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ABSTRACT 
 

Precise Farming, commonly 
referred to as site-specific crop 
management, is the use of 
technology to increase 
agricultural   output and 
efficiency. Due to the availability 
of real-time data and insights on 
crop growth, soil quality, 
weather patterns, and other 
crucial elements, the integration of machine learning (ML) and the internet of things (IoT) has completely changed the way farming is done. This 
review paper focuses on the creation and application of a hybrid IoT and ML system for precise farming. The ML algorithms can process enormous 
amounts of data and produce insights that can assist farmers in making defensible decisions regarding their farming methods. The framework's 
IoT devices are in charge of gathering data from diverse sources and transmitting it to a central system for processing. Due to the hybrid nature 
of the framework, several technologies can be combined to produce a cohesive and effective system for precise farming. By combining ML and 
IoT, it is possible to use fewer pesticides and fertilizers, increase crop yields, and use less water. The framework is useful for usage in large-scale 
farming operations due to its adaptability and scalability. In conclusion, the hybrid framework for precise farming that applies ML and IoT is a 
promising technology that can aid farmers in increasing their output and efficiency while lessening their impact on the environment. Further 
investigation is required to evaluate its efficacy and identify any implementation difficulties.  
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INTRODUCTION 
Conventional agricultural methods for crop management, which 

frequently result in resource waste, low yields, and negative 
environmental effects. The UN estimates that by 2050, there will 
be 9.7 billion people in the world, or around 2 billion more mouths 
to feed than there were in 2020. FAO, the UN agency for food and 
agriculture, estimates that an increase in agricultural production of 
70% is required to meet this growth.1,2 Not to mention that the food 
business is currently accountable for 22% of greenhouse gas 

emissions and 30% of the world's energy usage. So, the difficulty 
lies not simply in increasing food production but also in doing it 
sustainably. To meet the growing need for food while reducing 
agriculture's impact on the environment, it is urgently necessary to 
create more sustainable and effective farming techniques.3 Precise 
Farming, usually referred to as site-specific crop management, has 
emerged as a possible response to these issues. By adapting farming 
procedures to the unique requirements of each field or even each 
plant individually, this method seeks to maximize crop 
development and decrease waste.4 Precise Farming enables farmers 
to modify their irrigation, fertilization, and pest control tactics to 
maximize crop yield while utilizing the fewest number of resources 
possible. Farmers require access to real-time data regarding the 
state of their fields and crops to achieve this degree of precision. 
Here is where the Internet of Things (IoT) and machine learning 
(ML) technologies must be integrated. The branch of computer 
science known as machine learning (ML) allows computers to learn 
without explicitly programmed.1 The idea of learning machines was 

*Corresponding Author: Ravi Ray Chaudhari 
Email: raviray.cse@itmuniversity.ac.in 

Cite as: J. Integr. Sci. Technol., 2024, 12(2), 730. 
URN:NBN:sciencein.jist.2024.v12.730  

©Authors CC4-NC-ND, ScienceIN   ISSN: 2321-4635    
http://pubs.thesciencein.org/jist  

Review 

https://pubs.thesciencein.org/journal/index.php/jist


R. Ray Chaudhary et. al. 

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2024, 12(2), 730             Pg  2 

put forth by Alan Turing in 1950. An artificial intelligence (AI) 
system provides a framework for forecasting the future or making 
wise decisions by learning from data and extracting knowledge 
from it. Figure 1 illustrates the three main components of the 
machine learning (ML) process: data input, model creation, and 
generalization. The process of anticipating the outcome for inputs 
that the algorithm has not yet been trained on is known as 
generalization. The main applications of machine learning (ML) 
algorithms include the detection of plant diseases, spam filtering, 
weather prediction, and pattern recognition. 

 

 
Figure 1. Basic ML Components 

 
In order to help farmers make educated decisions and improve 

their operations, the integration of ML and IoT can deliver precise 
and fast information about the state of the soil, weather patterns, 
and crop growth. Smart sensors that can measure everything from 
solar radiation to leaf moisture and stem diameter, crop stroage 
sensing5 or the temperature of each animal in the case of cattle, 
enable the Internet of Things to optimize farm monitoring and make 
a variety of management decisions easier.6,7 The application of ML 
and IoT in a hybrid framework for precise farming is a promising 
technology that has the potential to completely transform the way 
that farming is done. To produce insights on crop growth and yield, 
discover anomalies in soil quality, and determine the best times for 
planting and harvesting, this framework combines the power of data 
analytics, machine learning algorithms, and IoT sensors. The 
framework can be used in both small- and large-scale farming 
operations due to its scalability and adaptability.  

Therefore, this paper investigated the creation and deployment 
of the hybrid framework for precise farming with the use of ML 
and IoT. We will discuss the different components used in Precise 
Farming, the benefits of using ML and IoT in agriculture, soil 
properties, crop selection and disease prediction using ML in 
Precise Farming and the challenges and opportunities for further 
research and implementation. We intend to contribute to the 
ongoing efforts to create more sustainable and effective farming 
practices by reviewing the state of the technology now and finding 
potential areas for improvement. 

PRECISE FARMING 
Precise Farming, also referred to as precision agriculture, is a 

method of farming that makes use of technology and data analysis 
to increase the productivity and efficacy of agricultural techniques. 
It uses a variety of tools, including sensors, drones, GPS, and data 
analytics, to optimize agricultural inputs and boost crop yields 
while cutting costs.8 The fundamental concept behind Precise 
Farming is to collect data on the variability present in a field, 
including elements like soil type, moisture content, and nutrient 
content, and then utilize that data to influence decisions regarding 
crop planting, fertilization, irrigation, and harvesting. Instead of 

using uniform treatments throughout the entire field, farmers can 
adjust their management procedures to meet the unique 
requirements of each area of the field by doing this. For instance, a 
farmer can apply fertilizer only to that segment of a field rather than 
the entire field if they are aware that a certain area of the field has 
lower soil nutrient levels than the rest of the field. While still 
ensuring that the crops receive the nutrients they require for their 
best growth, this can assist to reduce the overall quantity of 
fertilizer used.9 

By using less fertilizer, water, and other inputs, as well as 
lowering soil erosion and other types of land degradation, Precise 
Farming can also assist farmers in reducing their environmental 
effect. Precise Farming is a method that aims to maximize 
agricultural operations via the use of cutting-edge technology and 
data analysis, with the objectives of boosting productivity, cutting 
expenses, and enhancing crop yields while minimizing the 
environmental impact of farming.10,11 

TOOLS USED IN PRECISE FARMING 
Precise Farming involves the use of a wide range of tools and 

technologies to gather data about the variability within a field and 
to optimize agricultural practices.12,13 Some of the key tools used in 
Precise Farming is shown in figure 2.  

 

 
Figure 2. Tools Used in Precise Farming 

 
GPS is a most commonly used tool which is a satellite-based 

navigation system that may be used to precisely locate and track 
agricultural machinery in the field, such as tractors and sprayers. 
Farmers may be able to use inputs like fertilizer and insecticides 
more precisely as a result of this. Another tool is GIS, With GIS, 
which is a piece of software, farmers may make precise maps of 
their fields that include details about the terrain, soil kinds, and 
other aspects. This can assist farmers in making more educated 
choices about where to plant, how to fertilize, and how to irrigate 
their crops. Sensors can also be used to gather information on a 
range of variables, such as soil moisture, temperature, and nutrient 
levels, that can have an impact on crop growth. Real-time 
adjustments to agricultural inputs, such as irrigation and fertilizer 
applications, can be made using this information. 

Another advance tool which is in trend nowadays is drones. That 
used to gather precise maps of crop health and variability by 
capturing high-resolution aerial imagery of fields. This data can be 
used to improve agricultural techniques, such as locating regions 
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that need more irrigation or fertilizer. VRT devices can be utilized 
to evenly distribute inputs like fertilizers and pesticides. Instead of 
using standard treatments throughout the entire field, this enables 
farmers to customize their management approaches to the unique 
requirements of each area of the field. Last tool is Automatic 
steering, with the help of automated steering systems, agricultural 
machinery like tractors and sprayers may be maneuvered precisely 
in the field. This can aid in reducing input overlaps and skips, which 
can lead to more effectively using resources. 

TECHNIQUES USED IN PRECISE FARMING  
Precise Farming involves several stages, which are often 

iterative and can be customized to meet the specific needs of a 
particular farm or crop as shown in figure 3. The first stage of 
precise farming is to plan and collect data about the farm and the 
crops to be grown. This involves collect information on soil 
characteristics, past crop yields, and environmental conditions, as 
well as mapping the field using resources like GPS and aerial 
images.14,15 Second, patterns and trends are found in the data 
gathered during the planning stage, as well as sections of the field 
that need various amounts of inputs like fertilizer, water, and 
pesticides. Making sense of the massive amounts of data gathered 
requires the use of sophisticated software and statistical analysis 
tools at this point. Making decisions regarding the best agricultural 
practices to employ for various fields of work follows the analysis 
and interpretation stage. This can entail choosing the best crop 
kinds to use, choosing the best planting density and timing, and 
producing prescription maps that direct the delivery of inputs. 
Implementing the agricultural practices chosen during the decision-
making stage is the next stage of precise farming.16,17 In order to 
maximize efficiency, this may need the use of specialist machinery 
such variable rate sprayers, seeders, and harvesters. The farm is 
closely watched after the agricultural methods are put in place to 
make sure the intended results are being realized. This entails 
gathering information about yield and other performance measures 
as well as tracking the growth and health of the crops using sensors 
and other monitoring equipment. Adjustments can be made to 
agricultural methods based on this data to improve results 
immediately. The last step in precise farming is to assess the 
effectiveness of the agricultural practices being utilized on the farm 
and adjust for the following growing season. Comparing actual 
performance to the objectives established during the planning stage 
and using the learnings to modify the entire process for the 
following season are the tasks involved in this step.18 

Overall, precise farming involves several stages, including 
planning and data collection, analysis and interpretation, decision-
making, implementation, monitoring and adjustment, and analysis 
and evaluation. By optimizing each of these stages, farmers can 
increase crop yields, reduce costs, and improve environmental 
sustainability. Precise Farming involves the use of several 
techniques to optimize agricultural practices and increase crop 
yields. Here are some of the main techniques used in Precise 
Farming: 

1. Soil sampling and analysis: Precise Farming starts with a 
thorough understanding of the soil, which is achieved through 
soil sampling and analysis. This involves taking soil samples 

from different areas of the field and analyzing them for key 
parameters such as pH, organic matter content, and nutrient 
levels. The data obtained from soil analysis can be used to 
create maps of soil properties and guide the application of 
fertilizers. 

2. Variable rate application: Variable rate application involves 
applying inputs, such as fertilizers and pesticides, at variable 
rates across the field, based on the specific needs of each area. 
This is achieved using tools such as GPS-guided sprayers and 
spreaders, which can be programmed to vary the application 
rate according to maps of soil properties. 

3. Precision planting: Precision planting involves using 
equipment such as GPS-guided planters to place seeds at 
optimal spacing and depth in the field. This can help to 
improve seedling emergence and reduce plant stress, which 
can lead to higher yields. 

4. Remote sensing: Remote sensing involves the use of 
technologies such as drones and satellites to collect high-
resolution imagery of the field. This data can be used to create 
maps of crop health, stress, and variability, which can help 
farmers to identify areas that require additional inputs. 

5. Automated steering: Automated steering systems can be used 
to guide agricultural equipment, such as tractors and sprayers, 
with a high degree of accuracy. This can help to reduce 
overlaps and skips in inputs, which can result in more efficient 
use of resources. 

6. Data analytics: Data analytics involves the collection and 
analysis of large amounts of data, such as yield data, soil data, 
and weather data, to optimize agricultural practices. This data 
can be used to create detailed maps of the field, track crop 
growth, and identify areas that require additional inputs. 

ADVANTAGES AND DISADVANTAGES OF PRECISE FARMING 
Above conventional farming, Precise Farming has a number of 

benefits. Precise Farming has a number of benefits over 
conventional farming methods, such as higher crop yields, lower 
costs, better resource use efficiency, greater environmental 
sustainability, better data management, and more effective labor 
usage. Crop yields may rise because of Precise Farming, which 
enables farmers to optimize their agricultural techniques.19 Farmers 
may make sure that their crops receive the ideal amounts of 
nutrients and water for growth by adjusting inputs such as water, 
fertilizer, and pesticides to the unique demands of each region of 
the field. By using pesticide and fertilizer just where they are 
needed, Precise Farming can help to save input costs. Farmers may 
end up saving a lot of money over time because of this. By adapting 
inputs to the unique requirements of each area of the field, it can 
also help to reduce waste and maximize the use of resources, like 
as water and energy. This can lessen farming's negative 
environmental effects and increase sustainability.20 By reducing 
inputs like pesticides and fertilizers that might harm the 
environment, Precise Farming can assist to lessen the 
environmental effect of farming. Precise Farming can aid in 
lowering soil erosion and enhancing soil health by maximizing 
resource use. Precise Farming involves collecting and analyzing  
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Figure 3. Stages in Precise Farming  
 

 
Figure 4. Advantages and Disadvantages of Precise Farming 

 
vast volumes of data, which can assist farmers in making more 
learned decisions regarding agricultural operations. This 
information can be used to make precise maps of the field, monitor 
crop development, and spot regions that need more inputs. By 
automating some operations, such as the application of inputs and 
crop growth monitoring, Precise Farming can assist farmers in 

saving time and effort. This could increase productivity and cut 
labor expenditures. Some of the advantages and disadvantages are 
summarized in figure 4. 

While Precise Farming offers several benefits, there are also 
some potential disadvantages to consider while building a 
framework for precise farming. Precise Farming requires the use of 
cutting-edge technologies, which might be expensive to adopt, such 
GPS, sensors, and drones. Some farmers might find it difficult to 
get started due to the hefty initial investment expenditures. Precise 
Farming is difficult to install and maintain without a high level of 
technical expertise. Farmers need to be able to use complicated 
machinery, interpret maps, and gather and evaluate data. Precise 
Farming produces a lot of data, which must be carefully handled 
and evaluated to be valuable. Farmers who are unfamiliar with data 
analysis methods may find this difficult and may need professional 
assistance. Some farmers might not have access to the tools 
required to execute precision agricultural techniques, such as fast 
internet. Their capacity to gain from these activities may be 
constrained as a result. Precise Farming entails gathering vast 
amounts of information about farms and farming methods that may 
be used by third parties for purposes aside from agricultural 
efficiency. The usage of some inputs, such as pesticides and 
fertilizers, can still have severe environmental effects if not utilized 
properly, even if Precise Farming can help to lessen the 
environmental impact of farming. Precise Farming has many 
advantages, but there are also some potential negatives and 
difficulties to take into account, such as high upfront expenditures, 
technical competence needs, data administration difficulties, 
limited access to technology, potential loss of privacy, and 
environmental issues. 

SOIL PROPERTY PREDICTION TECHNIQUES USING ML FOR 
PRECISE FARMING 

Precise farming includes strategies for predicting soil properties 
using machine learning (ML). Artificial intelligence known as 
machine learning enables computers to learn from data and make 
predictions based on that learning. Here are a few ML algorithms 
that can be applied to precise farming to forecast soil properties: 

1. Regression analysis: Based on input data, regression analysis 
is a popular machine learning technique for predicting 
continuous variables, such as soil moisture content. This 
entails employing a model that has been trained on a dataset 
of soil samples with known moisture content to forecast the 
moisture content of new samples. 

2. Classification analysis: This ML method may also be used to 
forecast the characteristics of soil. This involves employing a 
model that has been trained on a dataset of soil samples with 
known properties—like soil texture or nutrient content—to 
forecast the characteristics of new samples. 

3. Deep learning: Based on synthetic neural networks, deep 
learning is a sort of machine learning. This method can be 
used to predict the properties of new soil samples by first 
employing a deep neural network to learn from a huge dataset 
of soil samples with known attributes. For prediction 
problems including intricate and non-linear interactions 
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between the input and output variables, deep learning can be 
especially useful. 

4. Support vector machines (SVM): SVM is a technique for 
machine learning that can be used to predict soil properties. 
This entails employing a model that has been trained on a 
dataset of soil samples with known properties to forecast the 
properties of new samples.  

5. Random forest: Random forest is a machine learning 
technique that is frequently used for soil property prediction. 
Random forest is particularly useful for prediction tasks that 
require high-dimensional data, such as soil spectroscopic 
data. This entails employing a model that has been trained on 
a dataset of soil samples with known properties to forecast the 
properties of new samples. Given that it can handle 
interactions between these input variables, random forest can 
be very helpful for prediction problems involving numerous 
input variables. 

6. Ismaili et al.21 developed machine learning approach for 
identifying soil-suitability maps (SSM) under semi-arid 
environmental factors. The results show that ML models can 
accurately predict soil suitability using physicochemical 
parameters. Shao et al.22 created machine learning models for 
maize crop estimation. The model achieved R2 of 0.69 and 
RMSE of 0.109. Agyeman et al.23 tracked the Zn 
concentration in soil using machine learning algorithms. The 
model have identified the relation between pretreatment and 
soil characteristics. Zhao et al.24 aimed to use machine 
learning modeling techniques to forecast the presence of 
heavy metals in rice crops and to identify contributing factors. 
Goldstein et al.25 forecasted irrigation suggestions in addition 
to using the data acquired for crop surveillance and control. 
The best classification model was the Boosted Tree Classifier, 
with 95% accuracy, while the best regression model was 
Gradient Boosted Regression Trees, with 93% accuracy, 
according to a comparison of the generated models (on the 
test-set). Using in situ soil sampling, machine learning, and 
regional satellite-based soil salinity estimates, Shi et al.26 
performed a meta-analysis. For various satellite data under 
various vegetation conditions, it is also required to choose the 
proper vegetation and salinity indices. Ding and Du27 
introduced deep reinforcement learning (DRL) for irrigation. 
To determine the best management strategy, soil moisture 
content and moisture loss to conserve water from 
conventional irrigation system. Zhang28 presented deep 
learning model to predict vegetation coverages from  
hyperspectral data. Acharya29 proposed machine learning 
algorithm for predicting soil moisture. Chen et al.30 estimated 
the soil moisture across winter wheat fields using machine 
learning techniques. Three cutting-edge machine learning 
models—support vector regression, random forests (RF), and 
gradient boosting regression tree—were chosen and 
contrasted. Below table 1 shows summary of recent 
technologies for prediction of soil properties using soil 
parameters using machine learning. 
 

Table 1. Recent Contribution for Soil Property Prediction using 
Machine Learning 

Ref  Year  Methodology  Focused on   Conclusion  
[21] 2023 Random Forest, 

XgbTree, ANN, 
KNN and SVM 

Soil property  AUC is 97% 

[22] 2023 SVR and DNN Soil property Accuracy is 
69% and 
RMSE is 
0.1019 

[23] 2023 SVM, Gradient 
Boosting 

Zinc level in 
soil 

R2 is 13.69, 
RMSE is 
21.08, and 
MAE is 
13.69 

[25] 2018 Gradient Boosting 
Regression Trees 

Soil property Accuracy is 
93%  

[26] 2022 Bayesian Network Soil Salinity  R2 is 0.71 
[27] 2022 Deep 

Reinforcement 
Learning 

Soil moisture  - 

[28] 2021 CNN, LSTM Soil moisture Accuracy is 
91 

[30] 2021 SVM, RF, Gradient 
Boosting 

Soil 
Moisture 

RMSE is 
2.44. 

Challenges and limitations in prediction of soil properties and 
weather pattern: 
1. The universal design of the prediction algorithms has 

difficulties due to the wide range of geographical situations. 
2. The sample selection methodology has a significant impact on 

the prediction of soil properties. 
3. Dataset selection and filtering can be difficult for researchers 

without a background in computing. 

CROP SELECTION USING ML BASED ON DIFFERENT 
ENVIRONMENTAL FACTORS 

Crop selection is a crucial step of farming because it can 
significantly impact the success and sustainability of a farm.31 
Selecting the right crops for a particular location, soil type, and 
climate can lead to increased yields, reduced input costs, and 
improved sustainability.32,33 On the other hand, selecting the wrong 
crops can lead to lower yields, higher costs, and environmental 
degradation. Machine learning techniques can be used for crop 
selection, particularly in different locations or weather conditions.34 
Here are some of the ways that machine learning can be used to 
select the best crops for a particular location or weather condition: 
1. Historical yield data analysis: Machine learning models can be 

trained on historical yield data for a given location or set of 
locations. This can allow the model to identify which crops 
have historically performed well in that location, and which 
crops have performed poorly. This information can then be used 
to make predictions about which crops are most likely to 
perform well in the future. 

2. Weather data analysis: Machine learning models can be trained 
on weather data for a particular location or set of locations. This 
can allow the model to identify which crops are most likely to 
perform well under specific weather conditions, such as 
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temperature, humidity, and precipitation. This information can 
then be used to recommend the best crops to plant in a given 
location based on the expected weather conditions. 

3. Soil data analysis: Machine learning models can be trained on 
soil data for a particular location or set of locations. This can 
allow the model to identify which crops are best suited to the 
soil conditions in a given location, based on factors such as pH, 
nutrient content, and soil texture. This information can then be 
used to recommend the best crops to plant in a given location 
based on the soil conditions. 

4. Crop modeling: Machine learning models can be used to create 
crop models, which simulate the growth and development of 
crops under different conditions. These models can be trained 
on historical yield, weather, and soil data, and can be used to 
predict the likely performance of different crops under a variety 
of conditions. 

 
Shetty et al.35 presented Random forest regression and Multi-

Layer Perceptron networks to select crops from soil properties. Su 
et al.36 suggested a novel framework for data augmentation. The 
suggested method, on average, improves the deep neural network's 
mean intersection over union (IOU) and mean accuracy. raises the 
average precision and average intersection over union by 94.02% It 
has also been discussed how the suggested method has some 
limitations, particularly when there are lots of training data 
available. Paudel et al.37 presented machine learning model for crop 
growth and development to predict crop yield prediction. The Wild 
Blueberry Pollination Model, a spatially explicit simulation model 
validated by field observation and experimental data collected in 
Maine, USA, over the past 30 years, was used by Obsie et al.38 to 
generate the data. This study's primary objective is to assess the 
relative weight of weather variables and bee species composition in 
controlling wild blueberry agroecosystems. The XGBoost 
outperformed other algorithms. Han et al.39 studied the wheat 
production in regions of China by studying the entire growth 
period. Yamaç et al.40 presented machine learning model for 
prediction of daily crop production. Rezk et al.41 designed the IoT 
based precise farming model.  Singha et al.42 developed a machine 
learning (ML) model using satellite multisensor data, including 
climatological, SAR backscatter, terrain distribution, and soil 
factors. Kuradusenge43 used historical data related with weather and 
crop yield to predict future crop harvests using machine learning.  
Sridhara44 investigated shrinkage regression techniques for pigeon 
pea yield prediction using long-term weather data. Bhuyan et al.45 
offered a statistical analysis of the features and suggests the best 
crop type based on the specified features in the context of an Indian 
smart city. High accuracy was needed when developing a crop 
forecasting system, and the GB tree technique delivered.  

Figure 5 presented the comparative analysis of RMSE of 
different ML techniques for crop selection. Where it can be 
concluded the ML based Precise Farming method are more 
sustainable and better results as compared to other techniques and 
different ML techniques gives different result based on its 
advantages and disadvantages. Some general limitations are: the 
universal design of the forecasting models is complicated by the 
wide range of factors and the complexity of the datasets. Due to the 

intricacy, data selection is crucial since it might lead to an underfit 
or overfit prediction trend.  
 

 
Figure 5. RMSE Analysis of Different ML Techniques for Crop 
Selection 
 

CROP DISEASE PREDICTION FOR PRECISE FARMING 
Crop disease prediction is an important application of machine 

learning in agriculture. By using machine learning algorithms, 
farmers can identify potential crop diseases and take preventive 
measures before the disease spreads and affects the crop yield. Here 
are some ways in which machine learning can be used for crop 
disease prediction: 
• Image recognition: Machine learning algorithms can be trained 

on large datasets of images of healthy and diseased crops. These 
algorithms can then be used to automatically classify new 
images of crops and detect signs of disease, such as 
discoloration, wilting, or spotting. 

• Sensor data analysis: Farmers can use sensors to collect data on 
crop health, such as soil moisture, temperature, and humidity. 
This data can be analyzed using machine learning algorithms to 
detect patterns and anomalies that may indicate the presence of 
a crop disease. 

• Weather data analysis: Machine learning algorithms can also be 
used to analyze weather data, such as temperature, 
precipitation, and wind, to identify weather conditions that are 
favorable for the development of specific crop diseases. 

• Data fusion: Machine learning algorithms can combine data 
from multiple sources, such as sensor data, weather data, and 
image data, to provide a more comprehensive picture of crop 
health and disease risk. 

 
Once a potential crop disease is identified, farmers can take 

preventive measures, such as adjusting irrigation or fertilizer levels, 
applying pesticides or fungicides, or removing infected plants. By 
using machine learning for crop disease prediction, farmers can 
detect and prevent crop diseases earlier, reducing the risk of crop 
loss and improving yields. Zhang et al.49 recommended an 
improved Faster RCNN to identify four diseases and healthy 
tomatoes leaves. The enhanced method for agriculture detecting 
leaf diseases exhibited a quicker detection performance and an 
identification accuracy that was 2.71% greater than the original 
Faster RCNN. Iqbal and Talukder50 suggested an autonomous 
method that would recognize and categorize potato leaf diseases 
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based on image processing and machine learning. The Random 
Forest classifier provides an accuracy of 97% for this group. In this 
way, our suggested strategy leads to a path for automatically 
detecting plant leaf disease. Lakshmanarao et al.51 used "Convnets" 
to detect and categorize plant diseases. From Kaggle, we obtained 
a PlantViallge dataset. It includes images of 15 different plant leaf 
classes from the potato, pepper, and tomato families. We split the 
dataset into three smaller datasets and ran Convnets on each of 
them. For the detection of tomato, pepper, and potato plant diseases, 
respectively, we achieved accuracy of 98.3%, 98.5%, and 95%. 
According to experimental findings, our model has a decent 
accuracy rate for identifying and classifying plant leaf diseases. 
Andrianto et al.52 provided a deep learning-based system for rice 
disease detection that consists of a smartphone app and a machine 
learning application running on a cloud server. The train accuracy 
and test accuracy values for the performance of the VGG16 
architecture's rice plant disease detection system are 100% and 
60%, respectively. By enhancing the quality of the dataset and 
expanding the quantity of datasets, the test accuracy value can be 
raised. Harakannanavar et al.53 focused on technology that can 
prevent plant leaf disease. Machine learning techniques like CNN, 
SVM and KNN, SVM (88%), K-NN (97%) and CNN (99.6%) are 
used to test the proposed model's accuracy. Sholihati et al.54 used 
deep learning such as VGG16 and VGG19 convolutional neural 
network architectural model. This system enables us to produce an 
accurate classification system. The experiment's 91% average 
accuracy demonstrates the viability of the deep neural network 
strategy. Lijo55 examined the InceptionV3, DenseNet169, and 
ResNet50 for image classification and subsequent plant disease 
diagnosis with and without augmentation. Following the use of the 
aforementioned strategies, the best model, with an accuracy rate of 
97.3 percent without augmentation and 98.2 percent with 
augmentation. Udutalapally et al.56 presented the innovative idea of 
the Internet-of-Agro-Things and describes the automatic 
identification of plant disease for the construction of ACPS. Most 
of the products in traditional crops were harmed by microbial 
diseases. The sample delivered a great efficiency by preventing rust 
and endure the diverse weather patterns throughout its three months 
of operation. The accuracy of the suggested crop diseases 
prediction system is 99.24%. Kumar et al.57 presented a fungus 
detection system to construct an expert system for the prediction. 
More than 98% of predictions for each disease turned out to be 
accurate on average. This research establishes the viability of 
employing this method for less expensively and more quickly 
identifying plant diseases. To identify pests by their eating habits, 
pest illnesses, and nutritional deficits in coconut plants, Nesarajan 
et al.58 created an android mobile application. SVM and CNN were 
determined to be the best and most suitable classifiers, with 
accuracy ratings of 93.54% and 93.72%, respectively. The project's 
results will surely revolutionize the agricultural industry and assist 
farmers in increasing their production of coconuts. Patle et al.59 
developed a soil moisture sensor (SMS) and leaf wetness sensor 
(LWS) that are IoT enabled. In order to anticipate plant diseases are 
employed. Also, we have put into practice the LSTM network, 
which outperforms the previously mentioned approaches for 
managing plant diseases. The suggested network yields a 96% 

accuracy rate, a 97% precision-recall rate, and a 99% F1 score. 
Below table 2 shows summary of recent technologies for prediction 
of soil disease using machine learning. 

 
Table 2. Recent Contribution for Crop Disease Prediction using 
Machine Learning 

Ref  Year  Method Used Type  

[49] 2022 Deep Learning-Based k-
mean  

Crop Leaf  

[50] 2020 Random Forest  Early Blight (EB) and 
Late Blight (LB). 

[51] 2021 Deep Learning  Plant leaf disease for 
pepper, tomato, potato 

[52] 2021 VGG16  Rice plants disease 
prediction   

[53] 2022 SVM, KNN AND CNN Tomato leaves 

[54] 2020 VGG16 and VGG19 Potato leaves 

[55] 2021 InceptionV3, 
DenseNet169 and 
ResNet50 

Crop Leaf 

[56] 2021 CNN Microbial Diseases  

[58] 2020 SVM AND CNN Coconut leaves  

[59] 2022 LSTM Network Plant disease 

 
Figure 6 shows the comparative analysis of accuracy of different 

ML techniques for crop disease detection. Udutalapally et al.56 
method has an maximum accuracy of 99.24%. based on CNN. 
Method reported by M.A. Iqbal et.al.50 has an accuracy of 97 %, 
Deep learning method reported by Lakshmanarao et al.51 has an 
accuracy of 98.30 %. Where it can be conclude ML based Precise 
Farming method are more sustainable and better results as 
compared to other techniques and different ML techniques gives 
different result based on its advantages and disadvantages.60,61  
 

 
Figure 6. Accuracy Analysis of Different ML Techniques for Crop 
Disease Detection 
 
Some general limitations are:  
• The quality of the training data, many of which are accessible 

as open-source datasets but are relevant to just a small number 
of crops, determines the accuracy of the prediction. 
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• As the system's training has a significant impact on how well it 
performs, incorrectly labeled data might produce a disastrous 
prediction system. 

• The model could become sensitive as a result of overtraining. 
 

FUTURE WORK AND CURRENT LIMITATIONS 
There are many areas for future research that could further 

improve the technology and its influence on agriculture as the field 
of precise farming with the application of ML and IoT is 
continually growing. These are a few instances: 
1. The creation of new ML algorithms: ML algorithms can always 

be improved, and academics can work on creating new 
algorithms that are better suited to quickly processing massive 
datasets. To increase the precision of predictions, these 
algorithms can be customized to particular farming scenarios, 
such as crop types and climate zones. 

2. Blockchain technology integration: By integrating with precise 
farming systems, blockchain technology can offer a safe and 
open platform for data sharing and crop yield tracking. As a 
result, farmers may be able to obtain fair pricing for their goods 
and the supply chain may become more trustworthy and 
accountable. 

3. Usage of drones and robotics: By offering more accurate and 
effective data gathering and analysis, drones and robotics can 
complement the use of IoT sensors and ML algorithms. For 
instance, high-resolution images of crops can be captured by 
drones and sent to ML algorithms for immediate analysis. 

4. The creation of new Internet of Things (IoT) sensors: IoT 
sensors can be created to deliver more precise and 
comprehensive data on soil moisture, temperature, and other 
important variables. Moreover, new sensors can be created to 
track other aspects of agricultural yield, such as pest infestations 
and air quality. 

5. Extension of precise farming to new crops and regions: 
Although the technology has already proven successful in a 
number of crops and places, there is still room to grow it to 
include additional crops and areas. For a greater variety of 
crops, researchers can design Precise Farming techniques and 
verify their efficacy in various climate zones. 

 
Precise Farming with AI and IoT has the potential to completely 

change the agriculture sector. Nonetheless, there are still several 
restrictions and areas that require attention in the future: 
1. Data accessibility: Accurate farming necessitates easy access to 

a wealth of high-quality data, such as information on soil 
moisture, temperature, and weather patterns, as well as 
information on the health of plants and crops. But in many 
places, this information is either scarce or nonexistent. Hence, 
efforts are required to enhance agricultural data gathering and 
sharing systems. 

2. Infrastructure issues: Farmers require access to cutting-edge 
technologies like IoT sensors and ML algorithms in order to 
install accurate farming methods. Yet, it may be difficult for 
farmers to implement these technologies in many areas due to a 
lack of inexpensive infrastructure. 

3. Restricted accessibility and education: Farmers still require 
training and education in order to use and analyze the data given 
by IoT sensors and ML algorithms, even if the infrastructure 
and data are available. To assist farmers in comprehending and 
utilizing the available technology, there needs to be an increase 
in the number of training programs and educational 
opportunities available to them. 

4. Integration of various systems: IoT sensors, ML algorithms, and 
automation tools are just a few of the technology that precise 
farming systems rely on. Yet, because these technologies are 
frequently created in isolation, integration can be difficult. 
Protocol standardization and enhanced interoperability are two 
areas that require attention. 

 
In conclusion, future work for precise farming utilizing ML and 

IoT comprises enhancing data availability and infrastructure, 
boosting accessibility and education, and combining various 
systems. By overcoming these restrictions and difficulties, precise 
farming can spread and become more widely available, allowing 
growers to increase output, cut waste, and create more sustainable 
and healthy crops. 

CONCLUSION 
In conclusion, a viable strategy for changing the agricultural 

sector is the hybrid framework for precise farming with the 
integration of ML and IoT. The hybrid framework gives farmers 
precise, real-time insights about their crops, soil conditions, and 
other significant aspects affecting agricultural productivity by 
integrating the power of machine learning algorithms, internet of 
things devices, and other cutting-edge technologies. The 
advantages of this technique are obvious: higher sustainability, 
decreased waste, and better crop yields. Although there are still 
issues to be resolved, such as data availability, infrastructure 
restrictions, and the need for more readily available knowledge and 
training, this technology has the potential to significantly alter 
agriculture. The hybrid framework for precise farming with the 
application of ML and IoT can assist to create a more sustainable 
and productive future for farming, benefiting both farmers and 
consumers alike, with continuing study, development, and 
innovation. 
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