
diseases are particularly prevalent, as environmental conditions and 
improper plot maintenance promote the growth of pathogenic fungi 
and viruses.6 Common plant diseases, such as blight, cankers, rust, 
wilts, rots, and anthracnose, are caused by bacteria or fungi.7 
Technological enhancements have substantially improved the 
ability to identify plant diseases at early stages.8 

The main goal of this research is to investigate different methods 
and techniques for the early detection of plant diseases. This is 
crucial because there is a notable gap in the current body of 
research, which tends to concentrate primarily on detecting diseases 
in plant leaves and fruits. Our study aims to fill this gap by 
exploring a wider range of approaches to identify diseases in plants 
at an earlier stage of their development.  In addition to addressing 
the existing gap in research, this study goes a step further by 
broadening its scope. It doesn't limit itself solely to diseases that 
manifest in leaves and fruits. Instead, it includes diseases that 
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originate from the soil. This comprehensive approach means that 
the research covers the entire spectrum of disease management in 
agriculture. It takes into account not only the diseases that visibly 
affect the above-ground parts of plants but also those that may stem 
from the soil, which is an essential aspect of ensuring plant health 
and overall crop management. The study's primary objective is to 
diversify and improve early plant disease detection methods while 
extending its focus to encompass a broader array of potential 
disease sources, ultimately contributing to more effective disease 
management in agriculture. 
Research Questions:  

1. What novel approaches and technologies can be employed 
to enhance the early detection and management of plant 
diseases, and how do these strategies compare to traditional 
methods focused on leaf and fruit symptom recognition? 

2. How can sensor-based technologies be employed to monitor 
and manage soil-borne pathogens, ensuring plant health and 
sustainable, disease-free crop cultivation in agriculture? 

Challenges:  
Data Collection and Quality: Gathering a diverse set of plant 
images with diseases can be tough, especially for rare diseases or 
less common plant types. Labeling these images for training takes 
time and can lead to errors. Also, having an uneven mix of healthy 
and diseased samples can bias machine learning models.9 
IoT Device Integration: Placing IoT sensors correctly on plants to 
collect accurate data is crucial. In agriculture, IoT devices often 
have power constraints, making data transmission and maintenance 
challenging.10 
Environmental Variability: Weather conditions, lighting, and 
other environmental factors can affect image quality and sensor 
readings. Disease symptoms may vary by season, so these changes 
need to be incorporated into the dataset.11 
Model Generalization: Machine learning models, especially deep 
learning ones, trained on one plant type or region may not work 
well on different plants or regions. They might become too 
specialized in the training data.12 
Scalability: Going from small experiments to large farms is hard 
due to issues with hardware, data management, and scaling up the 
detection system.13 
Education and Training: Farmers and workers might need special 
training to use and understand AI-based disease detection systems 
effectively.14 

Addressing these challenges requires a collaborative effort 
among experts in agriculture, machine learning, IoT, and data 
management. Additionally, there's a need to develop strong, 
adaptable models that fit the specific needs and limitations of 
different agricultural situations.15 In the following sections, this 
paper will delve into various aspects of plant disease detection. 
First, the paper will explore IoT-based methods for identifying 
plant leaf diseases, shedding light on the benefits and challenges 
associated with this approach. Next, it will delve into the realm of 
image processing and machine learning techniques, specifically 
focusing on their application in plant leaf disease detection. 
Following that introduces deep learning methods tailored for plant 
disease detection. The paper will then present the results of the 
survey, highlighting key findings that address existing research 

gaps and propose a hybrid solution. Finally, the paper will conclude 
by summarizing the implications of the research and its 
contribution to the field. 
Note: Deep Learning (DL), Machine Learning (ML), Digital Image 
processing (DIP), Internet of Things (IoT) 

LITERATURE REVIEW 
PLANT LEAF DISEASE DETECTION USING THE INTERNET OF THINGS:  

The IoT encompasses various fields of application, including 
Industry, Health, Agriculture, and Automation. In the Agricultural 
domain, IoT plays a significant role by contributing to its 
development and efficiency.16 Several applications utilize IoT 
technology to enhance agricultural practices, such as Agricultural 
Drones, Livestock Monitoring, Smart Greenhouses, Remote 
Sensing, Smart Irrigation Systems, and Plant Health Monitoring 
systems 17 

Plant leaf disease detection using the IoT involves the use of 
connected devices and sensors to monitor and detect diseases in 
plants.18 It combines the power of IoT technology with data analysis 
techniques to identify and determine plant diseases at an early 
stage. IoT devices are infused with sensors to sense and also 
actuators to bring change in the real world.19 Through the utilization 
of IoT sensors, it becomes possible to monitor essential parameters 
related to crops, including physical, chemical, environmental, and 
biomolecular aspects.20 These parameters serve as indicators for 
plant diseases or abiotic stress factors. Furthermore, IoT sensors 
enable the tracking of plant growth rate, changes in plant health, 
fruit quality, and soil fertility levels, as well as the identification of 
viruses, bacteria, and soil-borne fungi.21  

 

 
Figure 1 Plant Disease Detection using IoT 

 
The data collected by plant-wearable sensors are transmitted 

wirelessly to a centralized cloud platform. This cloud-based 
approach facilitates the consolidation of information and enables 
intelligent decision-making processes. By analyzing the collected 
data, it becomes feasible to detect infections or other critical factors 
affecting plant health. These insights can then be utilized to 
implement timely interventions or adjustments to ensure optimal 
agricultural outcomes.22 Figure 1 shows the fundamental stages 
involved in the plant disease detection system using IoT.  

The following is the introduction to the fundamental stages of 
plant disease detection using IoT. 

Sensor deployment: Involves the strategic placement of IoT 
devices equipped with a wide array of sensors, including humidity, 
temperature, light, and moisture sensors, in and around the plants 
or fields. These sensors work tirelessly to continuously monitor and 
collect precise data pertaining to environmental conditions.23 
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Data collection: Gathering data related to various factors is the 
responsibility of the sensors, such as light intensity, soil moisture, 
temperature, humidity levels, and other pertinent parameters. 
Afterwards, the data is forwarded to a central system or cloud 
platform for subsequent processing and analysis.23 

Data analysis: The gathered data undergoes processing and 
analysis through the utilization of machine learning algorithms, 
statistical models, or image processing techniques. These advanced 
methods aid in the recognition of patterns, anomalies, and potential 
indications of plant diseases within the collected dataset.23 

Disease identification: Effectively discerning the existence of 
diseases in plants is achieved through the system's utilization of 
either the collected data's comparison with predefined disease 
patterns or the application of machine learning models trained on 
historical disease data. This identification relies on symptoms like 
leaf discolouration, growth patterns, or other observable 
characteristics.23 

Disease diagnosis and alerts: Upon detecting a disease, the 
model can offer a diagnosis or generate alerts to promptly inform 
farmers or plant experts about its presence. These alerts are 
conveyed through mobile apps, emails, or SMS messages, 
guaranteeing the prompt distribution of information to facilitate the 
implementation of required measures.23 

 
Plant Disease Detection using Temperature Sensor:  
Leaf pigments contribute to leaf colouring, and different 

pigments like chlorophyll, carotenoids, and anthocyanins create 
various colours in leaves. In autumn, leaves change colours due to 
the breakdown of chlorophyll and the existence of additional 
pigments. Environmental factors such as daylight, temperature, and 
soil dampness influence leaf appearance in fall. Sunlight and low 

temperatures promote chlorophyll breakdown, leading to vibrant 
colours. To detect plant diseases, first, establish baseline 
temperature values for healthy plants using the DHT11 sensor. 
Monitor the temperature of healthy plants over time. Different 
diseases cause specific symptoms, including changes in leaf 
temperature. Correlate known disease symptoms, like wilting or 
discolouration, with temperature variations detected by the DHT11 
sensor. Once baseline temperatures are set, the DHT11 sensor 
continuously monitors plant temperature. Considerable deviations 
from the baseline benchmarks may indicate potential diseases or 
plant stress. The sensor data is directed to a cloud platform via a 
WiFi shield connected to an Arduino UNO board and recorded for 
analysis. If a leaf's temperature falls outside the healthy range, it is 
considered unhealthy.24 

 
Plant Disease Detection Using Colour Sensor: 
Colour changes in plant tissue can signal the existence of plant 

disease, particularly when green tissue turns yellow due to the loss 
of chlorophyll. The degree of colour change varies, ranging from 
partial to complete repression of leaf colour. To discriminate 
between healthy and diseased leaves, a colour sensor like the 
TCS3200 RGB colour sensor is used. It measures the "RED," 
"Green," and "Blue" components of the leaf's colour. The colour 
values are then directed to a cloud platform through an Arduino 
board for analysis. In the cloud platform, values of RGB are 
compared to a threshold value stored in a dataset. This threshold 
value serves as a reference point for determining leaf health. By 
comparing the recorded values with the threshold, the analysis 
identifies if the leaf is fit or suffering from a disease based on its 
colour characteristics.25 
 

Table 1 Assessment Criteria for IoT Models 
Paper Data Collection Robustness to Environmental 

Variability 
Scalability Accuracy 

Nawaz et al., 
(2020)24 

Data is collected 
from a DHT11 
temperature sensor and 
a TCS3200 colour 
sensor to gather 
information about the 
leaves. 

While the DHT11 is a waterproof 
sensor suitable for use during the 
monsoon and all other seasons, the 
TCS3200 is not water-resistant, 
which means it may not maintain 
robustness in all weather conditions. 

Implementing on a 
large scale can be 
challenging due to 
hardware limitations and 
the need to deploy a 
substantial number of 
sensors. 

Temperature and 
colour alone are 
insufficient for 
accurately predicting 
diseases, making the 
prediction less 
accurate. 

R.Yakkundimath 
et al., (2018)25 

Data is extracted 
from the leaf using 
both a DHT11 
humidity and 
temperature sensor and 
a TCS3200 colour 
sensor. 

The model lacks robustness for 
real-time deployment due to the 
absence of wireless communication 
between the sensor and Arduino 
UNO. 

Enabling wireless 
communication between 
the cloud and an Arduino 
requires deploying a 
package consisting of 
Arduino boards and 
sensors in the field to 
achieve automation, 
resulting in an increased 
overall cost. 

The model achieved 
an overall accuracy of 
85.33% by employing 
three distinct 
algorithms to analyse 
the data. 

Absar et al., 
(2023)26 

Greenhouse data is 
collected by a DHT-11 
temperature and 
humidity sensor, while 
a soil moisture sensor 
measures the levels of 
soil moisture. 

The sensors employed for 
monitoring crops within greenhouses 
are designed to withstand 
controlledrenders climate conditions 
and remain robust in varying 
environmental conditions. 

Sensor models have 
the potential to 
communicate, making 
them suitable for 
deployment over large 
areas, which render them 
scalable. 

Encouraging 
manual control of 
greenhouse 
environments may 
hinder the attainment 
of higher accuracy due 
to the potential for 
human errors. 
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Table 2 Challenges Faced by IoT Models 
Paper Challenges 

 
Nawaz et al., 
(2020).24 

 
The placement of sensors, power supply, and 
interfacing with a large number of sensors. 

R.Yakkundimath 
et al. 2018 25 

Continuous monitoring of plant leaves is challenging 
due to the necessity of collecting leaf samples for 
reference and testing, which involves manual efforts in 
sample collection. 

Absar et al.,  
(2023)26 

The model does not support automated environment 
settings; the only option available is manual control 
through the Blynk App. Additionally, the investment 
cost will be higher because the model utilizes a soil 
moisture sensor for controlled irrigation, restricting the 
application of sprinklers and making drip irrigation the 
sole viable option. 

 
Plant Disease Detection using Humidity Sensor: 
The DHT11 sensor is an affordable and user-friendly digital 

humidity sensor. It integrates “a capacitive humidity sensor and a 
thermistor” to measure the surrounding air's humidity and 
temperature. The “capacitive humidity sensor” detects changes in 
capacitance caused by moisture absorption, allowing it to determine 
relative humidity. The thermistor, a temperature-sensitive resistor, 
measures temperature changes. In this context, the DHT11 sensor 
measures humidity on a leaf's surface. Monitoring surface humidity 
helps assess the leaf's health. Different plants or leaves may need 
specific humidity levels to thrive, and discrepancies from the ideal 
range could indicate disease or stress. The sensor data is directed to 
a cloud platform via a Wi-Fi shield connected to an Arduino UNO 
board, where it is recorded for analysis.26  

Table 1 outlines the assessment criteria for evaluating IoT 
models.24–26 Data Collection, Robustness to Environmental 
Variability, Scalability and  Accuracy, These assessment criteria 
are critical for assessing and improving IoT models. Data collection 
ensures the availability of relevant information, robustness ensures 
reliability in varying conditions, scalability supports deployment at 
different scales, and accuracy determines the efficacy of IoT 
applications. Together, they contribute to the success and efficiency 
of IoT solutions.  

Table 2 specifies the challenges and limitations faced by the IoT 
models.24–26 

Research Gap: Assessing whether a plant is afflicted with a 
disease by considering factors such as temperature, humidity, leaf 
colour, and the surrounding environment poses a significant 
challenge for precision agriculture. Climate change can introduce 
substantial variances in plant conditions, which may not always 
indicate the presence of a disease accurately. However, the 
implementation of hybrid techniques has shown potential for 
improving the accuracy of disease prediction, facilitating early 
intervention and reducing potential crop losses. While 
advancements have been achieved in harnessing hybrid methods, 
there remains a notable research gap in effectively integrating 
advanced sensor technologies, including biosensors, spectroscopic 
sensors, soil conductivity sensors, and soil pH sensors, into the 
monitoring and management of soil health. These sensors offer a 
wealth of data about the plant's immediate environment, potentially 
enabling more precise early prediction of diseases. 
 

 
Figure 2 Plant Infections Recognition using DIP 
 

PLANT DISEASE DETECTION USING DIGITAL IMAGE PROCESSING 
(DIP) AND MACHINE LEARNING (ML): 

 Digital Image Processing (DIP) is a cutting-edge computer 
technology that revolves around working with images to derive 
valuable insights. By analysing and processing images, DIP finds 
utility in diverse domains like visualization, pattern recognition, 
classification, and segmentation.27 Digital image processing 
focuses on using computers to manipulate digital images. The 
outcomes often involve extracting valuable insights from the 
images, such as data on features, characteristics, bounding boxes, 
or masks. These outputs provide valuable facts and aid in 
understanding the content and context of the images.28   

Machine learning (ML) algorithms operate through a well-
defined process to Attain knowledge from data. For accurate 
learning and prediction, they depend on abundant, high-quality 
data. When analyzing image data, DIP techniques are employed, 
aiding ML algorithms in extracting crucial patterns and 
information.29  

 The integration of DIP and ML finds its application in diverse 
fields. Medical Imaging/Visualization, Self-Driving Technology, 
Image Restoration and sharpening, and Pattern Recognition are 
among the areas where these combined techniques prove 
invaluable. They enable advanced analysis, decision-making, and 
automation in image-based tasks, revolutionizing various 
industries.30  
A blend of DIP and ML techniques can identify plant infections and 
also achieve higher accuracy in the prediction. Figure 2 shows the 
typical process of plant disease detection using DIP and ML.31 The 
following is the introduction to the fundamental stages of plant 
disease detection using DIP and ML: 

Data collection: Assemble an extensive dataset of images 
featuring both healthy and diseased plants. This dataset should 
encompass diverse plant species and a wide range of diseases. To 
achieve this, utilize an appropriate imaging device, such as a 
camera or smartphone, to capture the images effectively.32 

Pre-processing:  Pre-process the gathered images to elevate 
their quality, eliminate noise, and optimize the image processing 
algorithm's efficacy. Standard pre-processing techniques entail 
resizing, cropping, normalization, filtering, and image 
enhancement. Additionally, this step involves clipping the selected 
region of images and applying image smoothing techniques.33 

Image segmentation:  Conduct image segmentation to 
distinctively separate the plant region from the backdrop. This 
crucial step aids in isolating the plant and directing the analysis 
toward the pertinent areas. Employ well-known clustering-based 
segmentation algorithms like k-means, and enhanced versions such 
as K-means++, Kernelized K-means, and Fuzzy K-means (FCM) 
to achieve accurate results.34 
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K-means: - is a renowned clustering method frequently 
employed for dividing an image into separate segments based on 
pixel resemblances. K-means is a straightforward algorithm that 
aims to minimize the within-cluster sum of squared distances. The 
steps involved are Pre-processing the image, Converting the image 
to feature vectors, Defining the number of clusters, Initialising the 
cluster centres, Assigning pixels to clusters, Updating cluster 
centres, and Generating the segmented image.35 

Fuzzy C-means (FCM):- is a popular technique for segmenting 
an image into distinct regions by examining pixel similarities and 
dividing it accordingly. FCM extends the traditional K-means 
clustering algorithm by introducing a fuzzy membership function, 
enabling each pixel to be associated with multiple clusters, having 
varying degrees of membership. The steps involved are Pre-
processing the image, Defining the FCM parameters, Initialising 
the cluster centres, Calculating membership values, Updating 
cluster centres, and Generating the segmented image.35 

Feature extraction: Obtain pertinent features from the 
segmented plant regions, incorporating colour-based attributes, 
texture attributes, shape attributes, and other pertinent 
characteristics. These captured attributes provide measurable 
indications of the plant's health condition.36 Several methods of 
feature extraction can be employed to develop the system, like 
grey-level co-occurrence matrix (GLCM), colour co-occurrence 
method, spatial grey-level dependence matrix, and histogram-based 
feature extraction. The GLCM method is specifically a statistical 
approach employed for texture classification.37 Using GLCM 
texture features like Contrast, Dissimilarity, Homogeneity, Energy 
and Correlation can be extracted.38 Two types of features, colour 
texture, and space features, were extracted, a total of 17 in number. 
Comprising 13 colour features and 4 shape features, the shape 
features, including area, perimeter, circularity, and complexity, 
were derived from the binary segmentation images.39 
Simultaneously, colour and texture characteristics were derived 

from the picture obtained through colour segmentation. The image 
examination method utilized for this process is the Colour Co-
occurrence Matrix (CCM).40 
Classification: Using the extracted features, a correlation plot can 
be generated to classify plant diseases. The classification is 
performed using a Random Forest classifier, Random forest 
combines multiple decision trees trained on different subsets of the 
dataset.41 This helps reduce overfitting and enhances classifier 
accuracy, achieving 93% accuracy. Another option is to employ a 
Support Vector Machine (SVM) classifier for plant disease 
classification. This involves training the model on labelled data 
containing images of robust and ailing plants, yielding an 
impressive 96% accuracy.42 Table 3 shows the comparison between 
different methods of DIP and ML. 

Research Gap: image-based disease classification might not be 
suitable for all scenarios, due to seasonal factors, the colour and 
gesture of plants and leaves may vary. Biological and Molecular 
factors are crucial for a final conclusion which is not possible with 
the combination of DIP and ML. So along with DIP if biological 
sensors are used, then disease prediction accuracy can be 
improved.43,44 

PLANT DISEASE DETECTION USING DEEP LEARNING (DL) 
TECHNIQUES: 

Plant disease detection using DL has received considerable focus 
in the current era as a promising approach for early and accurate 
diagnosis of plant diseases.45 Deep learning, a subfield of machine 
learning, makes use of Neural Networks (NNs) with deep 
architectures to extract complex features, enabling it to learn 
patterns and make predictions.46 Figure 3 shows a Multi-layered 
architecture of neural networks. 

 
Figure 3 Multi Layered Architecture of Neural Network 
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The processes involved in plant disease detection using DL are: 
Data Collection: The initial stage is to gather a large dataset of 

plant images that includes both healthy and diseased plants. These 
images can be gathered from multiple avenues like field surveys, 
digital plant pathology databases, or by taking pictures in controlled 
environments.47 

Data Pre-processing: The collected images need to be pre-
processed to assure their appropriateness for deep learning. This 
pre-processing step may include resizing images, normalizing pixel 
values, and augmenting the dataset by applying transformations 
such as rotations, flips, and blurring to increase its diversity.48 

Model Training: Deep learning models, such as convolutional 
neural networks (CNNs), are extensively applied to detect plant 
disease. CNNs are particularly effective at extracting spatial 
features from images. The training process involves feeding the 
pre-processed images into the network by tagging them with their 
relevant labels (healthy or diseased). The model learns to associate 
particular image features with disease classes through an iterative 
optimization process.49 

Model Evaluation: After training, the model's performance 
needs to be evaluated using a separate test dataset. The trained 
model predicts disease classes for unseen images, and the 
predictions are compared with the legitimate labels to calculate 
various evaluation metrics like accuracy, recall, precision and F1 
score.50 

Deployment and Application: Once the model has 
demonstrated satisfactory performance, it is feasible to deploy for 
real-world applications. This may involve developing a user-
friendly interface where users can upload plant images and receive 
predictions about the existence or non-existence of diseases. The 
model can aid farmers, agronomists, or researchers in recognising 

plant diseases early, allowing timely intervention and preventing 
widespread crop damage.51 

 

Table 3 Challenges of Deep Learning Methods 
Challenges Solutions 

Data Requirements: DL 
models often require a large 
scale of labelled data for 
training, which can be 
expensive and time-
consuming to collect. 

Use pre-trained models on huge 
datasets and fine-tune them for 
specific tasks with smaller datasets. 
Combine a small amount of labelled 
data with a huge pool of unlabelled 
data to improve model performance. 

Overfitting: DL models are 
prone to overfitting, 
especially when the model is 
complex and the dataset is 
small. 

Monitor the model's performance on 
a validation set and stop training 
when performance starts to degrade. 
Apply techniques like dropout, and 
L1/L2 regularization to prevent 
overfitting. 

Data Bias: DL models can 
inherit biases present in 
training data, leading to 
unfair or discriminatory 
outcomes. 

Use techniques to identify and 
mitigate biases in data and model 
predictions. Ensure that training data 
is diverse and representative of the 
target population. 

Interpretability: Deep 
learning models are often 
considered "black boxes," 
making it challenging to 
understand their decision-
making process.   

Develop and use Explainable AI 
(XAI) techniques to provide insights 
into model predictions. 

 

Table 3 Comparison of Methods for Leaf Disease Identification using DIP and ML 
Reference Data Collection Applied 

Technique 
Crop Accuracy Future Perspective 

Vijai Singh et 
al., 
2017 35 

Data is acquired by using a digital 
camera to capture images of leaf 
samples. 

Image 
Segmentation 
and SVM 

Banana 
Lemon 
and 
Rose 

95.71% To enhance accuracy, alternative 
methods such as Artificial Neural 
Networks, Bayes classifiers, Fuzzy 
Logic, and hybrid algorithms can 
be considered for utilization. 

Manjunatha 
Badiger et al., 
2022 42 

The input for this model is an image, 
which can be obtained from a 
physical camera, an existing folder 
with sample images, or from an 
online image library accessible in 
the cloud. 

K-means and 
SVM 

Tomato 96% The model could be enhanced to 
support a real-time video access 
system, allowing for continuous 
monitoring and care of plants 
without the need to upload images 
from various sources. 

Hu YH et 
al,201 44 6 

The data was acquired by a 
hyperspectral imaging system 
capable of capturing spectral 
information over a wavelength range 
spanning from 374 to 1,018 
nanometres (nm). 

Hyperspectral 
Imaging 

Potato 94.87% Creating advanced ML and DL 
models can significantly enhance 
disease identification accuracy by 
analysing hyperspectral data in 
real-time, allowing for prompt 
disease management 
recommendations. 

Seyed 
Mohamad 
Javidan et al., 
2023 43 

Images of grape leaves, 
encompassing both healthy and 
diseased specimens, are obtained 
using an intelligent machine vision 
system. These images are acquired 
in real field conditions, where the 
leaves naturally thrive. 

K-means 
clustering and 
SVM 

Grape 97.68% Exploring the utilization of transfer 
learning involves fine-tuning pre-
trained models specifically for 
targeted diseases or crops. 
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Table 4 states the challenges of DL.52Addressing these challenges 
often involves a combination of techniques and a thorough 
understanding of the specific problem and dataset.53 The choice of 
approach will depend on the nature of your deep learning task and 
the resources available for data collection and model development 

Numerous DL techniques can be utilized for the detection of plant 
disease. In this study, it is concentrated on CNNs, Transfer 
Learning and Recurrent Neural Networks (RNNs).  

CONVOLUTIONAL NEURAL NETWORKS (CNNS) FOR PLANT 
DISEASE DETECTION:  

CNNs are extensively employed for image-related tasks, 
including the identification of plant diseases. CNNs are effective at 
learning and extracting hierarchical features from images, enabling 
them to capture intricate patterns that indicate plant diseases.54 The 
CNNs comprise four layers: input image, convolutional layer, 
pooling layer, fully connected layers, and output.55 Figure 4 
represents the architecture diagram of CNN. 

Layers of  Convolutional Neural Networks are as follows: 
Input Layer: This layer receives an image or data as input and 

forwards this information to the successive layers.56 
Convolutional layers:  In a neural network, the outputs gained 

by applying kernels (filters) to the previous layer's data are stored. 
These convolutional layers contain two aspects: one is weights and 
the second is biases, which are required to be learned during the 
period of training. This process captures local patterns and features 
present in the input. To achieve this, a series of mathematical 
operations are performed within the convolutional layer.57 These 
operations are intended to extract the feature map of the input 
image. The objective is to optimize the network by generating 
kernels that accurately depict the data without any error. In the 
following example, an image of 5*5 serves as the input and the filter 

used is 3*3. Finally, 5*5 images will be reduced to 3*3 by the 
convolution layer. From the right top corner, the filter is multiplied 
with the original values of an input image, and later they will be 
added together to generate a single value among 3*3 resulting 
output. Then the filter will move sequentially across the remaining 

portions of an image.58 Figure 5 displays the filter operations in the 
convolution layer. 
 

 
Figure 5 Filter Operations in Convolution Layer 
 
Activation Layer: The activation layer, popularly known as the 
activation function, plays a very important role in CNNs. It 
introduces non-linearities into the network, allowing CNNs to learn 
and represent complex patterns and relationships in the input data.59 
The activation function computes the aggregated sum of inputs 
from the previous layer and applies a non-linear transformation to 
produce the output. The resulting output is then forwarded to the 
successive layers of the network. Rectified Linear Unit (ReLU) is a 
widely used activation function, due to its simplicity and 

 
Figure 4 Architecture Diagram of CNN 
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effectiveness. It converts all negative values into zeros and keeps 
the positive values unchanged, effectively introducing non-
linearity.60 

Pooling Layer (PL): The main task of this layer is to down-
sample the feature maps produced by convolutional operations. 
This down-sampling process reduces the size of the feature maps 
while preserving crucial information or features.61 Similar to the 
convolutional operation, the PL is defined by the stride and kernel 
size. Various types of pooling methods are available, including tree 
pooling, gated pooling, average pooling, min pooling, max pooling, 
global average pooling (GAP), and global max pooling. The 
frequently employed pooling methods include GAP pooling, min 
pooling, and max pooling. 62 

However, the PL can sometimes decrease the overall efficiency 
of the CNNs. Its main drawback is that it helps the CNNs identify 
whether a particular feature is present in the input image, but it 
focuses solely on determining the location of that feature. As a 
result, the CNNs may miss relevant information. Figure 6 
demonstrates an instance of the pooling operation. The filter used 
here is 2*2 Maximum Pooling.  
 

 
Figure 6 Pooling Operation 
 

Fully Connected Layer (FC Layer): A fully connected layer, 
alternatively referred to as a dense layer, is commonly used in 
CNNs for applications such as semantic segmentation, image 
classification, and object detection. Unlike convolutional layers, 
which operate locally, FC layers establish links between all neurons 
from the previous layer to the current layer, forming a fully 
connected network.63 After convolutional and pooling layers in 
CNNs, the output is flattened or reshaped into a vector before 
entering the FC layers. The FC layers capture high-level features 
and make predictions.64 To improve generalization and reduce 
overfitting, the dropout layer is enabled in these layers.  

It randomly drops out neurons during training. Softmax 
Classifier and Sigmoid Classifier are the commonly used classifiers 
in the FC layer in a neural network. Sigmoid activation is frequently 
utilized in binary classification tasks, where the goal is to categorize 
input data into one of two classes. Softmax is often used for multi-
class classification tasks; it transforms the output values of the 
neurons into a probability distribution over multiple classes.65 

Output Layer: The output layer produces the final predictions 
or outputs of the network, depending on the particular task. For 
example, in image classification, in a CNN, the output layer is 
composed of neurons representing various classes, and class with 
the greatest activation value is regarded as the predicted class for 
the input image.66 

DEEP TRANSFER LEARNING FOR PLANT DISEASE DETECTION: 
Transfer learning (TL) simplifies the process of solving a new 

problem by using knowledge gained from a pre-trained model 
on a different task.67 For instance, a model trained to identify 
helmets in images can also be used for the recognition of bikes 
by applying the knowledge learned during its training.68 Figure 
7 shows the working of Transfer Learning.  
 

 
Figure 7 Transfer Learning 

The main aim of deep TL is to enhance performance on the new 
task by transferring the learned weights from one network (task A) 
to another (task B). This way, the model starts with patterns learned 
from a related task with abundant labelled data, avoiding the need 
to start from scratch.69 In the context of plant disease detection, TL 
involves leveraging pre-trained models, such as those trained on 
ImageNet, and adapting them to detect plant diseases. The pre-
trained model's convolutional layers can serve as feature extractors 
and specific layers for plant disease detection can be added and 
trained, leading to improved performance even with limited plant 
disease datasets.70 Figure 8 shows the Pre-trained Deep TL Model 
for Feature Extraction. 
 

 
Figure 8 Pre-trained Deep TL Model for Feature Extraction 
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Deep learning systems are structured with multiple layers that 
extract features, refining them as we dive deeper into the neural 
network. To speed up training, Deep Transfer Learning is 
employed. This technique utilizes pre-trained models, trained on 
extensive datasets to recognize patterns or objects. By integrating 
these pre-trained models into the initial layers of a multi-layered 
CNN, the need to train from scratch is greatly reduced. Pre-trained 
models are highly effective as they possess knowledge of various 
patterns and objects.71 

 Incorporating them in the early layers of the target model, the 
training process for pattern detection can be bypassed.72 During this 
process, the pre-trained model layers are frozen, preventing their 
weights from being updated. Instead, they are fine-tuned using new 
and enriched datasets, adapting to the specific task. The final target 
model is created by discarding the final classification layers of the 
pre-trained model and replacing them with a new classifier.73 The 
new classifier has undergone training on a limited yet high-quality 
dataset, further enhancing its ability to identify specific patterns or 
objects relevant to the task. In summary, Deep Transfer Learning 
optimizes the training effort by leveraging pre-trained models and 
fine-tuning them with focused data, resulting in more efficient and 
accurate deep learning systems.74 The main aim of using a loss 
function (Cross-Entropy Loss) in machine learning, particularly in 
supervised learning tasks, is to quantify the disparity between the 
model's predictions and the true ground-truth labels (discrepancy 
between the predictions and the true labels). The loss function 
serves as a measure of how well the model is performing on the 
given task.75 
 
Steps involved in Deep Transfer Learning: 

Obtain the Pre-trained Model:  To start, the initial step is to 
carefully choose a pre-trained model that aligns with our training 
objective and the specific task we want to accomplish. When 
employing transfer learning, it is vital to ensure a strong 
relationship between the pre-existing knowledge of the selected 
model and the target task domain. This compatibility between the 
source model and the desired task domain is vital for the success of 
the transfer learning process. Some examples of commonly used 
pre-trained models are VGG-16, VGG-19, and Inception V3.76 

Create a Base Model: In the initial step, we carefully select a 
base model that is best suited for our task requirements, considering 
options like VGG-16, VGG-19, Inception V3, ResNet, or Xception. 
If the base model has more or fewer neurons in the final output layer 
than required for our specific use case, we can easily modify the 
output layer by either removing or adding neurons as needed.77 

Freeze Layers: It is essential to freeze the initial layers of the 
pre-trained model to avoid relearning basic features. If these layers 
are not frozen, the model would lose its existing knowledge, 
necessitating a restart of the training process from scratch. This 
would be time-consuming, resource-intensive, and 
counterproductive.78 

Add New Trainable Layers: When using a base model, we only 
reuse its feature extraction layers. To address specific tasks, we add 
extra layers on top, typically as the final output layers, enabling our 
model to make predictions tailored to our objectives.79 

Train the new layers on the Dataset: Pre-trained models are 
trained on large datasets, covering various classifications. 
However, our target model is designed for a particular task, 
requiring a specific pattern or object recognition. After freezing the 
pre-trained model, we train the new classifier layers using an 
enhanced and limited dataset.80 

Fine-Tuning: Fine-tuning involves two steps: first, unfreezing 
certain sections of the base model, and then retraining the entire 
model on the complete dataset with a minor learning rate. This 
approach enhances the model's performance on the new dataset 
while avoiding overfitting.81 Table 5 summarises the various 
research results.82 

 

Table 4 Summary of Various Researches works 

Ref Dataset Model Accuracy 
100 Potato leaf 

from PlantVillage 
dataset 

VGG-19 + 
Logistic 

Regression 

97.8% 

101 PlantVillage ResNet-50 
and SVM 

98% 

 102 PlantVillage VGG-19 98.3% 

82 PlantVillage CAE and 
CNN 

98.38% 

103 Banana leaf 
images from 
banana field 

ResNet-152 99.2% 

 104 PlantVillage GoogLeNet 99.3% 

105 PlantVillage VGGNet 99.5% 

 

RECURRENT NEURAL NETWORK (RNN) FOR PLANT DISEASE 
DETECTION:  

RNN is a specialized form of ANN that leverages sequential data 
or time series information. At each step, an RNN takes an input 
vector and combines it with the previous hidden state, producing an 
output and updating its internal hidden state. This hidden state 
serves as the memory of the network and influences the 
computation at subsequent steps. A common set of weights is 
utilized consistently across all time steps, allowing the network to 
process input sequences of varying lengths.83 

“RNNs have found extensive application in diverse fields, such 
as natural language processing (NLP), speech recognition, machine 
translation, sentiment analysis, and numerous other domains”.84 
RNNs can be employed for the identification of plant diseases by 
analysing sequential data, such as time-series measurements or 
sequences of images, related to plant health.85 

CNN models typically don't exclusively concentrate on the 
visible portions impacted by a plant disease for classification. 
Sometimes, they might consider unrelated backgrounds or 
unaffected plant parts. CNNs are a feed-forward network which 
concentrates on the current input state and these states remain 
devoid of loops within the hidden layers. CNNs don’t have any 
memory to store the previous input state so it is unable to handle 

https://www.sciencedirect.com/science/article/pii/S2589721721000180#bb0025
https://www.sciencedirect.com/science/article/pii/S2589721721000180#bb0125
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the sequential data.  Recurrent Neural Networks (RNNs) technique 
enables automatic identification of infected regions and extraction 
of pertinent features, which aids in disease classification.86 An RNN 
is a neural network type that employs connections between nodes 
to establish a directed graph along a sequence of variables, such as 
a temporal sequence. These recurrent connections allow for 
capturing the relationship between the current state of a variable 
and its previous states. RNNs have captured substantial interest for 
their adeptness in managing sequential data in tasks like language 
translation and action recognition.87 Figure 9 states the unfolded 
hidden layers of RNN. 

 

 
Figure 9 RNNs Unfolded Hidden Layers 
 

Improved RNN models, including LSTMs and GRUs, have 
overcome issues like vanishing gradients and can effectively train 
on long sequences. GRU can efficiently model dependencies 
between different images of plant observations and LSTM can be 
utilised to capture discriminating regions of images for fine-grained 
classification. Several recent publications have showcased the 
effectiveness of RNN approaches in processing variable-length 
data of fixed sizes, such as images.88 RNN possesses a memory 
mechanism for retaining the previous hidden state, which serves as 
the basis for generating the subsequent hidden state in the 
subsequent time step.89 The same activation function can be utilized 
a repeated number of times in the hidden layer to generate the 
current hidden state so it is called Recurrent. At the initial input 
time step, the hidden state of the previous state is initialized to zero. 
i.e. Hn-1.  

In the first time step, Hn, the hidden state of the previous time 
step (Hn-1) and the current input time step (In) will be the input for 
activation function f.  

The Activation function is responsible for computing the current 
hidden state at time step t.90  

 
hn= f ( hn-1 , In ) 
 
where hn is the hidden state for time step n, f is the activation 

function with two parameters,   hn-1 is the hidden state from the 
previous time step n-1, and In is the current input for time step 
n. 

The activation function ( f ) is tanh 
 
hn= tanh ( Wn-1 . hn-1 +  Wn In ) 

 
Wn-1  – Weight in the previous hidden state,  
 
Wn – Weight in the current time-step. 
 
The output state On is computed at each time step through the 

utilization of the following process: 
 
On = Wno . hn 

 
Wno – Weight at the output state 
 
Attention operates as a formidable mechanism that, when 

fused with an RNN, enhances its performance. This integration 
allows the network to focus selectively on specific input regions, 
enabling the prioritization of relevant information for improved 
learning and higher-quality output. By combining RNNs with 
an attention mechanism, specifically Gated Recurrent Units 
(GRUs), salient characteristics of plant diseases are dynamically 
emphasized, strengthening the model's ability to learn disease 
characteristics for accurate identification.91 

The approach aims to harness the strengths of CNNs for 
visual feature extraction and RNNs with attention mechanisms 
to effectively analyze and classify plant diseases. Leveraging 
local CNN features and the attention mechanism facilitates a 
comprehensive understanding of the image, resulting in 
enhanced disease classification accuracy. 

In this method, a CNN is trained to recognize plant diseases 
and extract visual features from plant images. These features 
create a smaller image of activations with channels 
corresponding to the number of filters used. Subsequently, to 
capture local activations in different sections of the image, the 
smaller image is partitioned into sub-sections. The extracted 
local features are subsequently employed to form a sequence, 
which is fed into an RNN with GRUs. The RNN's attention 
mechanism identifies crucial parts of the features, and by 
extending the pixel neighbourhood in each sub-part, the model 
maximizes information across multiple sub-parts, improving its 
overall performance.92 

Throughout the process, the model is optimized to minimize 
prediction errors, leading to better disease identification 
outcomes. Figure 10 shows the  combination of attention 
mechanisms with CNN-RNN hybrid models offers a promising 
approach for precise plant disease analysis and holds practical 
applications in agriculture and plant disease management.93 

It's very important to consider that the choice of DL technique 
relies on the specific requirements of the plant disease identification 
task, available datasets, computational resources, and other 
constraints.94 Experimentation and fine-tuning are often necessary 
to identify a very effective approach for a given scenario. Overall, 
the remarkable potential of DL is evident in its ability to automate 
plant disease detection effectively and enable timely interventions 
to prevent crop losses.95 Table 6 states the comparison between 
CNN, TL and RNN. 
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Table 5 Operational Comparison of CNN, TL and RNN 

Aspects CNN Transfer 
Learning RNN 

Architecture
  
 

Specialized for 
image data 

Pre-trained 
models 

Sequential 
data 
processing 

Data 
Requirements 
 

Large labelled 
datasets 

Smaller 
labelled 
datasets 

Sequential 
labelled data 

Training 
Speed  
 

Computationally 
intensive 

Faster fine-
tuning 

Slower 
convergence 

Feature 
Extraction
  
 

Hierarchical 
features 

Features 
from pre-
trained 

Temporal 
dependencies 

Efficiency in 
Image 
Processing 
 

More efficient 
with large 
dataset 

More 
efficient 
with less 
dataset 

Not an 
efficient 
choice 

Efficiency in 
Sequential 
Data 
Processing 

Not an efficient 
choice 

Highly 
efficient 
when pre-
trained 
models are 
available 

Highly 
efficient , 
Explicitly for 
sequential 
data 
processing 

Applications 
in Plant 
Disease 
Detection 

Image-based 
symptom 
recognition 

Fine-tuning 
pre-trained 
models 

Sequence-
based disease 
progression 

 
Compared to CNNs, Transfer learning is suitable for plant 

disease detection because it leverages pre-trained CNNs to extract 
relevant image features, significantly reducing the necessary of 
extensive labelled data, while improved RNNs like LSTM and 
GRU are apt for modelling temporal dependencies and capturing 
disease progression patterns, making them effective in monitoring 
plant health over time, thereby combining the strengths of both 
approaches to enhance the accuracy of plant disease detection 
systems. 

 
Figure 10 CNN-RNN Hybrid Models for Plant Leaf Disease 
Detection 
 

RESULT OF SURVEY 
In comparison to traditional methods such as visual observation 

and costly laboratory tests, the utilization of novel approaches like 
IoT-based models, machine learning algorithms, and DL methods 

demonstrates enhanced efficiency in the early detection of plant 
diseases at various stages. 
 
Table 6 Research Findings 

Research Questions Status 
Enhancing early detection and management of 
plant diseases - Novel approaches and 
technologies vs. traditional methods   

 
Addressed 

Dynamics and mechanisms of the soil-borne 
pathogen population - Changes over time and 
impact on plant health 

Not 
Addressed 

 
This study found a missing area in current research on plant 

disease detection. Most of the focus has been on spotting disease 
symptoms on leaves and fruits while ignoring diseases that come 
from the soil. Detecting diseases early is crucial for farmers to 
effectively manage them. To bridge this gap, the authors suggest a 
solution called the "Hybrid Model of IoT and DL for Early Plant 
Disease Detection". This approach combines IoT technology with 
DL techniques. It involves using sensors in the fields to 
continuously monitor soil conditions that can lead to disease-
causing pathogens.96,97,99 At the same time, a Deep Learning system 
(utilising both RNN and Pre-Trained CNN model) examines sensor 
data, and images of leaves and fruits to identify initial signs of 
diseases.  

 
Figure 11 Simulated Hybrid Architecture aims to Bridge the Research 
Gap 
 

This combined approach aims to provide a comprehensive way 
of detecting plant diseases early.98 This integrated approach offers 
better disease management and support for farmers, enabling 
proactive measures to combat plant diseases and enhance crop 
productivity. Figure 11 shows the simulated hybrid architecture 
aims to bridge the research gap. 

CONCLUSION 
In agriculture, where people rely on successful crops for their 

livelihoods, plant diseases pose a persistent threat to food security 
and economic stability. Despite advancements in farming and 
technology, these diseases harm crop yields, and fruit quality, and 
even lead to plant death. This review focuses on efficient methods 
for early plant disease detection, revealing a gap in research that 
mainly looks at diseases in leaves and fruits, ignoring soil issues. 
To address this gap, we introduce the "Hybrid Model of IoT and 
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DL for Early Plant Disease Detection," combining Internet of 
Things (IoT) sensors and Deep Learning (DL) techniques. IoT 
sensors monitor the environment and soil, identifying disease risks, 
while a sophisticated DL system with Recurrent Neural Networks 
(RNN) and Pre-Trained CNN analyzes sensor data and images to 
spot disease signs. This innovative approach empowers farmers 
with early warnings, aiding precise disease management, reducing 
pesticide use, and enhancing food security. Challenges like data 
collection, IoT integration, and model adaptation require 
collaboration among experts. In essence, this review promotes more 
resilient and sustainable agriculture, expanding disease detection 
methods and promoting a holistic approach for a brighter future in 
farming. 
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