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ABSTRACT 
  

The fixed-point theory plays an important role in mathematics, 
including optimization, mathematical models and economic 
theories. This study provides new ways to overcome the challenges 
in the existing fixed-point theories by introducing a new 
Hotchpotch Correlation Approach for resolving the variation 
inequality problem and locating the fixed point of demi-contractive 
mapping. After resolving the variation inequality and the Fixed 
Points Problems, it incorporates the Estrangement Corollaries 
Algorithm, which is integrated with the inverse problem and 
numerical examples that are more important to understand a split 
equality convex minimization crisis. This increases the consistency and accuracy of the proposed work. To solve the non-regularization of the 
transport problem, an implied province theorem with necessary and sufficient idyllic conditions is used by deriving the restricted distributions 
among probability distributions. Moreover, the empirical regularized transport plan system asymptotically follows a Gaussian rule to regularize 
the entropy and create a limitation law for the extensively allowable Sinkhorn divergence. This suggested approach achieves strong convergence, 
higher consistency, and precision in the applications of fixed-point theory.  

Keywords: fixed-point theory, convergence theorem, optimal transport distances, Gaussian law, empirical regularized transport plan, non-
regularization of transport problem 

INTRODUCTION 
In the 20th century, the theoretical foundation of the fixed-point 

theory was developed. The fundamental result of this theory is the 
contraction principle of Picard-Banach-Caccioppoli (from the '30s), 
which created important lines of research and the theory's 
applications1 to functional, differential, integral, etc. The theorems 
of Tarki, Bourbaki, Banach, Perov, Luxemburg-Jung, Brower, 
Schauder, Tihonov, and Brouwder-Ghode-Kirk are classic 
theorems of this theory.2 

In the theory of metric spaces, Banach's fixed point theory, also 
known as the contraction principle, is an important tool.3 For a 

broad range of applications, it guarantees the presence and 
uniqueness of solutions to equations of the form x = f(x), f, and 
provides a constructive method for evaluating these solutions. 
Stefan Banach (1892-1945), the founder of functional analysis, 
developed and demonstrated the theorem in 1922.4 The theory of 
contraction is an abstract variant of the successive approximation 
method; in order to solve numerical equations, the method was used 
empirically from antiquity,5,6 and it was successfully used for 
example, to solve Kepler's equation, E = M + e sin E, to determine 
the position of the planets in orbit (E0=M, E1=M+esin(E0), ..., 
En=M+e sin(En-1)). Kepler's equations,7 using the eccentricity e of 
the orbit and the mean anomaly M, are used to measure the position 
of objects in our solar system. The eccentric anomaly describes E. 

The variational inequality problem (VIP) is defined as:  
 

DxyxBysuchthatDyFind ∈∀≥−∈ ,0, (1) 

A: C → H is a nonlinear operator denoted by the set of solutions 
of VIP (1) by V I(D, B). The VIP is an important instrument in 
economics, decision making,8 engineering mechanics, 

*Corresponding Author: Sajid Anwar 
Email: sajidanwar0616@gmail.com 

Cite as: J. Integr. Sci. Technol., 2024, 12(2), 732. 
URN:NBN:sciencein.jist.2024.v12.732  

©Authors CC4-NC-ND, ScienceIN   ISSN: 2321-4635    
http://pubs.thesciencein.org/jist  

Article 

https://pubs.thesciencein.org/journal/index.php/jist


S. Anwar et. al. 

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(2), 732             Pg  2 

mathematical programming, transportation, operational analysis, 
etc. Several iterative methods for solving the VIP and its associated 
optimization issues9 have been implemented. The additional 
gradient method is one of the earliest methods for resolving VIP. 
The method of the extra gradient was specified as follows: 
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The sub-gradient extra gradient algorithm enhances the extra 
gradient algorithm to effectively solve the VIP in a real Hilbert 
environment.10 Outcomes from prior studies, a weak convergence 
result for solving the VIP, are obtained under some mild 
assumptions. More calculation of estimates on the feasible set is 
needed for the current updated algorithm.11 Unless the conceivable 
set has a complex structure that can influence the use of the 
algorithm, this can be expensive. 

In addition to this split common fixed point problem (SCFPP) is 
defined as  

 
)()( 21 UGBythatsuchUGzfind ∈∈  (3) 

For the case in which U1 and U2 are non-expansive mappings, 
the SCFPP studied the setting of Hilbert spaces.12 They suggested 
the following algorithm and, under some reasonable conditions, 
proved its slow convergence to a solution of (3). Thus, it is 
introduced in the framework of Hilbert spaces for firmly non-
expansive operators.13 To solve this problem, a positive, non-
decreasing sequence-based alternative algorithm has been included. 
Note that those prior algorithms depend on prior knowledge of the 
operator norms for their implementation.14 Alongside increasing 
conceptual appeal and its first practical success in multiple 
statistical applications,15,16 there is still no routine use of optimal 
transfer (OT) based data analysis as it is seriously impeded by its 
computational burden for many real-world applications.17 
However, their respective average runtime yields a significant 
limitation for real-world cases. 

Nevertheless, as demonstrated in this paper, presents the unified 
algorithm for the variation inequality problem and the difficulty of 
finding the fixed point of demicontractive mapping. Along with 
this, the work includes the generalized algorithm depending on step 
size so that implementing the novel algorithm does not require prior 
knowledge of the operator norms. In addition, regularization allows 
for a thorough descriptive statistics of the corresponding 
regularization optimal transport plan, a challenge for the (non-
regularized) OT plan that is currently out of reach. The ROT plan 
encodes more structural information across scales than any OT-
dependent distance (regularized or not), thus serving as a more 
informative instrument for inferential statistics. Hence, from above 
mentioned considerations, there is no literatures concentrates on the 
fixed point theory based on the variation inequality problem and 
difficulty of finding the fixed point of demi contractive mapping, 
split equality convex minimization crisis, non-regularization of 
transport problem, though there is a great necessity to create the 
new strategy. 

LITERATURE SURVEY 
Wairojjana et.al.18 various mathematical programming 

applications can be formulated as a variational inequality model, 
such as minimax issues, penalization methods and fixed-point 
issues. Most of the methods used to solve such problems include 
iterative algorithms, so we are implementing a new extra gradient-
like method in this paper to solve the problems of variational 
inequalities involving pseudo monotone operators in real Hilbert 
space. The approach has a strong advantage because of a variable 
stepsize formula that is updated for each iteration based on the 
previous iterations. The main benefit of the technique is that it 
operates without the Lipschitz constant's prior knowledge. Under 
mild conditions, strong convergence of the system is confirmed. 
Several numerical tests are recorded to illustrate the method's 
numerical behavior. 

Zhao et.al.19 discuss the monotonous variational inequalities and 
fixed point issues in Hilbert spaces in this paper. Two modified 
extra gradient algorithms are presented to find a common element 
of the set of fixed points of a pseudocontractive operator and the set 
of solutions to the variational inequality problem. The proposed 
algorithms show weak and strong convergence. 

zuchukwu et.al.20 reported that for finite groups of variational 
inequalities and the split equality fixed-point question, the main 
objective is to implement an iterative algorithm for approximating 
a common solution to a split equality problem. By using the 
iterative algorithm, they state and demonstrate a clear convergence 
theorem for the approximation of an element at the intersection of 
the set of split-equality problem solutions for finite families of 
variational inequalities and the set of fixed-point problem split 
equality solutions for countable families of demi contractive type-
one multivalued mappings. Finally, they apply the outcome to 
issues specific to the analysis.  

Alakoya et.al.21 reported the setting of Hilbert space with a 
typical monotone and Lipschitz continuous variational inequality 
and fixed-point issues can be defined on a level set of a convex 
function. An updated extra gradient inertial viscosity subgradient 
algorithm with self-adaptive step size is proposed in which the two 
projections are rendered on some half-spaces. In addition, under 
some mild conditions, they obtain a good convergence result for 
approximating a common solution of the variational inequality and 
fixed point of quasi-non-expansive mappings. The key advantages 
of the approach are the self-adaptive step size that eliminates the 
need to know apriori of the related monotone operator's Lipschitz 
constant, the two projections made on certain half-spaces, the high 
convergence and the inertial technique used to speed up the 
algorithm's rate of convergence. 

Ghoussoub et.al.22 examine the profile of one-step martingale 
plans on R d x R d that maximize the expected value of the modulus 
of their increment among all martingales having and as marginals, 
given two prospect measures v and 𝜇𝜇 in convex order on R d. 
Whereas here is an immense contract of results for the real line (i.e., 
when d = 1), much less is known in the better-off and more fragile 
upper dimensional case that they tackle in this paper. They 
demonstrate that, assuming the initial measure is continuous with 
respect to the Lebesgue measure, several structural conclusions 
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may always be obtained anytime a natural dual optimization 
problem is attained. One such property is that µ-almost every x in 
Rd is transported by the optimal martingale plan into a probability 
measure πx concentrated on the extreme points of the closed convex 
hull of its support. This will be established in full generality in the 
2-dimensional case and for any d ≥ 3 as long as the marginals are 
in "subharmonic order". Sometimes, πx is supported on the vertices 
of a k(x)-dimensional polytope, such as when the target measure is 
discrete. Many proofs rely on a remarkable decomposition of 
"martingale supporting" Borel subsets of R d ×R d into a collection 
of mutually disjoint components using a "convex paving" of the 
source space. If the martingale is optimal, then each component in 
the decomposition supports a restricted optimal martingale 
transport for which the dual problem is attained.  

Muu et.al.23 presented the relationship between the fixed points 
of the Moreau proximal mapping and the equilibrium problem 
solutions that satisfy some kinds of monotonicity and Lipschitz-
type condition. This relationship allows the equilibrium problem 
solved by fixed point theory since in the fixed-point theory has 
iterative methods for computing a fixed point, which has been 
successfully applied to contractive, generalized contractive, and no 
expansive mappings. However, the bi function involved in this 
method is quasi-convex for its second variable. 

Saboksayr et.al.24 assume that signals from each class are smooth 
for its corresponding graph while remaining non-smooth 
concerning the graphs from other classes. The learned 
representations' discriminative features are retrieved using the 
graph Fourier transform (GFT) and applied to subsequent learning 
challenges. Second, we broaden our research to include real-time 
topological inference and more dynamic situations. To do this, we 
use time-varying convex optimization and recent GSP 
advancements. We create a proximal gradient (PG) method that is 
flexible enough to be applied in scenarios where data are collected 
instantly. However, the time-varying graphs inference from 
streaming signals abrupt the connectivity.   

Wang et.al.25 created a novel method to assess the reliability of 
vibration data. To ensure the efficiency of the subsequent 
computation, the raw vibration data are first converted directly into 
time-frequency images using a tensor format and saved. Then, an 
off-the-shelf pre-trained Inception model is used to represent their 
high-order data structure and amplitude-wise dependence. To 
assess the similarity between the real data and created data in a 
high-dimensional feature space, the NSD metric is constructed and 
applied. However, the data quality should be enhanced to improve 
the efficiency. 

Hence many reports do not involve computing the projection,18 
intersections arise the split equality convex minimization crisis, 19  
require the prior knowledge of the operator norms,20,21 real world 
applications it is severely hindered by its computational burden 
insists the non-regularization of transport problem,22 bi function is 
quasi convex,23 the streaming signals abrupt the connectivity24 and 
data quality should be enhanced.25 Though there is a great essential 
to develop a novel strategy to tackle those issues and attains the 
strong convergence, greater more consistency and accuracy in the 
fixed point theory applications. 

FIXED POINT THEORY ACCOMPLISHMENTS 
In the last few decades, the fixed-point theory has seen many 

applications. Its implications are quite interesting and informative 
for the theory of optimization, game theory, conflict situations, and 
quality mathematical modeling and its management. Most of the 
prior literature portrayed these considerations, and also under some 
mild assumptions in operators that obtained weak convergence, 
poor consistency, and accuracy, as well which does not involve 
computing the projection onto the intersections, thus significantly 
attaining the variation inequality problem (VIP) and difficult to find 
the fixed point of demi contractive mapping in a real Hilbert space. 
While some of the studies solve VIP and tackle the major obstacles 
in fixed point, the split equality convex minimization crisis arises 
because existing techniques require prior knowledge of the operator 
norms. In addition, despite its conceptual appeal and its first 
practical success in various (statistical) applications, the routine use 
of optimal transport-based data analysis is still lacking. For many 
real-world applications, it is severely hindered by its computational 
burden that insists the non-regularization of transport problems. 
From the contemplation mentioned above, it is clear that to 
overwhelm the most significant hindrances in the embryonic field 
of applied mathematics with fixed point theory are variation 
inequality problem, difficulty in finding the fixed point of demi 
contractive mapping, split equality convex minimization crisis, 
non-regularization of transport problem. To solve this, the present 
research is most essential to develop a novel strategy.   

 

 
Figure 1: Flow of concept Block diagram 

 
As fixed-point theory plays a significant part in mathematics, 

which includes economic theories, mathematical models, and 
optimization, mathematics is the art of giving the same name to 
several entities. Here, existing strategies still have not solved major 
interferences such as variation inequality problem, difficulty 
finding the fixed point of demi-contractive mapping, split equality 
convex minimization crisis, and non-regularization of transport 
problem. To deal with these issues, the proposed work introduces 
competent novel strategies, initially that include a new Hotchpotch 
Correlation Approach for solving the variation inequality problem 
and finding the fixed point of demi contractive mapping. The aspect 
of this approach is that in any iteration, a single projection is needed 
onto the feasible set, and the phase size for the next iterate is 
calculated so that a prior approximation of the underlying operator's 
Lipschitz constant is not required. In some optimal conditions on 
the influence variables, the work recognizes and reveal a strong 
convergence theorem for approximating effective solution of 
variational inequality and fixed points problem. After solving the 
VIP and fixed points problem, more essential to decipher a split 
equality convex minimization crisis, the research incorporates 
Estrangement Corollaries Algorithm, which introduces a 
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generalized step size such that the algorithm does not require a prior 
knowledge of the operator along with the algorithm that generated 
a sequence. The algorithm also integrates some application results 
on inverse problems and numerical examples to show the 
consistency and accuracy of the proposed work. To resolve the non-
regularization of transport problem, the research includes an 
insinuated province theorem with essential and adequate idyllic 
conditions. The theorem derives the restricted distributions 
amongst probability distributions endorsed on a fixed metric space 
and focuses on specific consistency, including its bootstrap for 
empirical regularized optimal transport distances. In particular, the 
work reveals that a Gaussian law is asymptotically followed in the 
empirical regularized transport plan system. The theory involves 
regularizing considerable entropy, thus a limitation law for the 
extensively permissible Sinkhorn divergence. Consequently, the 
suggested strategies provide a way to establish the existence of a 
solution to a set of equations via resolving the variation inequality 
problem, difficulty in finding the fixed point of demi contractive 
mapping split equality convex minimization crisis, and non-
regularization of transport problem. That demonstrates the efficacy 
of the proposed work in a cost-effective and not as complex 
manner.  
 
Hotchpotch Correlation Approach: 

In this section, the work described the solution of the variation 
inequality problem and found the fixed point of demi-contractive 
mapping. 

Let D be a nonempty closed and convex subset of a real Hilbert 
space I. and let B: II be a pseudo monotone and L- L-Lipschitz 
continuous operator and U: I I be a α demi contractive mapping 
with constant α € [0, 1] and demi closed at zero. Suppose

0)(),(: ≠= UGBDWJsol  , allow C: II be a k-
Lipschitzian and β-strongly monotone mapping with l > 0 and β > 
0 and g: I → I be a η-Lipschitz mapping with η > 0. Let 

2
20
l
βδ << and, σζη <<0 , and where 

( )22
2
1 lδβδσ −= . Let }{ lγ and }{ lw are sequences in (0, 1) 

and {yl} are generated based on the following algorithm: 
 

Algorithm 3.1 
Step 0: Select the preliminary information y1 € I and parameters 

ɸ, α € (0, 1), λ € (0, 2). Locate l=1. 
Step 1: Estimate  
yk = PC(xk − λk Axk ), 
where λk = γ lk , and lk is the smallest nonnegative integer 

satisfying 
 λk ||A(xk ) − A(yk )|| ≤ θ||xk − yk ||. (3.2) 
Step 2: Compute 
 d (xk , yk ) = xk − yk − λk (Axk − Ayk ), (3.3) 
wk = xk − σ δkd(xk , yk ), (3.4) where  
δk = ⎧⎨⎩ xk − yk , d(xk , yk ) ||d(xk , yk )||2 , 
 if d(xk , yk ) = 0, 0,  
if d(xk , yk ) = 0.     (3.5) 
Step 3: Compute 
 xk+1 = αk ξ f (xk ) + (I − αkμB)(vkT wk + (1 − vk )wk ). 

 (3.6)  
Set k := k + 1 and go to Step 1. 

To establish the convergence of Algorithm 3.1, we make the 
following assumption: 

(C1) limk→∞ αk = 0 and ∞ k=0 αk = ∞; 
(C2) lim infk→∞ λk > 0; 
(C3) lim infk→∞(vk − β)vk > 0. 
 
Remark 3.2 Observe that if xk = yk and xk − T xk = 0, we are at 

a common solution of the variational inequality (1.1) and fixed 
point of the demi contractive mapping T. In our convergence 
analysis, we will implicitly assume that this does not occur after 
finitely much iteration so that our Algorithm 3.1 generates infinite 
sequences. We will see in the following result that Algorithm 3.1 is 
well-defined. To do this, it suffices to show that the Armijo line 
searching rule defined by (3.2) is well defined and δk = 0. 

Lemma 3.3 There exists a nonnegative integer lk satisfying (3.2).  
 
In addition δk ≥ 1 − θ (1 + θ )2 . 
Proof Let rλk (xk ) = xk − PC(xk − λk Axk ) and suppose rγ k0 

(xk ) = 0 for some k0 ≥ 1. Take lk = k0, which satisfies (3.2). 
Suppose rγ k1 (xk ) = 0 for some k1 ≥ 1 and assume the contrary, 
that is,  

γ l ||Axk − A(PC(xk − γ l Axk ))|| > θ||rγ l(xk )||.  
Then it follows from Lemma 2.9 and the fact that γ ∈ (0, 1) that  
||Axk − A(PC(xk − γ l Axk ))|| > θ γ l ||rγ l(xk )|| 
≥ θ γ l min{1, γ l }||r1(xk )||  
= θ||r1(xk )||. 
Since PC is continuous, we have that  
PC(xk − γ l Axk ) → PC(xk ), l → ∞. 
We now consider two cases: when xk ∈ C and xk ∈/ C.  
(i) If xk ∈ C, then xk = PC xk . Now since rγ k1 (xk ) = 0 and 

γ k1 ≤ 1, it follows from Lemma 2.9 that 
0 < ||rγ k1 (xk )|| ≤ max{1, γ k1 }||r1(xk )|| 
= ||r1(xk )||. 
Letting l → ∞ in (3.8), we have that 
 0 = ||Axk − Axk || ≥ θ||r1(xk )|| > 0. 
 This is a contradiction, and so (3.2) is valid. 
(ii) xk ∈/ C, then 
γ l ||Axk − Ayk || → 0, l → ∞, 
While,  
lim l→∞ θ||rγ l(xk )|| = lim l→∞ θ||xk − PC(xk − γ l Axk )|| = 

θ||xk − PC xk || > 0. 
 This is a contradiction. Therefore, the Armijo line searching rule 

in (3.2) is well defined. On the other hand, since A is Lipschitz 
continuous, then we have from (3.2) and (3.3): 

xk − yk , d(xk , yk )=xk − yk , xk − yk − λk (Axk − Ayk ) 
 = ||xk − yk ||2 − λk xk − yk , Axk − Ayk  
≥ ||xk − yk ||2 − λk ||xk − yk ||||Axk − Ayk || 
 ≥ ||xk − yk ||2 − θ||xk − yk ||2  
= (1 − θ )||xk − yk ||2. (3.10) 
Also, 
||d(xk , yk )|| = ||xk − yk − λk (Axk − Ayk )|| 
≤ ||xk − yk || + λk ||Axk − Ayk || ≤ (1 + θ )||xk − yk ||. (3.11) 
Therefore from (3.5), (3.10) and (3.11), we get  
δk = xk − yk , d(xk , yk ) ||d(xk , yk )||2 ≥ (1 − θ ) (1 + θ )2 . 
 

Estrangement Corollaries Algorithm 
This section presents a modified Halpern algorithm for solving 

(1.14) where T1 and T2 are Bregman quasi-nonexpansive 
mappings. Theorem 3.1 Let E1, E2 and E3 be p-uniformly convex 
real Banach spaces, which are also uniformly smooth. Let C and Q 
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be nonempty closed, convex subsets of E1 and E2, respectively, A: 
E1 → E3 and B: E2 → E3 be bounded linear operators. Let f : E1 
→ R ∪ {+∞} and g: E2 → R ∪ {+∞} be proper, convex and lower 
semicontinuous functions, T1: E1 → E1 and T2: E2 → E2 be 
Bregman quasi-nonexpansive mappings such that = ∅. For fixed u 
∈ E1 and v ∈ E2, choose an initial guess (x1, y1) ∈ E1 × E2 and let 
{αn}⊂[0, 1]. Assume that the nth iterate (xn, yn) ⊂ E1 × E2 has 
been constructed; then we compute the (n + 1)th iterate (xn+1, 
yn+1) via the iteration: 

 un = proxγn f  J E∗ 1 q J E1 p (xn) − γn A∗ J E3 p (Axn − Byn) 
, xn+1 = J E∗ 1 q  αn J E1 p (u) + (1 − αn)  βn J E1 p (un) + (1 − 
βn)J E1 p (T1un)  , vn = proxγn g  J E∗ 2 q J E2 p (yn) + γn B∗ J 
E3 p (Axn − Byn) , yn+1 = J E∗ 2 q  αn J E2 p (v) + (1 − αn)  δn J 
E2 p (vn) + (1 − δn)J E2 p (T2vn)  , (3.1) 

For n ≥ 1, {βn}, {δn} ⊂ (0, 1), where A∗ is the adjoint operator 
of A. Further, we choose the stepsize γn such that if n ∈  := {n: Axn 
− Byn = 0}, then γ q−1 n ∈ 0, qAxn − Bynp Cq A∗ J E3 p (Axn − 
Byn)q + Dq B∗ J E3 p (Axn − Byn)q, (3.2 

Cq and Dq are constants of smoothness of E1 and E2, 
respectively. Otherwise, γn = γ (γ being any nonnegative value). 
Then {xn} and {yn} are bounded. Proof Let (x, y) ∈, using Lemma 
2.1, (2.3) and the Bregman firmly nonexpansive of prox operators, 
we have 

p(x, un) = p  x, proxγn f  J E∗ 1 q J E1 p (xn) − γn A∗ J E3 p 
(Axn − Byn)  

≤ p  x, J E∗ 1 q J E1 p (xn) − γn A∗ J E3 p (Axn − Byn)  = xp p 
− x, J E1 p xn + γn x, A∗ J E3 p (Axn − Byn) 

= p(x, xn) − γn Axn − Ax, J E3 p (Axn − Byn) + Cq q γ q n A∗ 
J E3 p (Axn − Byn)q . 

Following similar to the argument as in (3.3), we have  
p (y, vn) ≤ p(y, yn) + γn Byn − By, J E3 p (Axn − Byn) + Dq q γ 

q n B∗ J E3 p (Axn − Byn)q. 
Adding (3.3) and (3.4) and noting that Ax = By, we obtain 
p(x, un) + p(y, un) ≤ p(x, xn) + p(y, yn) − γn Axn − Byn, J E3 p 

(Axn − Byn) 
Thus, the last inequality implies that {xn} and {yn} are bounded. 

Consequently, {un}, {vn}, {T1un} and {T2vn} are bounded.  
Theorem 3.2 Let E1, E2 and E3 be p-uniformly convex real Banach 
spaces, which are also uniformly smooth. Let C and Q be nonempty 
closed, convex subsets of E1 and E2, respectively, A: E1 → E3 and 
B: E2 → E3 be bounded linear operators. Let f : E1 → R ∪ {+∞} 
and g: E2 → R∪{+∞} be proper, convex and lower semicontinuous 
functions, T1: E1 → E1 and T2: E2 → E2 be Bregman quasi-
nonexpansive mappings such that F(Ti) = Fˆ(Ti), i = 1, 2 

and = ∅. For fixed u ∈ E1 and v ∈ E2, choose an initial guess 
(x1, y1) ∈ E1 × E2 and let {αn}⊂[0, 1]. Suppose ({xn},{yn}) is 
generated by algorithm (3.1) and the following conditions are 
satisfied: (i) limn→∞ αn = 0, and ∞ n=0 αn = ∞, (ii) 0 < a ≤ lim 
infn→∞ βn ≤ lim supn→∞ βn < 1, (iii) 0 < b ≤ lim infn→∞ δn ≤ 
lim supn→∞ δn < 1. 

Case 1 Suppose ∃ n0 ∈ N such that {n} is monotonically non-
increasing for all n ≥ n0. Since n is bounded, it implies that {n} 
converges and n+1 − n → 0, as n → ∞. 

Set Kn = Cq A∗ J E3 p (Axn − Byn)q + Dq B∗ J E3 p (Axn − 
Byn)q , 

it follows from (3.10) that 

γn(1 − αn)  Axn − Bynp − γ q−1 n q Kn  ≤ (1 − αn)n − n+1 + 
αnτn → 0, (3.11) as n → ∞. By the choice of the stepsize (3.2), 
there exists a very small > 0 such that 

0 < γ q−1 n ≤ q||Axn − Byn||p Kn − , 
 This means that  
γ q−1 n Kn ≤ q||Axn − Byn||p − Kn, 
And hence 
Kn q ≤ ||Axn − Byn||p − γ q−1 n q Kn → 0, as n → ∞. 
Hence 
 lim n→∞ Kn = lim n→∞  Cq A∗ J E3 p (Axn − Byn)q + Dq B∗ 

J E3 p (Axn − Byn)q = 0. 
 

Insinuated Province Theorem 
For two probability distributions r, s ∈ ∆N , parameters λ > 0, p 

≥ 1 and proper regularizer f an estimator for πp,λ,f (r, s) in (2.2) is 
given by its empirical counterpart πp,λ,f (ˆrn, s) with ˆrn the 
empirical distribution of the i.i.d. sample X1, . . . , Xn in (1.6). The 
next theorem states a Gaussian limit distribution for the empirical 
ROT plan. Since the sensitivity result in Theorem 2.3 holds 
regardless of r = s or r 6= s and as the ROT plan is always dense, 
we do not derive any substantial difference regarding statistical 
limit behavior in either of these cases. 

Theorem 3.1. Let r, s ∈ ∆N be two probability distributions on 
the finite metric space (X , d) and let rˆn be the empirical version 
given in (1.6) derived by X1, . . . , Xn i.i.d. ∼ r. Then, as the sample 
size n grows to infinity, it holds that 

√ n {πp,λ,f (ˆrn, s) − πp,λ,f (r, s)} D−→ NN2 (0, Σp,λ,f (r|s))  
with covariance matrix  
Σp,λ,f (r|s) = ∇r φp,λ,f (r, s?) Σ(r) [∇r φp,λ,f (r, s?)]T , (3.1)  
where Σ(r) is defined in (1.10) and ∇r φp,λ,f (r, s?) are the partial 

derivatives of φp,λ,f with respect to r as given in Theorem 2.3. 
The proof is based on the multivariate delta method and 

straightforward given Theorem 2.3, hence postponed to the 
supplement. Further, we prove limit distributions for the empirical 
counterpart of the ROT distance (1.5). Here, s (which might be 
equal to r) plays the role of a fixed reference probability distribution 
to be compared empirically with the probability distribution r. The 
proof is again an application of the delta method in conjunction 
with the limit law from Theorem 3.1. We again do not derive any 
substantially different distributional limit behavior between the 
cases r = s and r 6= s. This is in notable contrast to the non-
regularized OT 

Theorem 3.2. Under the assumptions of Theorem 3.1, as n → ∞ 
it holds that 

 √ n {Wp,λ,f (ˆrn, s) − Wp,λ,f (r, s)} D−→ N1 0, σ2 p,λ,f (r|s)   
with variance  
σ 2 p,λ,f (r|s) = γ T Σp,λ,f (r|s) γ , (3.2) 
where γ is the gradient of the function π 7→ hcp, πi 1 p evaluated 

at the regularized transport plan πp,λ,f (r, s), and Σp,λ,f (r|s) is the 
covariance matrix from Theorem 3.1. Standardizing by the square 
root of the empirical variance σ 2 p,λ,f (ˆrn|s) results in a standard 
normal limit distribution. As a corollary, we immediately obtain 
limit distributions for the empirical entropy ROT plan and the 
Sinkhorn divergence.  

Corollary 3.3 (Sinkhorn Transport and Sinkhorn Divergence). 
Consider the negative Boltzmann-Shannon entropy f in (1.4). Then, 
the statements in Theorem 3.1 and Theorem 3.2 remain valid. Note 
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that the gradient inherent in the corresponding covariance matrix 
(3.1) is given by Example 2.6. 

Remark 3.4 (Entropy ROT Type Functionals). From Theorem 
3.1, we easily derive asymptotic distributions for any sufficiently 
smooth function of the ROT plan. Exemplarily, we consider the 
objective function in (1.3) denoted as d(πp,λ,f (r, s)). A 
straightforward calculation shows that 
∇d(πp,λ,f (r, s)) = cp + λ log(πp,λ,f (r, s)) = (αp,λ,f , βp,λ,f ? )A? 
The second equality follows by primal-dual optimality relation 

between πp,λ,f and its optimal dual solutions (αp,λ,f , βp,λ,f ? ) 26 
with lower subscript star as we delete the last constraint in (1.3) 

(Remark 2.1): In conjunction with Example 2.6 and Theorem 
3.1 we conclude 

√ n {d(πp,λ,f (ˆrn, s)) − d(πp,λ,f (r, s))} D−→ hG, αp,λ,f i , (3.3) 
where G ∼ NN (0, Σ(r)) [27]. Notably, if r = s the limit law in 

(3.3) is non-degenerate. This is not true anymore for the Sinkhorn 
loss [28] defined by 

Sλ(r, s) := d(πp,λ,f (r, s)) − 1 2 (d(πp,λ,f (r, r)) − d(πp,λ,f (s, s))) 
, 

As then ∇Sλ(r, r) = 0 .27 However, a second-order expansion 
based on a perturbation analysis for the dual solutions provides a 
non-degenerate asymptotic limit of nSλ(ˆrn, r). This can be 
represented as a weighted sum of independent χ 2 1 random 
variables. Exact computation is tedious but follows the lines of G. 
Luise et.al,29 who also provide a perturbation analysis for the dual 
solutions. The weights of this sum are then given by the eigenvalues 
of the Hessian ∇2Sλ(r, r). From this, it can be shown that the m out 
of n bootstrap is consistent when m = o(n) [30], which is an 
alternative to the bootstrap suggested by J. Bigot et.al. report.27  

RESULT AND DISCUSSION 
This section ensures the validity of our proposed study by 

reviewing the findings and contrasting the proposed studies to 
previous methodologies. This section aims to show the outcomes 
of enhanced strong convergence, attaining greater consistency and 
accuracy.  

 
System Specification 

The proposed system has been implemented in MATLAB 
Platform           :       MATLAB 
OS                   :       Windows 7 
Processor        :      Intel core i5 
RAM               :      8GB RAM 
 

Performance Evaluation 
In this section, we present three numerical examples which 

demonstrate the performance of our Algorithm 3.1. Let U: I → I be 
defined by 
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Figure 2: variation inequality for number of iterations with x fixed 
point 

 
Figure 2 shows the variation inequality in a number of iterations 

with x fixed point. From the graph, when the iteration is 0, the value 
of x increases from 0.75 to 0.756 and then decreases rapidly 
between 0th and 75th iterations. After the 75th iteration, the value of 
x remains constant. Thus, the x fixed point is identified using the 
proposed Hotchpotch Correlation Approach, which mitigates the 
variation inequality problem and improves the theory's 
performance. 

 

 
Figure 3: variation inequality in number of iterations with y fixed 
point 
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Figure 3 shows the variation inequality in a number of iterations 

with y fixed point before Hotchpotch Correlation Approach is 
applied. From the graph, when there is no iteration, the value y 
ranges from 0.25 to 0.269. when the iteration increases, the value 
of y decreases rapidly till 100th iteration. From 100th iteration the 
value y remains constant. Thus the y fixed point is identified by this 
proposed Hotchpotch Correlation Approach, which mitigates the 
variation inequality problem and improves the theory's 
performance. 

 

 
Figure 4: variation equality in number of iterations with x fixed point 

 
Figure 4 shows the variation equality in number of iterations with 

x fixed point after the Hotchpotch Correlation Approach applied. 
The graph shows that the value x decreases with an increase in 
number of iterations. When x = 0.733 the number of iterations is 
35. Thus, the number of iterations reaches an x fixed point based 
on the nature of the equation in the proposed Hotchpotch 
Correlation Approach and the convergence properties of the 
iteration. This improves the performance of the fixed-point theory. 

 
Figure 5: variation equality in number of iterations with y fixed point 

 
Figure 5 shows the variation equality in number of iterations with 

y fixed after the Hotchpotch Correlation Approach applied. From 
the graph, the value y decreases with an increase in the number of 
iterations. When y = 0.268 the number of iterations is 35, thus the 
number of iterations reaches a y fixed point based on the nature of 
the equation in the proposed Hotchpotch Correlation Approach and 
the convergence properties of the iteration. This improves the 
performance of the fixed point theory. 

 

 
Figure 6: Fixed Point Iteration for function f(x)=exp(x-1) 

 
Figure 6 shows the Fixed-Point Iteration for function f(x)=exp(x-

1), considering the starting value of x is -1, approximately the value 
of n = 10, x = 0.81564. From the graph, the absolute error decreases 
with an increase in iterations. So, this represents that the initial 
guess is negative in the exponential equation, reducing the absolute 
error in this method and improving the system's efficiency. 
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Figure 7: Fixed Point Iteration for function f(x)=exp(x-1) 
 
Figure 7 shows the Fixed-Point Iteration for function f(x)=exp(x-

1), considering the starting value of x is 1.2, approximately the 
value of n = 10, x = 2.2602. From the graph, the absolute error 
increases with an increase in iterations. Thus, the fixed point 
iteration in this function is with positive initial guess, increasing the 
absolute error, which this proposed approach reduces. 

 

 
Figure 8: Fixed Point Iteration for function f(x) = log (x) + 1 

 
Figure 8 shows the Fixed-Point Iteration for function f(x) = 

log(x) + 1, considering the starting value of x is 2, approximately 
the value of n = 10, x = 1.191. From the graph, the absolute error 
decreases with an increase in iterations. So this represents that the 
initial guess in this equation reduces the absolute error in this 
method and improves the system's efficiency by finding the fixed 
point for convergence. 

 
 

 
Figure 9: Fixed Point Iteration for function f(x) = log (2 – x2) 

 

Figure 9 shows the Fixed-Point Iteration for function f(x) = log 
(2 – x2) considering the starting value of x is 0.4, approximately the 
value of n = 8, x = 0.54193. From the graph the absolute error 
decreases with an increase in iterations. This indicates that the first 
guess in the equation decreased the method's absolute error and 
increased the system's effectiveness by locating the fixed point for 
convergence. 

 

 
Figure 10: Maximum Entropy 

 
Figure 10 shows the maximum entropy for different values of η. 

When η = 2.5 the value of Ns = 11.5, similarly when η= 2.20, 2 the 
value of Ns is 9, 9.5, respectively. The empirical transport 
regularization finds the solution that balances data fidelity with 
maximum entropy. This helps in obtaining more stable and accurate 
solutions, even in the presence of noisy data. 

CONCLUSION 
In the last few decades, the fixed-point theory has seen many 

applications. Its implications are quite interesting and informative 
for the theory of optimization, game theory, conflict situations, and 
quality mathematical modeling and its management. Hence, the 
work efficiently tackles the major significant issues such as the 
variation inequality problem (VIP) and difficulty finding the fixed 
point of demi contractive mapping in a real Hilbert space. As a 
result, the proposed strategies provide a way to prove the existence 
of a solution to a set of equations by resolving the variation 
inequality problem, the difficulty of finding the fixed point of demi 
contractive mapping, the split equality convex minimization crisis, 
and the non-regularization of the transport problem. The 
experimental results show that the novel approach proves the 
intended work's efficacy in a cost-effective and less complicated 
method. 
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