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ABSTRACT 
 

The establishment of trust between nodes in high-
performance blockchain networks remains a significant 
obstacle in secure applications in different fields. Herein is 
presented a novel predictive trust model that utilizes the 
power of VARMA (Vector Autoregressive Moving Average) 
in conjunction with GRU (Gated Recurrent Unit) and LSTM 
(Long Short-Term Memory) neural networks to effectively 
extract the trust levels of nodes based on their temporal and spatial performance metrics. The extracted features were utilized to train the 
VARMA Model to predicts the future trust levels of nodes. Utilizing LSTM and GRU networks under various attack scenarios, such as DDoS, Finney, 
Sybil, and Worm Hole show significant improvements in results. This system achieved a remarkable 10.5% reduction in communication delays, 
2.5% improvement in PDR, 8.3% reduction in energy consumption, and 4.5% improvement in throughput, showing direct influences in the overall 
performance, security, and dependability of blockchain networks. First, by incorporation of LSTM and GRU networks, the designed system 
captures and analyzes the complex temporal dependencies in performance metrics, resulting in more precise predictions. Second, the integration 
of VARMA provides a solid basis for time series analysis, allowing for accurate forecasts of trust levels. Thirdly, this model outperforms existing 
trust models in multiple attack scenarios, demonstrating its resilience and efficacy in the face of adversarial actions. 
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INTRODUCTION 
Blockchain technology has emerged as a disruptive and 

transformative force across multiple domains, providing 
decentralized and secure transaction and data storage platforms. In 
high-performance blockchain networks, establishing trust between 
participating nodes is essential for maintaining the system's 
integrity and dependability. Trust models play a crucial role in 
assessing the trustworthiness of nodes, allowing the selection of 
trustworthy nodes for crucial tasks like routing and blockchain 
consensus algorithms. Existing trust models are frequently 

incapable of accurately capturing the dynamic complexity and 
temporal variations in node performance levels via Deep 
Reinforcement Learning (DRL) process.1-3 

This paper proposes a novel approach for trust assessment in 
high-performance blockchain networks to address these issues. Our 
method utilizes the combined strength of VARMA (Vector 
Autoregressive Moving Average), GRU (Gated Recurrent Unit), 
and LSTM (Long Short-Term Memory) neural networks to 
determine the trustworthiness of nodes based on their temporal and 
spatial performance metrics. We aim to improve the accuracy and 
dependability of trust assessment in blockchain networks by 
incorporating these advanced machine learning techniques. 

The need for an effective trust model in high-performance 
blockchain networks is a result of the growing demand for secure 
and dependable decentralized applications (DApps) across multiple 
industries. Numerous industries, including finance, supply chain 
management, healthcare, and Internet of Things (IoT), have 
adopted blockchain technology. In these applications, establishing 
trust between nodes is essential for ensuring the integrity of 
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transactions, preventing malicious behavior, and preserving the 
overall performance and security of the system sets. 

Our proposed predictive trust model analyzes key performance 
indicators such as communication delay, energy consumption, 
throughput, and Packet Delivery Ratio (PDR) levels. These metrics 
provide valuable insights into the temporal and spatial performance 
of nodes, demonstrating their dependability and trustworthiness. By 
capturing the intricate dependencies and patterns in these metrics, 
our model aims to improve the throughput of trust evaluation and 
enable the forecasting of future trust levels. 

Our model's incorporation of LSTM and GRU networks enables 
the efficient examination of temporal dependencies in performance 
metrics. LSTM networks excel at identifying long-term 
dependencies, whereas GRU networks provide efficient 
computation and memory usage. Our model can effectively capture 
the dynamics and trends of node performance over time by 
combining these two architectures. In addition, the use of VARMA 
provides a solid basis for time series analysis, allowing for accurate 
forecasting of trust levels.4-6 

To evaluate the performance of our proposed trust model, we 
conducted extensive experiments under a variety of attack 
scenarios, such as DDoS, Finney, Sybil, and Worm Hole. The 
trustworthiness of participating nodes is questioned by these 
attacks, which pose common security risks in blockchain networks. 
We demonstrate the superiority of our approach in terms of 
communication delay reduction, PDR improvement, energy 
consumption reduction, and throughput enhancements by 
comparing our results to those of existing trust models. 

Numerous benefits accompany our proposed predictive trust 
model. First, by capturing the complex temporal and spatial 
dynamics of node performance, the integration of advanced 
machine learning techniques enables accurate trust assessment. 
Second, our model provides valuable insight into the future trust 
levels of nodes, enabling informed decision-making for tasks such 
as routing and consensus algorithms. Thirdly, our model's 
robustness is demonstrated by its resistance to a variety of attack 
scenarios, thereby ensuring the security and dependability of 
blockchain networks. 

Using the power of VARMA, GRU, and LSTM, this paper 
presents a novel approach for trust assessment in high-performance 
blockchain networks. Our model improves the overall performance, 
security, and efficiency of blockchain networks by accurately 
predicting the trust levels of nodes based on their temporal and 
spatial performance metrics. The proposed model demonstrates its 
applicability across diverse domains, including finance, supply 
chain management, IoT, and DApps, in comparison to existing trust 
models. The outcomes of our experiments demonstrate the efficacy 
and potential of our method, paving the way for the creation of more 
trustworthy and secure blockchain applications. 

There is pressing need for dependable and efficient trust models 
in high-performance blockchain networks. Establishing trust 
between participating nodes is essential for ensuring the integrity, 
security, and performance of blockchain systems. Existing trust 
models frequently fail to accurately capture the dynamic and 
complex nature of node performance, resulting in suboptimal trust 
evaluation. Consequently, there is a strong impetus to develop a 

novel strategy that effectively addresses these limitations and 
improves trust assessment in high-performance blockchain 
networks. 

This designed system contributes significantly to the field of 
trust assessment in blockchain networks. The most significant 
contributions are as follows: 

1. Innovative Model of Predictive Trust: This paper's primary 
contribution is a novel predictive trust model that combines the 
power of VARMA, GRU, and LSTM neural networks. This model 
surpasses conventional trust models by incorporating temporal and 
spatial performance metrics for nodes. Our model can effectively 
analyze and predict trust levels based on factors such as 
communication delay, energy consumption, throughput, and PDR 
levels by incorporating advanced machine learning techniques. 
This method improves the throughput and dependability of trust 
assessment in high-performance blockchain networks. 

2. Temporal and Spatial Analysis: The emphasis on analyzing 
both temporal and spatial aspects of node performance is another 
significant contribution of this paper. By incorporating the temporal 
dynamics of performance metrics, our model is able to capture 
long-term tendencies, patterns, and interdependencies, thereby 
enabling accurate forecasts of future trust levels. In addition, by 
incorporating spatial analysis, our model can take into account the 
interaction and interdependencies between nodes, thereby 
enhancing the overall trust assessment process. 

3. Performance Enhancement The proposed predictive trust 
model exhibits significant performance enhancements over existing 
trust models. Our model exhibits a 10.5% reduction in 
communication delay, a 2.5% improvement in PDR, an 8.3% 
reduction in energy consumption, and a 4.5% increase in 
throughput as a result of extensive experiments under various attack 
scenarios, including DDoS, Finney, Sybil, and Worm Hole attacks. 
These enhancements demonstrate the efficacy and resiliency of our 
model in mitigating the effects of adversarial activities and 
enhancing the overall performance of blockchain networks. 

4. Wide Applicability: This paper's contribution goes beyond the 
development of a particular trust model. Our proposed method has 
broad applicability across diverse domains employing blockchain 
technology. Our predictive trust model can benefit industries such 
as finance, supply chain management, healthcare, IoT, and 
decentralized applications (DApps). The ability to accurately 
evaluate the trustworthiness of nodes enables informed decision-
making in critical tasks such as routing and consensus algorithms, 
thereby improving the overall security, dependability, and 
efficiency of blockchain systems. 

5. Advantages over Existing Trust Models: This paper makes a 
significant contribution by highlighting the benefits of our 
proposed trust model over existing approaches. Through the 
incorporation of LSTM and GRU networks, our model captures 
complex temporal dependencies in performance metrics, resulting 
in more accurate predictions. The incorporation of VARMA 
provides a solid basis for time series analysis, allowing for accurate 
forecasts of trust levels. In addition, our model outperforms existing 
trust models in multiple attack scenarios, demonstrating its 
resilience and efficacy in the face of adversarial actions. 
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Using VARMA, GRU, and LSTM, this paper has contributed to 
the development of a novel predictive trust model for high-
performance blockchain networks. Our approach is distinguished 
from existing trust models by its emphasis on temporal and spatial 
analysis, demonstrated performance enhancements, and broad 
applicability. The proposed model improves trust assessment, 
facilitates the selection of trustworthy nodes for critical tasks, and 
enhances the overall performance, security, and efficiency of 
blockchain systems. This paper's contributions have implications 
for a variety of domains and pave the way for the creation of more 
trustworthy and secure blockchain applications. 

LITERATURE REVIEW 
Trust-based routing models have emerged as a promising 

technique for improving the dependability, security, and 
performance of wireless networks. These models utilize trust data 
to make informed routing decisions and to ensure efficient data 
transmission. The contributions and limitations of some recently 
proposed trust-based routing models is presented here.7-9 

T-RPL (Trust-aware Routing Protocol for Low-power and Lossy 
Networks): T-RPL is a trust-based routing protocol designed 
specifically for low-power and lossy networks, such as IoT 
deployments. It incorporates trust metrics into the RPL (Routing 
Protocol for Low-power and Lossy Networks) routing protocol in 
order to improve the selection of dependable routes. T-RPL 
evaluates the trustworthiness of neighboring nodes based on 
multiple trust factors, including packet delivery ratio, residual 
energy, and neighbor behavior. T-RPL achieves superior network 
performance in terms of packet delivery ratio and energy efficiency 
compared to traditional RPL, as demonstrated by experimental 
results.10-12 

TORA (Trust-Aware Routing Algorithm) is a trust-based routing 
algorithm that takes both trust and energy considerations into 
account when making routing decisions in wireless ad hoc 
networks. It combines information regarding trust and residual 
energy to determine the most reliable and energy-efficient routes. 
TORA includes a mechanism for dynamic trust update that adapts 
to varying network conditions and node behaviors. TORA 
outperforms conventional routing protocols in terms of packet 
delivery ratio, end-to-end delay, and energy consumption, as 
demonstrated by simulation results via use of Space–Air–Ground 
Integrated Network (SAGIN) sets.13-15 

TMRP (Trust Management Routing Protocol) is a trust-based 
routing protocol that prioritizes secure and dependable data 
transmission in wireless sensor networks (WSN). It combines trust 
management mechanisms with the AODV (Ad hoc On-Demand 
Distance Vector) routing protocol in order to improve the selection 
of trustworthy routes. Multiple trust parameters, including node 
behavior, packet forwarding ratio, and battery level, are considered 
by TMRP to evaluate the trustworthiness of nodes. Experimental 
evaluations indicate that TMRP improves the network's resistance 
to malicious nodes and achieves a higher packet delivery ratio than 
conventional AODV. 

TIBR (Trust-Inference-Based Routing): TIBR is a trust-based 
routing model that estimates the trustworthiness of unknown nodes 
in wireless networks using trust inference techniques. It makes 

predictions regarding the trustworthiness of unknown nodes based 
on the historical trust information of neighboring nodes. TIBR 
employs trust inference algorithms, such as Bayesian inference and 
collaborative filtering, to determine the trustworthiness of unknown 
nodes. TIBR identifies trustworthy routes effectively, even in the 
presence of malicious nodes and unreliable network conditions, as 
demonstrated by simulation results.16-18 

TARA (Trust-Aware Routing Algorithm): TARA is a trust-
aware routing algorithm that takes direct and indirect trust 
information into account when making routing decisions in 
wireless networks. It employs trust propagation mechanisms to 
distribute trust values across the network based on direct 
interactions and recommendations from neighboring nodes. TARA 
combines local and global trust data to determine the most reliable 
routes. TARA improves the packet delivery ratio and reduces the 
number of malicious node encounters compared to conventional 
routing algorithms, according to performance evaluations.19,20 

These recently proposed trust-based routing models demonstrate 
the capacity of trust-aware mechanisms to enhance the 
dependability and security of wireless networks. In order to make 
informed routing decisions via Blockchain-based Deep 
Reinforcement Learning (BDRL),21-23 they consider a variety of 
trust factors and use a variety of trust management techniques. 
While simulation and experimental evaluations reveal promising 
results for these models, scaling them to large-scale networks and 
addressing the dynamic nature of wireless environments present 
challenges.24,25 To address these limitations and improve the 
applicability of trust-based routing models in real-world wireless 
network deployments, additional research is required for real-time 
scenarios. 

FATMLPGS: Design of a fault-aware trust establishment model 
for low-power IoT deployments via generic lightweight sidechains 
The suggested model first utilizes a GWO based dense learning 
method to predict node configurations & sidechaining 
configurations for QoS & security aware performance. The model 
makes use of a lightweight genetic algorithm (GA) model, which 
supports in estimate of reconfiguration choices using correlation-
based matching approaches. This is done so that the complexity of 
training may be reduced.This approach also helps in estimating 
fault-free pathways throughout the routing process, which is one of 
the many reasons why it is very beneficial for deploying real-time 
network infrastructure. The model will eventually include a Q-
Learning strategy, which will help improve its performance by 
gradually upgrading its route and routing settings.26-31 

PROPOSED DESIGN OF AN EFFICIENT VARMA GRU LSTM 
BASED PREDICTIVE TRUST MODEL FOR HIGH-
PERFORMANCE BLOCKCHAIN NETWORKS 

     As per the review of existing trust-establishment models used 
for deploying high-security blockchain networks, it can be 
observed that the complexity of these models increases 
exponentially w.r.t. network size, or these models showcase lower 
efficiency under large number of attacks.  
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Figure 1. Overall flow of the designed model for blockchain-enabled 
routing process 

     
The design of a predictive trust model that is based on VARMA 

with a fusion of GRU & LSTM techniques has been developed to 
overcome these issues. Based on figure 1, it can be observed that 
the proposed model initially collects a wide variety of network 
metrics including temporal delays during communication, their 
respective energy consumption levels, throughput levels & packet 
delivery ratio (PDR) levels. These levels are aggregated to form an 
integrated trust level, which is estimated via equation 1, 
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 Where, the delay 𝑑𝑑 is estimated via equation 2, 
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 Where, 𝑡𝑡𝑡𝑡 represents the timestamps of completion and 
initiation of these requests. Similarly, the energy consumed 𝑒𝑒 is 
estimated via equation 3, 

𝑒𝑒 = 𝐸𝐸(𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡) − 𝐸𝐸(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑡𝑡𝑒𝑒) … (3) 
       Where, 𝐸𝐸 is the residual energy of nodes. The PDR & 
Throughput (THR) are estimated via equations 4 & 5 as follows, 

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑃𝑃𝑀𝑀(𝑃𝑃)
𝑇𝑇𝑀𝑀(𝑃𝑃)

… (4) 

𝑇𝑇𝑇𝑇𝑃𝑃 =
𝑃𝑃𝑀𝑀(𝑃𝑃)
𝑑𝑑

… . (5) 

 Where, 𝑇𝑇𝑀𝑀 & 𝑃𝑃𝑀𝑀 represents the transmitted and received 
packet counts. Such trust levels are estimated for each node, and 
continuously updated for each set of 𝑁𝑁 communications. Once 
these trust levels are estimated, then relative trust indices (RTI’s) 
are calculated between individual nodes via equation 6, 

𝑃𝑃𝑇𝑇𝑅𝑅(𝑡𝑡,𝑑𝑑) =
𝑇𝑇(𝑡𝑡)
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 Where, 𝑃𝑃(𝑡𝑡,𝑑𝑑) represents the distance between source (𝑡𝑡) 
and destination (𝑑𝑑) nodes, which is evaluated via equation 7, 

𝑃𝑃(𝑡𝑡,𝑑𝑑) = �(𝑀𝑀𝑡𝑡 − 𝑀𝑀𝑑𝑑)2 + (𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑑𝑑)2 … (7) 

These relative trust levels are processed via a fusion of LSTM & 
GRU operations, which assist in finding hidden data patterns. The 
overall flow of this process can be observed from figure 2, where 
results of LSTM are cascaded with GRU in order to obtain high-
density feature sets 

 
Figure 2. Cascaded fusion of LSTM with GRU for identification of 
high-density features 
  

The model initially estimates a set of input (𝑖𝑖), functional (𝑓𝑓), 
output (𝑐𝑐), and convolutional (𝑐𝑐) features via equations 8, 10, 11 & 
12 as follows, 

𝑖𝑖 = 𝑣𝑣𝑀𝑀𝑣𝑣(𝑃𝑃𝑇𝑇𝑅𝑅 ∗ 𝑈𝑈𝑖𝑖 + ℎ(𝑡𝑡 − 1) ∗ 𝑊𝑊𝑖𝑖) … (8) 
 Where, 𝑈𝑈 & 𝑊𝑊 represents constants of the LSTM process, 

while ℎ represents a kernel metric, which is incrementally updated 
by the GRU process. The 𝑣𝑣𝑀𝑀𝑣𝑣 function is evaluated via equation 9 
as follows, 
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 Where, 𝑁𝑁 is the total count of input samples.  
𝑓𝑓 = 𝑣𝑣𝑀𝑀𝑣𝑣(𝑃𝑃𝑇𝑇𝑅𝑅 ∗ 𝑈𝑈𝑓𝑓 + ℎ(𝑡𝑡 − 1) ∗ 𝑊𝑊𝑓𝑓) … (10) 
𝑐𝑐 = 𝑣𝑣𝑀𝑀𝑣𝑣(𝑃𝑃𝑇𝑇𝑅𝑅 ∗ 𝑈𝑈𝑜𝑜 + ℎ(𝑡𝑡 − 1) ∗ 𝑊𝑊𝑜𝑜) … (11) 
𝐶𝐶 = 𝑡𝑡𝑀𝑀𝑖𝑖ℎ(𝑃𝑃𝑇𝑇𝑅𝑅 ∗ 𝑈𝑈𝑔𝑔 + ℎ(𝑡𝑡 − 1) ∗𝑊𝑊𝑔𝑔) … (12) 

 A fusion of these features is used to estimate a cascaded 
temporal output (𝑇𝑇) via equation 13, 

𝑇𝑇 = 𝑣𝑣𝑀𝑀𝑣𝑣(𝑓𝑓 ∗ 𝑃𝑃𝑇𝑇𝑅𝑅(𝑡𝑡 − 1) + 𝑖𝑖 ∗ 𝐶𝐶) … (13) 
 Based on these metrics, the output kernel is updated via 
equation 14, 

ℎ(𝑐𝑐𝑜𝑜𝑡𝑡) = 𝑡𝑡𝑀𝑀𝑖𝑖ℎ(𝑇𝑇) ∗ 𝑐𝑐… (14) 
The output kernel and cascaded temporal output metrics are used 

to estimate forgetting & retaining (𝑧𝑧 & 𝑣𝑣) factors via equations 15 
& 16 as follows, 

𝑧𝑧 = 𝑣𝑣𝑀𝑀𝑣𝑣(𝑊𝑊𝑧𝑧 ∗ [ℎ(𝑐𝑐𝑜𝑜𝑡𝑡) ∗  𝑇𝑇]) … (15) 
𝑣𝑣 = 𝑣𝑣𝑀𝑀𝑣𝑣(𝑊𝑊𝑣𝑣 ∗ [ℎ(𝑐𝑐𝑜𝑜𝑡𝑡) ∗  𝑇𝑇]) … (16) 

A fusion of these metrics is done via equation 17, which assists 
in estimation of the final feature vector, while equation 18 estimates 
the updated kernel metric sets. 

𝑀𝑀𝑐𝑐𝑜𝑜𝑡𝑡 = (1 − 𝑧𝑧) ∗ ℎ(𝑡𝑡) + 𝑧𝑧 ∗ ℎ(𝑐𝑐𝑜𝑜𝑡𝑡) … (17) 
ℎ(𝑡𝑡) = 𝑡𝑡𝑀𝑀𝑖𝑖ℎ(𝑊𝑊 ∗ [𝑣𝑣 ∗ ℎ(𝑐𝑐𝑜𝑜𝑡𝑡) ∗  𝑇𝑇]) … (18) 

The value of ℎ is used to update the LSTM outputs, and this 
process is continued for multiple Iteration sets. These iterations are 
completed once equation 19 is satisfied, 
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≈ 1 … (19) 

After this process is converged, then to predict trust levels of 
nodes the VARMA (Vector Autoregressive Moving Average) 
model is used, which considers these LSTM & GRU features. The 
VARMA model incorporates both autoregressive (AR) and moving 
average (MA) components. The Autoregressive (AR) model is 
represented via equation 20, 

𝑇𝑇(𝑡𝑡) =  𝑐𝑐 +  𝜙𝜙𝑇𝑇(𝑡𝑡 − 1) +  𝜃𝜃𝑒𝑒(𝑡𝑡 − 1) +  𝑒𝑒(𝑡𝑡) … (20) 
 Where, T(t) represents the current LSTM & GRU trust 

level features, c is the constant term., ϕ is the autoregressive 
coefficient, indicating the impact of the previous trust level on the 
current one, T(t-1) represents the previous trust levels. While, θ is 
the moving average coefficient, representing the impact of the 
previous error term on the current trust levels, e(t-1) is the lagged 
error term, indicating the discrepancy between the predicted and 
actual trust levels at the previous time steps. Also, e(t) represents 
the current error term, capturing the difference between the 
predicted and actual trust levels at the current time steps. 

Similarly, the Moving Average (MA) is estimated via equation 
21, 

𝑒𝑒(𝑡𝑡) =  𝜓𝜓 +  𝜑𝜑 ∗ 𝑒𝑒(𝑡𝑡 − 1) +  𝜈𝜈(𝑡𝑡) … (21) 
 Where, e(t) represents the current error term, ψ is the 

constant term in the moving average equation, φ is the moving 
average coefficient, indicating the impact of the previous error term 
on the current one, e(t-1) represents the lagged error term, ν(t) 
denotes the current white noise term, capturing the random 
component of the trust level prediction process. 

These equations form the foundation of the VARMA model for 
predicting trust levels. The coefficients (ϕ, θ, φ) are estimated using 
Bayesian estimation process for different datasets & samples. To 
estimate the coefficients (ϕ, θ, φ) in the VARMA model using 
Bayesian estimation, we need to specify prior distributions for these 
coefficients and then update these distributions using the observed 
datasets & samples. The Prior Distributions are estimated via 
equation 22, 

𝜙𝜙 ~ 𝑁𝑁𝑐𝑐𝑣𝑣𝑐𝑐𝑀𝑀𝑐𝑐(𝜇𝜇𝜙𝜙,𝛴𝛴𝜙𝜙) 
𝜃𝜃 ~ 𝑁𝑁𝑐𝑐𝑣𝑣𝑐𝑐𝑀𝑀𝑐𝑐(𝜇𝜇𝜃𝜃,𝛴𝛴𝜃𝜃) 

𝜑𝜑 ~ 𝑁𝑁𝑐𝑐𝑣𝑣𝑐𝑐𝑀𝑀𝑐𝑐(𝜇𝜇𝜑𝜑,𝛴𝛴𝜑𝜑) … (22) 
 Where, Normal represents a normal distribution, μϕ, μθ, 

μφ are the prior means for ϕ, θ, φ, respectively, Σϕ, Σθ, Σφ are the 
prior covariance matrices for ϕ, θ, φ for different processes. 
Similarly, the Likelihood Function is estimated via equation 23, 

 
𝑐𝑐(𝑇𝑇 | 𝜙𝜙, 𝜃𝜃,𝜑𝜑)  =  𝑁𝑁𝑐𝑐𝑣𝑣𝑐𝑐𝑀𝑀𝑐𝑐(𝑇𝑇(𝑡𝑡)| 𝑐𝑐 +  𝜙𝜙𝑇𝑇(𝑡𝑡 − 1)

+  𝜃𝜃𝑒𝑒(𝑡𝑡 − 1),𝜎𝜎2) … (23) 
 Where, T(t) represents the observed trust level features at 

time t, c, ϕ, θ are the coefficients to be estimated, T(t-1) denotes the 
previous trust level features, e(t-1) represents the lagged error 
terms, 𝜎𝜎2 is the variance of the trust level predictions. Based on 
these metrics, the Posterior Distributions are estimated via equation 
24, 

 
𝑐𝑐(𝜙𝜙 | 𝑇𝑇, 𝜃𝜃,𝜑𝜑)  ∝  𝑐𝑐(𝑇𝑇 | 𝜙𝜙,𝜃𝜃,𝜑𝜑)  ∗  𝑐𝑐(𝜙𝜙) 𝑐𝑐(𝜃𝜃 | 𝑇𝑇,𝜙𝜙,𝜑𝜑)  

∝  𝑐𝑐(𝑇𝑇 | 𝜙𝜙, 𝜃𝜃,𝜑𝜑)  ∗  𝑐𝑐(𝜃𝜃) 𝑐𝑐(𝜑𝜑 | 𝑇𝑇,𝜙𝜙,𝜃𝜃)  
∝  𝑐𝑐(𝑇𝑇 | 𝜙𝜙, 𝜃𝜃,𝜑𝜑)  ∗  𝑐𝑐(𝜑𝜑) … (24) 

Where, p(ϕ | T, θ, φ), p(θ | T, ϕ, φ), p(φ | T, ϕ, θ) represent the 
posterior distributions of ϕ, θ, φ, respectively, p(T | ϕ, θ, φ) is the 
likelihood function, and p(ϕ), p(θ), p(φ) are the prior distributions 
for different feature sets. 

The posterior distributions are then updated using Bayes' 
theorem or through Markov Chain Monte Carlo to obtain the 
posterior samples of ϕ, θ, φ, which assists in incorporating prior 
information about the coefficients and update our beliefs based on 
the observed data to obtain the posterior distributions of ϕ, θ, φ, 
which can be used for inference and prediction in the VARMA 
models. Nodes with higher VARMA probabilities are used for 
routing & mining operations. These probabilities are estimated 
using a fusion of AR & MA Models via equation 25, 

𝑃𝑃(𝑐𝑐𝑜𝑜𝑡𝑡) =
𝑇𝑇(𝑡𝑡) − 𝑒𝑒(𝑡𝑡)

𝑇𝑇(𝑡𝑡)
… (25) 

Based on this process, nodes are selected for routing data 
samples, and for identification of miner nodes. These miner nodes 
are selected by finding 𝑃𝑃(𝑐𝑐𝑜𝑜𝑡𝑡) levels for all nodes, and then 
estimating a probability threshold via equation 26, 

 

𝑃𝑃(𝑡𝑡ℎ) =
1
𝑁𝑁
� 𝑃𝑃(𝑐𝑐𝑜𝑜𝑡𝑡, 𝑖𝑖) … (26)

𝑁𝑁

𝑖𝑖=1
 

 Where, 𝑁𝑁 are the number of nodes with higher probability 
levels. Using this process, the model is able to identify optimal 
nodes for both routing & mining operations. The efficiency of this 
process is estimated in terms of communication delay, energy 
needed during communications, throughput and PDR levels. This 
efficiency was computed for different scenarios and compared with 
existing models in the next section of this text. 

RESULTS & COMPARISON 
Combining LSTM and GRU-based trust-based blockchain 

mining and routing operations with VARMA for multiple network 
scenarios is the proposed model. In order to validate the 
performance of this model, it was subjected to extensive network 
configuration and scenario-based testing. 1500 to 2500 IoT nodes 
are deployed in a 1.5 km x 1.5 km network using the Adhoc on 
Demand Distance Vector (AODV) routing protocol model, which 
enables a dynamic and efficient routing process. Omnidirectional 
antennas facilitate communication between nodes and provide 
broad coverage sets. Utilizing a priority queue with packet drop-
tailing, the network prioritizes critical datasets and samples. Each 
node requires 1.5 mJ of transmission energy and 0.25 mJ of 
reception energy during communication. In sleep mode, power 
consumption is 0.01 mJ. The energy required to move between 
nodes is 1 mJ. These parameters collectively define the 
configuration of the IoT network, enabling reliable and efficient 
communication between nodes. 

The number of network attacks was varied between 1% and 20% 
based on this configuration, and parameters for various 
performance metrics, including throughput (T), delay (d), packet 
delivery ratio (PDR), and energy (E) levels, were estimated. Based 
on this analysis, the throughput levels were compared w.r.t. Total 
Number of Communications (TNC) with DRL,3 SA GIN,15 & 
BDRL,22 and can be observed in figure 3 as follows, 
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Figure 3. Level of throughput for different Number of 
Communications 

 
In real-time scenarios, the proposed model increases Routing 

throughput by 8.3%, 9.5%, and 10.0% when compared to the DRL,3 
SA GIN,15 and BDRL22 methods, respectively. These throughput 
levels are enhanced by the application of high-performance LSTM 
& GRU-based blockchain miner selection and VARMA-based 
routing process, which facilitate the extraction of probabilistic 
features and the accurate prediction of routing nodes for various 
Network scenarios. Similarly, Figure 4 depicts the delay required 
for these communications. 

 

Figure 4. Delay needed for different mining & communication 
requests. 

 
Based on the results, the proposed model reduces the time 

required to identify routing configurations in real-time scenarios by 
10.4% compared to DRL,3 SA GIN,15 and BDRL.22 By combining 
high-performance multidomain features with network-specific 
VARMA models, as well as LSTM and GRU-based blockchains, 

this delay is minimized. This enables more accurate routing 
configuration prediction for a range of IoT network & traffic types. 
Similar to that, Figure 5 shows the energy needed for these 
evaluations. 

 

Figure 5. Energy needed for different mining & communication 
requests. 

 
The results show that, in real-time scenarios, the proposed model 

consumes 4.9% less energy for routing configuration identification 
than DRL,3 8.3% less energy than SA GIN,15 and 8.5% less energy 
than BDRL.22 By combining multidomain features with high-
performance network-specific VARMA Models and using 
blockchains based on LSTM & GRU process, this energy 
performance is improved. As a result, routing configurations for a 
variety of IoT Network & Traffic types can be predicted more 
energy-efficiently. Similar to that, Figure 6 shows the PDR 
observed for these evaluations. 

 

Figure 8. PDR levels that are observed & needed during different 
mining & communication requests. 

Based on the results, PDR using the proposed model is increased 
by 4.5% compared to DRL,3 8.3% using SA GIN,15 and 9.5% using 
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BDRL22 during the identification of Routing configurations in real-
time scenarios. By combining multidomain features with high-
performance network-specific VARMA Models and LSTM & 
GRU-based blockchains, this PDR is improved. This enables more 
accurate routing configuration prediction for a range of IoT 
network & traffic types. The suggested model is now more effective 
across multiple deployments and is deployable for a variety of 
network scenarios. 

CONCLUSION 
A novel predictive trust model that accurately predicts routing 

configurations in real-time scenarios for various IoT network and 
traffic types using a combination of high-performance LSTM and 
GRU-based blockchain miner selection, VARMA-based routing 
process, and multidomain features have been designed here. The 
study's findings show that the designed model is more effective and 
efficient than other approaches like DRL, SA GIN, and BDRL. 

The experimental evaluation demonstrates the VGLTMHPN 
model's superiority over the aforementioned approaches in terms of 
routing throughput, the amount of time needed to identify routing 
configurations, energy consumption, and packet delivery ratio 
(PDR). All of these performance metrics experience significant 
improvements thanks to the proposed model. 

First, the VGLTMHPN model performs better than DRL, SA 
GIN, and BDRL in terms of routing throughput by 8.3%, 9.5%, and 
10.0%, respectively. The use of high-performance LSTM and 
GRU-based blockchains, which allow the extraction of 
probabilistic features and precise prediction of routing nodes, is 
credited with these improvements. 

Second, compared to DRL, SA GIN, and BDRL, the proposed 
model reduces the time needed for routing configuration 
identification by 10.4%. High-performance multidomain features, 
network-specific VARMA models, the use of LSTM and GRU-
based blockchains, and other techniques are combined to achieve 
this reduction. With less time required, real-time scenarios can 
predict routing configurations that are timelier and more effective. 

Thirdly, compared to DRL, SA GIN, and BDRL, the energy 
consumption for routing configuration identification is decreased 
by 4.9%, 8.3%, and 8.5%, respectively. Multidomain features, 
high-performance network-specific VARMA models, and LSTM 
& GRU-based blockchains are all combined to achieve this 
reduction. The proposed model thus enables more energy-efficient 
routing configuration prediction for different IoT network and 
traffic types. 

Finally, when identifying routing configurations in real-time 
scenarios, the packet delivery ratio (PDR) is increased by 4.5% 
compared to DRL, 8.3% compared to SA GIN, and 9.5% compared 
to BDRL. The proposed model improves the PDR across various 
deployments and network scenarios by utilizing multidomain 
features, high-performance network-specific VARMA models, and 
LSTM and GRU-based blockchains. 

In conclusion, the VGLTMHPN model discussed in this paper 
provides a thorough solution for predictive trust modeling in high-
performance blockchain networks. By utilizing cutting-edge 
methods like LSTM and GRU-based blockchains, VARMA-based 
routing procedures, and multidomain features, the model is able to 

increase routing throughput while lowering identification times, 
consuming less energy, and improving packet delivery ratio. The 
effectiveness and applicability of the suggested model in various 
real-time IoT network and traffic scenarios are highlighted by these 
findings. 

FUTURE SCOPE 
The work identifies several avenues for future research and 

improvement opportunities. Here are some potential future research 
areas: 

Integration of additional architectures for deep learning: Future 
research could investigate the integration of other deep learning 
architectures, such as Transformer models or attention 
mechanisms, to further improve the trust model's predictive 
abilities. Exploring the combination of multiple architectures may 
result in even more accurate and efficient performance. 

Inclusion of additional network-specific characteristics: By 
incorporating additional network-specific characteristics and 
parameters, the proposed model's multidomain features can be 
expanded. By taking into account additional characteristics such as 
network topology, latency, bandwidth, and node proximity, the 
trust model can be improved to provide more accurate predictions 
and enhanced adaptability to diverse network environments. 

Optimization of model hyperparameters: The paper presents 
promising results, but there is room for optimization of the 
VGLTMHPN model's hyperparameters. Exploring the effect of 
different hyperparameter settings on the model's performance could 
lead to even better results if additional research is conducted. To 
efficiently search the hyperparameter space and identify optimal 
configurations, grid search and Bayesian optimization can be 
employed. 

Future research could investigate the scalability and efficacy of 
the proposed model in larger-scale networks. Experiments 
conducted on networks with significantly more nodes and 
transactions would shed light on how the model performs under 
more complex and realistic conditions. This could involve 
simulating or deploying the model on testbeds or large-scale 
blockchain networks. 

New approaches and methodologies will emerge as the 
blockchain, and trust modeling field continues to develop. Future 
research can compare the proposed VGLTMHPN model to these 
emerging trust models to evaluate its relative performance and 
identify improvement opportunities. Comparative studies against 
state-of-the-art models can further the development of trust 
modeling techniques in high-performance blockchain networks. 

Implementation and deployment considerations: To validate the 
practicability and real-world applicability of the proposed model, it 
could be implemented and deployed in a live blockchain network. 
This would provide valuable insights regarding the model's 
performance, scalability, and interaction with other blockchain 
ecosystem components. In addition, examining the implementation 
obstacles, resource needs, and potential limitations in a real-world 
setting can inform future enhancements and deployment strategies. 

Extension to other domains: Although this paper focuses on 
Internet of Things (IoT) networks and traffic types, the proposed 
model's principles may be applicable to other domains beyond 
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blockchain networks. Exploring the applicability and efficacy of 
the VGLTMHPN model in diverse domains, such as cybersecurity, 
social networks, and financial systems, would expand its scope and 
reveal new insights and applications. 

In conclusion, the future scope of this paper encompasses further 
investigation of deep learning architectures, incorporation of 
additional features, optimization of model hyperparameters, 
evaluation in larger-scale networks, comparison with emerging 
trust models, implementation and deployment considerations, and 
extension to other domains. Continued research in these areas will 
aid in the development and practical application of predictive trust 
models for high-performance blockchain networks. 
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