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ABSTRACT 
 
 
This paper presents a framework for the remote processing 
and quantitative analysis of water quality parameters, 
specifically chlorophyll and sea surface temperature (SST). 
The framework is organized into three directories. The first 
directory accesses and examines water quality parameters, 
the second collocates in-situ observations with satellite 
data, and the third integrates Ocean Observatories 
Initiative (OOI) data via Machine to Machine (M2M) 
interfaces. The analysis of chlorophyll concentration is 
defined in correlation with SST, employing the Gradient of 
Mean and Mean of Gradient mathematical tools for change 
detection. The result is a system that leverages cloud 
technology to access, process, and analyze data. With a spatial gradient tolerance of 90 percentile, the framework enables accurate change 
detection from time-average data. This methodology contributes to the field of water quality analysis, offering new insights into environmental 
monitoring and marine science. 
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INTRODUCTION 
Water quality is subject to constant change due to a myriad of 

factors including natural phenomena (e.g., weather, rainfall) and 
human activities (e.g., industrial discharges, accidental spills).1,2 
The effective monitoring of these changes is vital for the sound 
management of water resources.3,4 Remote sensing offers an 
efficient, methodical approach for monitoring and analyzing large, 
outlying, and otherwise inaccessible locations. This technology 
enables spatial and temporal analysis across vast regions, offering 
a cost- and time-effective solution.5 Major challenges in the studies 
of remote sensing data and diverse set of applications including 
environmental modeling, are discussed by Dubovik et al.6 Similarly 

the study presented by B. Zhang et al.7 bring up how to address 
some of the hurdles and fully utilize the potential of intelligent 
remote sensing satellite systems across diverse applications. 

Remote sensing methods for water quality parameter analysis 
involve measuring various factors that determine water quality 
within specific regions over time, using earth observatory images. 
This approach has broad applications, such as the development of 
management plans for various natural resource management 
issues.5 Timely and efficient detection of changes is central to this 
process. Recent advancements have led to the creation of many 
remote sensing modular tools for processing satellite imagery for 
societal and environmental welfare. However, most of these tools 
necessitate separate downloading and importing of data, sometimes 
requiring pre-processing before utilization. 

Earlier works on the acquisition and analysis of chlorophyll data 
have emphasized the importance of analyzing harmful algal bloom 
(HAB) cover with in-situ data, but this can be costly and labor-
intensive. Collecting data from remote or extensive areas can be 
impractical or unfeasible. Therefore, using remote sensing data 
analysis, an algorithmic approach can be developed to time-
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correlate ocean color data.8,9 In this work, we utilized open-source 
satellite data from the National Aeronautics and Space 
Administration (NASA)10 and computed gradients for accurate 
analysis of chlorophyll growth across vast geographical extents. 

The data employed in this method originates from the MODIS 
(Moderate Resolution Imaging Spectroradiometer) Aqua (formerly 
EOS PM) satellite for water surface analysis. These NetCDF11 
(Network Common Data Form) file formats facilitated the targeting 
of specific data files in the satellite data download library. We 
applied a default chlorophyll algorithm (chlor_a), the standard 
OC3/OC4 (OCx) band ratio algorithm combined with the color 
index (CI) 10, for detecting chlorophyll from satellite data. The 
results were then correlated with the Sea Surface Temperature 
(SST) of the same location, and cross-verified with in-situ 
Unmanned Surface Vehicle (USV) data from Saildrone Cruise 

using Python's numpy, matplotlib, pandas, cmocean, and Xarray12 
libraries. 

The current framework encompasses: 
• Time-variant chlorophyll data plotting after pre-

processing and subsetting. 
• Normal distribution plotting of processed chlorophyll 

values through satellite data. 
• Comparison of chlorophyll values with SST, including 

gradient plotting. 
• Collocation of processed satellite data with in-situ 

values using Linear Interpolation and Nearest 
Neighbor Interpolation methods. 
 

Remote sensing has emerged as a vital tool for identifying and 
monitoring areas affected by water contaminants, tracking their 
dispersion patterns through satellite data. Many researchers have 
contributed to the development of methods for defining and 
estimating water quality parameters.13  

Z. Chen et al. conducted a case study in Tampa Bay, employing 
time-series images from MODIS, collected over a four-year span, 
for mapping turbidity.14 They developed a method for turbidity 
mapping, comparing it with in-situ surveys, and concluded that 
satellite remote sensing is an invaluable tool for water quality 
monitoring. This approach enhanced the assessment of turbidity 
patterns within their study. 

Gholizadeh et al.15 conducted an extensive review of water 
quality parameter estimation, recommending hyperspectral remote 
sensing on platforms such as Landsat-8 for local studies.  

G. Yang et al.16 utilized MODIS surface reflectance data, 
specifically products like MOD09GQ and MYD09GQ, to derive 
water surface turbidity in Darwin Harbour and adjacent coastal 
areas. This application of MODIS surface reflectance products has 
demonstrated its utility in this context. 

In another dimension of marine pollution detection, a 
comprehensive analysis encompassing oil spill identification, algal 
bloom monitoring, and river plume tracking using active 
spaceborne sensors was presented in ref [13]. Shen et al. proposed a 
specific framework to study harmful algal blooms through remote 
sensing.17 Additionally, a critical review focusing on phytoplankton 
blooms and the application of ocean color remote sensing methods 
was detailed in work reported in ref[18].  

Chauhan et al.19 contributed to understanding chlorophyll 
distribution on the sea surface, based on Ocean Colour Monitor 
satellite data obtained from IRS-P4. Whereas, the research 
conducted by Shareef et al. assessed and monitored water quality 
by utilizing texture parameters such as Gray-Level Co-Occurrence 
Matrix (GLCM).20 They employed a polynomial quadratic model 
to fit, measure, and calculate water quality parameters, achieving 
an accuracy of up to 95%.  

Chiswell et al. embarked on an intricate climatology study of 
mean and seasonal cycles, carefully exploring their spatial extent 
and timing as key factors.21 This investigation laid the groundwork 
for further exploration of water quality parameters such as 
chlorophyll concentration and sea surface temperature (SST). In a 
related vein, Brown and Minnet devised an algorithm using MODIS 
to observe SST, investigating the variations in thermal infrared and 
mid-infrared effects on the back-scattering coefficient between day 
and night.22 Their work not only extended the understanding of 
these dynamics but also thoroughly examined the constraints and 
limitations of remote sensing in lakes and rivers. 

Building on these foundational studies, A. G. O' Carroll et al. 
penned a comprehensive white paper that covered a wide array of 
aspects related to SST, including its significant impact on climatic 
patterns.23 This work further highlighted the future needs for a high-
resolution SST observing system and elaborated on methods for 
water surface temperature retrieval from single-band Landsat 
imagery through the MODTRAN model, as well as techniques for 
estimating cloud fraction over water pixels using OLI data.24 

Further bridging the gap between satellite observation and actual 
measurements, J. Vazquez-Cuervo et al. presented the work that 
validated remotely sensed SST and sea surface salinity (SSS) data 
against measurements from an unmanned surface vehicle called 
Saildrone during a campaign in Baja California.25,26 Their findings 
revealing nuanced biases and root mean square differences between 
various satellite-derived products and USV-derived values, 
underscored the precision and potential biases in current remote 
sensing techniques.  

In addition to these works, Q. Cao et al.27 discusses the use of 
hyperspectral remote sensing for inland water quality detection. 
The authors compare the relative merits of varying remote sensing 
platforms, popular inversion models, and the application of 
hyperspectral monitoring of various water quality parameters. The 
work suggests that with the rapid development of aerospace 
technology and near-surface remote sensing, the spectral resolution 
of remote sensing imaging technology has been dramatically 
improved and has begun to be applied to small water bodies. 

These studies showed that remote sensing is a powerful tool for 
monitoring water quality. It can provide high spatial and temporal 
resolution data for thousands of lakes at a time, and can be used to 
evaluate environmental problems and potential health risks through 
the analysis of changes in water quality and the detection of harmful 
algal blooms. Remote sensing of water quality involves the use of 
visible and infrared portions of the electromagnetic spectrum to 
explore the sensitivity of spectral band combinations by utilizing 
advanced computing techniques. 

There are several open-source software tools available for 
processing satellite data for water quality monitoring. One such tool 
is NASA's SeaDAS software, which is used for image processing 
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and analysis of ocean color data.28 Another tool is Google Earth 
Engine, a cloud-based platform that supports simple image retrieval 
and large-scale processing.29 There are also several open-source 
Python libraries available for working with satellite and aerial 
imagery data, such as GDAL, Rasterio, and Geopandas.30 

By synthesizing these diverse insights and methodologies, the 
current study has recognized the heavy reliance on parameters such 
as chlorophyll concentration, SST, and turbidity in existing 
methods for assessing water quality. Thus, the necessity of 
developing a well-defined framework that leverages open-source 
software platforms, such as Python 3.7 (with the gdal and 
geopandas packages) and SeaDAS 7.5.3 
(https://seadas.gsfc.nasa.gov/downloads/), emerges. This 
framework aims to facilitate access to these vital parameters from 
remotely sensed data, allowing for detailed processing and 
comparison with in-situ observations over time. Utilizing satellite 
data from sources like Landsat, Sentinel 1A and 1B, and MODIS 
(Aqua and Terra), this approach shows promise in enhancing the 
understanding of regional changes in water parameters, offering a 
robust avenue for continued exploration and application in water 
quality analysis. 

METHODOLOGY 
The main objective of this work is to provide a new framework 

for full-length processing of satellite images for the determination 
of water quality parameters analysis. Figure 1 illustrates the 
complete framework proposed to implement this work, with the 
description of each block provided in the subsections that follow. 

 
Figure 1. Designed framework for determination of water quality 
parameters 
 

Accessing Satellite Data From A Remote Server 
The retrieval of satellite data constitutes an essential phase in 

the analytical framework for assessing oceanic parameters, such as 

chlorophyll concentration. The data utilized in this study were 
extracted from NASA's Oceandata.sci 3 Modis Aqua L3SMI, an 
open-source repository that hosts ocean color data. These datasets 
are devoid of a time dimension, necessitating a specialized 
approach for integration into a temporal analysis. 

 

 

Figure 2. Flowchart for chlorophyll data retrieval from from Cloud 
Defining the Toolkit for Data Extraction 

 
A systematic toolkit was developed to streamline the extraction 

of data, encompassing the following specifications for data 
selection: 

(i) Start Date: The commencement point of the time series. 
(ii) End Date: The concluding date of the time series. 
(iii) Desired Variable: The specific oceanic parameter under 

study (e.g., chlorophyll concentration). 
(iv) Associated Variable Algorithm/Method: Algorithm used 

for the particular variable (e.g., chl_ocx algorithm). 
(v) Time-Binning Period: The temporal aggregation level for 

the data (e.g., 8-day intervals). 
(vi) Spatial Resolution: The granularity of spatial data (e.g., 9 

kilometers). 
 
Figure 2 illustrates the process for retrieving chlorophyll data 

from the cloud. The process begins with the definition of 
parameters including start and end dates (01-01-2018 to 01-07-
2018), desired variable (chlorophyll), algorithm (chl_ocx), time-
binning period (8 days), and spatial resolution (9 km). The data is 
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then retrieved and undergoes cleaning and organization, which 
includes time alignment and concatenation of individual datasets 
into a time series dataset. Subsequent mathematical analyses 
include the computation of time-variable chlorophyll 
concentrations and spatial distribution.  

A time and longitude mean of chlorophyll is computed using 
the chl_ocx algorithm and visualized in Figure 3. By averaging over 
both time and longitude, this representation encapsulates the spatial 
distribution of chlorophyll concentration across latitudes. It helps 
in revealing patterns and trends that might be linked to geographical 
features, ocean currents, or seasonal changes. Analyzing such data 
assists in understanding the ecological dynamics and health of the 
marine ecosystem. 

 

 
 

Figure 3. Time and longitude mean of chlorophyll using chl_ocx 
algorithm 

 
In Figure 4, a plot of the latitude-longitude mean of chlorophyll-

a readings obtained from ocean color data is presented. By 
collapsing the spatial dimensions into a single mean value for each 
time step, this plot emphasizes the temporal dynamics of 
chlorophyll concentration. It provides insights into how chlorophyll 
levels vary over time, independent of specific geographical 
locations. Such an analysis is crucial for studying phenomena like 
algal blooms and assessing the impacts of climatic or human-
induced changes on marine productivity. 

 

 
 

Figure 4. Latitude and longitude mean of chlorophyll using chl_ocx 
algorithm 

 

In Figure 5, three interconnected visualizations represent 
different aspects of chlorophyll concentration in the chosen 
geographical region: 

Mean Chlorophyll Concentration (log-transformed): The first 
plot provides a logarithmic view of the mean chlorophyll 
concentrations. By utilizing a logarithmic transformation, it 
emphasizes the differences between areas of low and high 
concentrations. This highlights the regions where the chlorophyll 
concentration is more prominent, aiding in identifying areas of 
ecological interest. 

Standard Deviation of Chlorophyll Concentration: The middle 
plot illustrates the standard deviation (σ) of the chlorophyll 
concentration across the region. The presentation of standard 
deviation offers insights into the variability of chlorophyll levels, 
revealing areas where fluctuations are more significant. This can be 
indicative of underlying ecological dynamics and may signal areas 
that warrant further investigation. 

Coefficient of Variation (CV) of Chlorophyll Concentration: The 
third plot represents the coefficient of variation, calculated as the 
ratio of the standard deviation to the mean. By depicting the CV, it 
offers a standardized view of the variability relative to the mean 
concentration. This normalized measure allows for a more direct 
comparison between different regions and may help in identifying 
zones where the relative variability is especially noteworthy. 

These plots are aligned along meridians and parallels, reflecting 
their spatial distribution on the Earth's surface. Together, they offer 
a multi-faceted view of chlorophyll distribution in the study area. 
By presenting mean concentrations, variability, and relative 
variability (CV), these visualizations facilitate a nuanced 
understanding of chlorophyll patterns and their potential ecological 
significance. This combination of visualizations underscores the 
complexity of the distribution and may guide further studies to 
uncover the underlying biological, chemical, and physical 
processes that govern chlorophyll distribution in the selected 
region. 
 

 
Figure 5. Analysis of Chlorophyll concentration across specified 
Meridians and Parallels. 
 

Mean Gradient Computation For Chlorophyll And Sea Surface 
Temperature 

The analysis of chlorophyll concentration and Sea Surface 
Temperature (SST) in oceanographic studies requires the 
computation of spatial gradients to provide insights into changes 
and variations across the study region. Figure 6 presents a flowchart 
outlining the method employed to compute these spatial gradients. 

The computation of spatial gradients (|∇chl|) for chlorophyll data 
and corresponding Sea Surface Temperature (SST) is executed 
through a process that includes several intricate steps, aided by a  
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Figure 6. Flowchart for computing spatial gradients 

 
specific toolkit for deriving derivatives. The data is loaded into an 
x-array format, a strategic decision that enables data transfer to the 
local machine only when needed. Although this approach 
minimizes memory requirements, it might lead to an extended 
computation time. The following key steps are performed: 

(i) Data Subsetting: The data is subset to target specific regions 
of interest, thus reducing the computational load. Figure 7 
illustrates this subsetting by showing plots of chlorophyll and SST 
against the time mean. 

(ii) NaN Value Masking: Any NaN (not a number) values within 
the data set are masked out. This step is essential as NaN values can 
propagate inaccurately through mathematical operations, especially 
matrix multiplication, leading to potentially erroneous results. 

(iii) Differentiation Matrices Computation: Matrices for 
differentiation are computed in accordance with the physical grids' 
spherical coordinates. This step ensures that the spatial 
characteristics of the data set are appropriately represented. 

(iv) Gradient Computation and Masking: The computation of the 
gradient is applied, and the resulting field is masked consistently 
with the original data. This uniformity ensures that the masking 
process aligns with the particularities of the data set, preserving the 
integrity of the analysis. 

 
Figure 7. Subset of Chlorophyll and Sea Surface Temperature against 
time mean 

Subsequently, we undertook a comparative analysis of the mean 
gradient using two distinct approaches: (a) mean of gradient �∇𝑐𝑐ℎ𝑙𝑙������� 
and (b) gradient of mean |∇ 𝑐𝑐ℎ𝑙𝑙|, as depicted in Figure 8 (a) and (b) 
respectively. The objective of this comparison was to assess 
potential variations between these two approaches and their 
implications for the dataset. 

In theory, both of these approaches should yield identical values. 
However, due to the presence of missing data points, arising from 
land or cloud-covered regions, disparities emerge between them. 
These missing data points introduce errors into the analysis, 
potentially affecting the accuracy of results.  

To address this challenge, we employed an averaging technique 
to modify certain missing values. This adjustment aimed to prevent 
these values from being treated as zero by the differentiation tools, 
a modification that could have further altered the overall dataset 
values.   

By considering these complexities and implementing 
appropriate adjustments, the comparative analysis between the two 
gradient calculation methods provides insights into the potential 
impact of missing or erroneous data on the results. 

 

 
Figure 8. (a) �∇𝑐𝑐ℎ𝑙𝑙������� and |∇𝑠𝑠𝑠𝑠𝑠𝑠������|  plotted for the subset in Figure 7 

Figure 8. (b) |∇ 𝑐𝑐ℎ𝑙𝑙| and |∇ 𝑠𝑠𝑠𝑠𝑠𝑠|  plotted for the subset in Figure 7 
 
    
Collocating In-Situ Data with Satellite Observations 

To co-locate in-situ data with satellite observations, we 
employed the Ocean Observatories Initiative (OOI) data, utilizing 
a Machine-to-Machine (M2M) approach to access data in a .json 
format.  

The OOI THREDDS data was then transformed into a Pandas 
DataFrame for further analysis. Visualizations were created using 
Altair. The analysis centered on data retrieved from the Bulk 
Meteorology Instrument Package device. The utilization of Xarray 
facilitated the simultaneous opening of multiple files through string 
pattern matching. 

To ensure temporal alignment, we manually provided time 
inputs within the designated timeframe, commencing from 12-04-
2018 and ending on 10-06-2018, considering the availability of in-
situ data. It is noteworthy that this timeframe was adjusted to 
exclude data during the periods when the Uncrewed Surface 
Vehicle (USV) was being hauled at the beginning and end of its 
cruise.  
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Subsequently, the cruise track of the Saildrone was plotted, 
encompassing measurements of chlorophyll concentration and Sea 
Surface Temperature (SST). 

Figure 9 showcases the plotted chlorophyll data obtained from 
the MODIS Aqua Level 3 Standard Mapped Image Product, 
corresponding to the same timeframe. Similarly, Figure 10 presents 
the Satellite Sea Surface Temperature Data.  

The initial plot utilized Multiscale Ultrahigh Resolution (MUR) 
SST data, which has a resolution of 0.010. However, to enhance 
computational efficiency, the data was updated by extracting a daily 
product using the NAVOCEANO repository on a 0.10 grid. 

 
Figure 9. Chlorophyll data from MODIS Aqua Level 3 Standard 
Mapped Image Product. 
 

 
Figure 10. Sea Surface Temperature data by NAVOCEANO on a 0.10 
grid 

To seamlessly integrate Saildrone data with SST values, we 
employed Xarray interpolation techniques, ensuring accurate 
alignment between in-situ measurements and satellite-derived SST 
data. Xarray's efficient handling of multi-dimensional arrays 
facilitated this integration. 

Figure 11 (a) and (b) vividly illustrate this integration's 
outcomes, showcasing chlorophyll and SST values tracked by the 
Saildrone's in-situ measurements. Notably, we utilized two 
interpolation methods31 : (i) Linear Interpolation and (ii) Nearest 
Neighbor Interpolation, tailored to capture nuances in chlorophyll 
and Sea Surface Temperature data. 

Figure 11 (a) depicts mean logarithmic chlorophyll values within 
a geographic scope of longitude -100 to -75 and latitude 15 to 30. 
Figure 11 (b) presents Sea Surface Temperature values recorded by 

the Saildrone within the same region. These co-located analyses 
offer insights into intricate spatiotemporal chlorophyll and SST 
patterns, enhancing our understanding of ocean dynamics and 
interactions. 

 
Figure 11. (a) Mean log chlorophyll value tracked by Saildrone in-
situ data for lon: 75°E to 100°E, lat: 15°N to 30°N 

Figure 11. (b) Sea Surface Temperature values tracked by Saildrone 
in-situ data for lon: 75°E to 100°E, lat: 15°N to 30°N 

RESULTS AND DISCUSSION 
Our analysis encompasses a comprehensive exploration of water 

quality parameters, combining satellite observations and in-situ 
data to unveil intricate aquatic dynamics. In this section, we present 
our findings in greater detail, elucidating their significance and 
shedding light on their implications. 

Enhancing Accuracy: Satellite Data Processing 
Through a meticulous sequence of steps, we retrieved 

chlorophyll data from cloud storage and subjected it to a series of 
pre-processing stages. These stages involved sub-setting and 
leveraging Python tools to stack images, synchronize timeframes, 
and load chlorophyll data as sea surface temperature (SST) data. 
The resulting data were harnessed to compute spatial gradients, 
thereby revealing intricate spatial variations. 

However, a noteworthy challenge emerged in the form of 
missing data points. These gaps are attributed to data points located 
over land or obscured by cloud cover. Presently, our analysis 
involves a differentiation process that "masks" these missing points 
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as zeros. While effective, this approach slightly impacts the 
reliability of gradient values, particularly near coastal regions. 
Unveiling Insights: Water Surface Temperature and Algal Blooms 

Water surface temperature emerges as a pivotal parameter, 
influencing algal blooms and climate predictions. By examining 
temperature patterns over time, we established a profound 
relationship between cyanobacterial growth and temperature 
fluctuations. Remarkably, our observations indicated increased 
algal growth during cooler periods in February and November. 
These blooms, while a natural phenomenon, entail consequences 
such as oxygen depletion, rendering the marine ecosystem 
unfavorable for aquatic life. 

While MODIS offers reliable ocean/sea temperature data, it falls 
short in determining surface temperatures of inland water bodies 
like lakes and rivers. Multiple constraints including region 
restrictions, land-water boundaries, cloud cover, and rainfall 
contribute to data inaccuracies. Water surface temperature stands 
as a crucial factor in predicting algal growth trends, evident from 
our plots showcasing the prevalence of algal blooms during lower 
surface temperatures in the mentioned months. 

Validation and Precision: In-Situ Data Collocation 
To underscore the validity of our analysis, we aligned satellite 

observations with in-situ data collected by an unmanned surface 
vehicle (USV) Saildrone. Figures 12 (a) and (b) display the 
comparison results for chlorophyll concentration and sea surface 
temperature, respectively. To enhance the accuracy of these 
comparisons, we employed both linear and nearest neighbour 
interpolation techniques for data alignment. 
 
 

 
 
 

 
 
Figure 12. (a) Collocating satellite observations of chlorophyll values 
with in-situ data from Saildrone tracks 
 

Moreover, we quantified the deviations between processed 
satellite data and in-situ measurements through mean difference  

 

 
 
 

 
 
Figure 12. (b) Collocating satellite observations of SST values with in-
situ data from Saildrone tracks. 
 
and standard deviation calculations. These metrics, outlined in 
Table 1, provide essential insights into the agreement between the 
datasets. For instance, the mean difference for chlorophyll 
concentration was 0.0043, accompanied by a standard deviation of 
0.4741. Similarly, the sea surface temperature exhibited a mean 
difference of 0.2054, coupled with a standard deviation of 0.4816. 
These discrepancies, often linked to missing values due to land or 
cloud cover, underscore the need for rigorous validation in satellite 
data analysis. 

 
Table 1.  Mean and standard deviation difference values between 
processed satellite data and in-situ data 

Water quality 
parameters 

Nearest neighbour 
interpolation 

Linear 
interpolation 

 Mean Standard 
deviation 

Mean Standard 
deviation 

Chlorophyll 
Concentration 

0.0043 0.4741 0.0082 0.5054 

Sea Surface 
Temperature 

0.2054 0.4816 0.2031 0.4635 

CONCLUSIONS 
The pursuit of remote analysis for detecting and quantifying 

water quality parameters through satellite data has been marked by 
challenges that involve intricate remote sensing techniques, diverse 
datasets, and complex algorithms. Historically, the field has 
grappled with computationally intensive and time-consuming 
methods, encompassing in-situ data analysis and modular client 
platforms for satellite image analysis. In response to this landscape, 
we introduced a streamlined and effective python-based 
framework, designed for water quality parameter analysis, 
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featuring key parameters like Chlorophyll concentration and Sea 
Surface Temperature. 

Our framework leveraged open-source satellite data from a 
remote server, specifically the MODIS Aqua Level-3 satellite 
dataset. With this dataset, we orchestrated a series of data 
processing and analysis steps. We created time-variant maps 
depicting chlorophyll concentration and computed mean gradients, 
culminating in valuable insights into spatiotemporal trends. 

Significantly, our methodology navigated challenges tied to 
noise inherent in satellite data, particularly land and cloud cover 
distortions that skewed values. To address this, we set a 90th 
percentile spatial gradient tolerance, a crucial decision in 
preserving data integrity. This approach allowed us to circumvent 
the loss of data points due to differentiation, especially pronounced 
near coastal regions. By opting to average the data rather than 
setting masked points as zero, we ensured a more accurate analysis. 

Our study further delved into the alignment of satellite data with 
in-situ measurements, gauging the deviations between the two 
through linear and nearest neighbor interpolation techniques. This 
holistic approach establishes a foundation for more advanced 
analyses, offering both empirical and reliable insights into water 
quality parameters. 
As our framework advances, the spectrum of analyzable parameters 
broadens. The future holds promise for the determination of 
parameters like oil spills, total dissolved matter, and dissolved 
organic matter with enhanced accuracy. Trends in these parameters 
can be probed over time to predict and anticipate changes, forging 
a comprehensive understanding of aquatic ecosystems. The 
amalgamation of various parameters, interconnected through time-
corrected satellite images, stands as a potent avenue for 
comprehensive water quality assessment. This work thus acts as a 
stepping stone towards more intricate and impactful satellite-based 
analyses. 
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