
Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(4), 574 1

J. Integr. Sci. Technol. 2023, 11(4), 574 . Article .

Journal of Integrated

SCIENCE & TECHNOLOGY

Using TRPO to control quadruped gait behaviors
Aditya Chhabiraj Jaiswal, Shweta Sinha, Priyanka Makkar

Amity School of Engineering and Technology, Amity University Haryana, India

Received on: 18-May-2023, Accepted and Published on: 17-Jul-2023

ABSTRACT
Quadruped robot locomotion
control is tough and complex
due to the redundant DOF
and interlocked movement of
their four legs, even though a
suitable control method has a
significant impact on the
performance of the control.
The following contributions
are made by the paper to the
creation of the ideal gait
controller for the legged
robot. The quadruped robot's
fundamental mechanical parts are first recreated in a virtual setting. Second, a TRPO model based on KL divergence is created, and the model's
accuracy and computation speed are evaluated. Using curriculum learning and actor-critic approaches, the best gaits for various walking tasks
are discovered. Finally, the virtual model is updated to incorporate the learnt gaits together with many additional behaviors, including vision and
directional variance. According to preliminary findings, the robot can efficiently navigate and correct its walking paths in real time with no
processing overhead.

Keywords: Control system, Deep reinforcement learning, Gait control, KL divergence, Quadruped robot, Trust region policy optimization

INTRODUCTION
Robots with several legs have been utilized extensively to

explore different terrains. Quadruped robots have the advantage of
having balanced properties for structural complexity, mobility, and
locomotive stability among all extant categories of legged robots.1,2
For such complex control situations, numerous control methods and
analysis control theory are typically used. Deep reinforcement
learning (DRL), a new alternative technique for enhancing leg
motor skills, has lately come into existence due to the quick
development of the artificial intelligence area. DRL's main tenet is
that the control policy learns to choose actions based on the reward
it receives from the environment in order to maximize benefit.5

DRL has been used to automate elements of the design process,
simplify the design of locomotion controllers, and learn behaviors
that earlier control techniques were unable to accomplish.6 In recent
years, a lot of effort has been paid to the study of DRL algorithms
for legged robots.

The model presented in this research is based on deep
reinforcement learning (DRL) and artificial neural network (ANN),
and it effectively replaces the conventional analysis-based control
theory, including inverse kinematics, differential equations of
motion, and governing equations. The ANN model is trained using
training data produced by DRL, and it is then utilized to operate a
quadruped robot. A virtual replica of a typical quadruped robot is
used to test the experimental validity of the proposed AI-based
robot-control system. The outcomes demonstrate that the suggested
approach is a potential new controller that can take the place of the
mathematically puzzling robot control system.

RELATED WORK
To transfer the rotating forces from electric motors to the robot

leg joints for motion generation, the majority of the reported
quadruped robots use rigid components such as beams and

Corresponding Author: Aditya Chhabiraj Jaiswal, Shweta Sinha,
Amity School of Engineering and Technology, Amity University
Haryana, India. Tel: +919004768230, +919868140118
Email: a.jaiswal151000@gmail.com, ssinha@ggn.amity.edu

Cite as: J. Integr. Sci. Technol., 2023, 11(4), 574.
URN:NBN:sciencein.jist.2023.v11.574

©Authors CC4-NC-ND, ScienceIN ISSN: 2321-4635
http://pubs.thesciencein.org/jist

A. C. Jaiswal et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(4), 574 2

bearings. These robots benefit from quick responses and precise
movements, but their motion ranges are constrained by the
difficulty of maintaining steady mobility.

The mass center criteria, which asserts that a robot is statically
stable if the projection of its center of mass CoM onto a horizontal
plane, falls within the support grid, is one of the most well-known
statically stable gait stability tests. To track the planned trajectories
of walking robots, a number of control techniques, including
Model-Based Algorithm (MBA) based on the feedback
linearization approach, robust control, and others, have been
developed and put into use.

The complexity of conventional control methods is gradually
raised when more scenarios are taken into account in order to
explore quadrupedal locomotion on uneven terrain in greater detail.
As a result, the accompanying development and maintenance
become labor and time-intensive, and they continue to be
susceptible to extreme circumstances.

Deep reinforcement learning (DRL), a new alternative technique
for enhancing leg motor skills, has lately come into existence due
to the quick development of the artificial intelligence area. The
fundamental tenet of DRL is that the control policy learns to choose
actions that will yield the most benefit based on the reward from
the environment.5 DRL has been used to automate some of the
design process, learn behaviors that earlier control methods were
unable to achieve, and simplify the design of locomotion
controllers.6,9 In recent years, a lot of effort has been paid to the
study of DRL algorithms for legged robots.

Robotic quadrupeds typically use pipelined locomotion control
methods, such as state estimation, contact scheduling, foot
placement planning, etc.5,7 Both expert knowledge and precise
dynamic models of the quadruped robot are needed for these
activities. Model-free Reinforcement Learning (RL) techniques, on
the other hand, don't need to be familiar with the robot system
beforehand. In order to better the motion controller and achieve the
motion target specified by human operators, RL algorithms can
interact with the robot motion environment physically or virtually.

There has been a lot of scientific interest in the creation of new
algorithms that can determine a target's position more accurately
while also taking eyesight and proprioceptive states into account.
The authors of 8 proposed a regularized location estimator (RLE)
open form technique for the adaptive control system. This method
uses maximum likelihood estimation. They determined that on a
desktop computer with 4 GB RAM and a 2.1 GHz processor,
calculating a position only required 8 microseconds. When the
classic localization problem was tackled using a regularized
approach, the authors of 6 found that 0.1 (the value of the
regularization parameter) was sufficient to get good results. And
should be lowered as well if the degree of poor conditioning is
decreased. In order to maximize coverage for a given accuracy, the
authors of10 used a genetic algorithm; nevertheless, they failed to
assess the impact on pattern reconstruction.

One of the big challenges in reinforcement learning is the amount
of simulation that needs to be performed for the agent to converge
to a solution. All state-action pairs must be visited many times
before the solution converges. As the state space and action space
increases the amount of simulation required also increases. To use

continuous state and action spaces and allow for faster convergence
faster convergence an approximation of the policy function can be
used, or so-called policy gradient method. Different types of
approximations can be used, but in this research each function is
approximated using a neural network that maps the respective input
to the respective output.

Modern, cutting-edge locomotion controllers frequently use a
pipelined control strategy. The MIT Cheetah27 utilises a state
machine over contact circumstances, creates straightforward
reference trajectories, use model predictive control9 to prepare for
desired contact forces, and then implements Jacobian transpose
control to make those forces happen. The ANYmal robot23 uses the
inverted pendulum model13 for foothold planning, CMA-ES19 for
parameterized controller optimisation, and a hierarchical
operational space control problem22 for body motion and joint
torques. Although these techniques can result in efficient gaits, they
necessitate extensive prior knowledge of the locomotion problem
and, more significantly, of the dynamics of the robot. The proposed
approach, in contrast, tries to control the robot without having any
prior knowledge of either the dynamics or the gait. Since all
learning occurs purely through real-world interaction, there are no
assumptions about having access to any trajectory design, foothold
planner, or robot dynamics model.

Deep RL has been widely utilised to learn locomotion policies in
simulation4 and even transfer them to real-world robots.21 However,
this unavoidably results in a performance loss due to differences in
the simulation and necessitates proper system identification. It has
been difficult to apply such algorithms directly in the real world.
Low-dimensional gait parameterizations8 or basic, inherently stable
robots14 are frequently used in real-world applications, or both. In
contrast, it is demonstrated how neural-net rules can be used to
directly learn locomotion abilities in the actual environment.

The proposed approach, maximises the weighted sum of the
expected return and the expected entropy of the policy, is based on
trust region policy optimisation. Similar approach has been applied
in a variety of situations, including optimum control and inverse
RL.5 Maximum entropy RL has the benefit of producing policies
that are somewhat robust, as the introduction of structured noise
during training encourages the policy to explore a larger portion of
the state space and increases the resilience of the policy.16 However,
the entropy term's weight is often determined arbitrarily.15

Based on the background research conducted, it is observed that,
this value is extremely sensitive, and manual adjusting may make
it challenging to apply the maximum entropy framework in actual
situations. Instead, limiting the predicted entropy of the policy and
automatically adjusting the temperature to meet the limitation is
suggested. Constrained MDP is a concept that is used in the
formulation and was recently studied in 6. In contrast to the
situation, where the constraint clearly depends on the policy, these
works only take into account constraints that depend on the policy
indirectly through the sampling distribution. The method applies
directly to the entropy of the present policy but is also strongly
related to KL-divergence requirements that restrict the policy
change between iterations.2 On both simulated benchmarks and
observed data, it was found that this straightforward tweak
significantly decreases the burden of parameter tuning.

A. C. Jaiswal et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(4), 574 3

PROBLEM DOMAIN
Before conceiving a gait controller, it is essential to first

comprehend the characteristics of the old techniques, especially
when taking adaptability and dynamic computation limits into
account. The absolute continuity of movement that the system must
be able to process without delays presents the biggest obstacle in
creating a gait controller.

Other challenges with these characteristics include:
• Computational Convergence: Before the solution converges, all

state-action pairs must be visited numerous times. The quantity
of simulation required rises as the state space and action space
expand. The so-called policy gradient approach, an
approximation of the policy function, can be utilized to leverage
continuous state- and action-spaces and enable faster
convergence.

• Synchronous control and Adaptability: To design an effective
gait pattern, the controller must develop a pertinent motor
control pattern that can support synchronous joint movement
under a variety of circumstances.

• Proprioceptive and Visual States: While controllers based on
either of the aforementioned paradigms exhibit relatively few
diffractions, a special type of parameterized vector control must
be used for a controller to fully exploit both proprioceptive and
visual states.

METHODOLOGY
As soon as we have a thorough understanding of the project that

has been suggested, we shall talk about the development technique.
Kinematical Analysis

A robot that is bio-inspired is the quadruped robot. A redundant
degree-of-freedom (DOF) system is a good example of a robot with
four legs. A quadruped robot has a stiff body and four legs. The
degrees of freedom for each leg are 3.15 By means of revolute joints,
each link is joined to every other link. The coxa joint, femur joint,
and tibia joint are the three joints.

Figure 1. Quadruped robot single-leg coordinate systems. It consists of
3 links and 3 revolute joints, which are L1, L2, L3, and J1, J2, J3.

A quadruped robot may move in a variety of animalistic ways,

including walking, jogging, pacing, cantering, galloping, creeping,
and trotting. We must determine the forward and inverse kinematics
of a quadruped robot in order to modify its gait.

Degrees of freedom (DOFs) in the robot body are split into two
groups: the major DOFs, which are necessary for walking, and
preserving the secondary DOFs. By finding a proper kinematic

Figure 2. Kinematical Analysis of the body link separated from the
mechanical legs

resolution of the motions of the minor DOFs, the motions of the
major DOFs can be realized.11 Inverse kinematics problems can be
solved using a variety of methods, including the Gradient
Projection method (GP), Weighted Least Norm method (WLN),
and Extended Jacobian matrix method (EJ method). Inverse
kinematics are solved using the extended Jacobian matrix (EJ)
approach, and the robot is controlled using the Time-Pose control
method. An improved Jacobian pseudoinverse (mIJP) approach
that has been developed was also used to overcome the inverse
kinematics issue. Gait planning for a robot based on an SpotMini
was created utilizing inverse kinematics and the Jacobian of the full
body.
Virtual Replication

We developed a DH representation of the robot's structure for
simplicity in the structural replication process based on our
thorough examination of the SpotMini robot. The body of
SpotMini, which contains computers and cameras, and its four legs
are its main body sections. Each leg has a ball joint at the hip, where
the upper leg attaches to the torso, as well as a hinged knee that
joins the upper and lower leg pieces.

Figure 3. DH representation for a Quadruped robot in mammal
configuration

In Autodesk Maya 2023, a virtual replication was made in

accordance with the DH representation. The virtual model has three
revolute joints in each leg, allowing for three degrees of freedom of
movement.

The quadruped is broken in two separate submeshes – one for
torso/body and another for set of mechanical legs with joints and
actuations. The robot's legs were eventually attached to the static
body's mesh after the torso was first built.

A. C. Jaiswal et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(4), 574 4

Figure 4a. Virtual model of Quadruped robot

The model had 46,830 triangles and 31,480 vertices after final
design. Its measurements are 90cm x 40cm x 70cm, which are
identical to the actual SpotMini, and a Unity rigidbody component
with a mass of 30 kg was later added. The mechanical legs were
created based on the kinematical and structural analysis of a real-
world mechanical leg with all the accuracies in joints and actuation
functionalities. Each leg consisted around 5,110 vertices and 5,010
traingles. Each leg acts as a complete dynamic surface with various
movable parts and components to it.
Perception

For the agents to be able to observe and record their environment,
we need to add some sort of sensors to them which can help them
to detect and determine their environment. To accomplish this, we
utilize the Raycast Perception Sensor provided by Unity Engine.

Figure 4b. Perception setup with various sensors placement on virtual
Quadruped robot model

The observation vector is made up of all the environmental
factors the AI system keeps track of during training.

A ray-casting system was implemented originating from the
quadruped’s model camera-head. It has an infinite reach and is
intended to find any terrain-designated object in the scene. If the
ray-casting system hits any object, the ray in question turns red or
are white otherwise.

We provide the quadruped with 3 sets of ray-cast sensors each
having three child ray-casts. These 3 sets of ray-casts are extended
in different directions each – the middle one directed towards the
forward vector of robot while the other two also directed towards
the forward vector but with an angle deviation of +15 degrees and
-15 degrees in horizontal axes. This helps the agent to detect any
sort of obstacle in its path – whether forward, left, or right.

A Unity scene represents objects in a three-dimensional space.
Unity must take a view and "flatten" it for display since the viewer's
screen is two-dimensional. It does this using cameras. So, to render

our simulation, we create a camera by adding a Camera component
to our quadruped. The module defines a follow camera rig system
which facilitates the target following based on a provided offset.
The minimal offset can be defined as both in x-z and x-y quadruped
facilitating a cam follow configuration.
Basic Architecture

Reinforcement learning (RL) problems are frequently used to
model quadrupedal movement in the context of Markov decision
processes. According to the fundamental concept, policies with the
highest rise in incentives should be followed.30 For curved areas,
the first-order optimizer is not very precise. Learning a control
strategy that enables a legged robot to maximize its predicted return
on a given task is the goal. At each time step, the robot observes a
state in the surrounding area and determines a course of action
based on its policy.21

max
𝜃𝜃

𝐽𝐽 (𝜋𝜋𝜃𝜃) = E
𝑟𝑟 ~ 𝜋𝜋𝜃𝜃

[�𝛾𝛾𝑡𝑡𝑟𝑟𝑡𝑡

∞

𝑡𝑡=0

]

Equation 1. Standard mathematical representation of Trust region
policy optimization

Following this action, the robot experiences a novel state and

receives a scalar reward. As a result, a trajectory can be created by
using this contact process repeatedly. Formally speaking, to solve
the RL problem, the robot must develop a decision-making strategy
that maximizes the projected discounted return.

In RL, a policy is optimized for the highest possible expected
discounted rewards. Nevertheless, PG performance is hampered by
a few issues. To update the policy in that direction, PG computes
the rewards' steepest ascending direction (the policy gradient g).
Because the learning rate is insensitive to the problem's geography,
PG has a severe convergence problem. The parameter changes that
are influenced by the terrain are limited by TRPO. But it is not
straightforward to offer this answer. We modify the policy using
basic model parameters.

Equation 2. Mathematical representation of Steepest ascent policy
gradient

Finally, given only one policy update, we sample the entire
trajectory. We are unable to change the policy at every interval. But
after some time of testing, significant roadblocks appeared. The
technical difficulties with PG can be summed up as follows:

• Large policy changes disrupt training,
• Unable to map changes between policy and parameter

space,
• Incorrect learning rate results in disappearing or

exploding gradient,
• Poor sample efficiency.

𝑔𝑔 = ∇𝜃𝜃𝐽𝐽(𝜋𝜋𝜃𝜃) = E
𝑟𝑟 ~ 𝜋𝜋𝜃𝜃

[�𝛾𝛾𝑡𝑡∇𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)𝐴𝐴𝜋𝜋𝜃𝜃(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)
∞

𝑡𝑡=0

]

𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 + 𝛼𝛼𝛼𝛼

A. C. Jaiswal et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(4), 574 5

Figure 5. Overview of current architecture

To advance our research, we must first construct a simulation
environment (such as a floor, a set of steps, or a flight of stairs),
after which we must create the state and action spaces, the reward
function, and other crucial components. Additional DRL-based
algorithms are created and utilized to teach simulation-based
policy. Finally, the taught policy is put into use on the virtual robot
to carry out the given task.
Designing a new Approach

For the time being, the conventional approach TRPO is effective,
although as was already mentioned, TRPO has significant
drawbacks when dealing with complex problems. We just add a few
additional algorithms to our conventional TRPO in order to address
this. To effectively compare the estimated distribution to the normal
distribution, we used KL divergence. We required a way to
conveniently determine the sample space without going overboard
on the computing cost due to a large batch size and higher number
of episodes. The following is a formal definition of KL divergence,

Equation 3. Mathematical representation of KL divergence

The closer our approximation to the genuine distribution, the
lower the KL divergence value. The vanishing gradient problem is
a new difficulty brought on by traditional TRPO and KL
divergence. We used a broad strategy to overcome this problem by
employing a rectified linear unit (ReLU) activation function. The
rectified linear activation function is a piecewise linear function
that outputs zero otherwise and the input directly if the input is
negative. Because a model that utilizes it is simpler to train and
frequently performs better, it has evolved into the standard
activation function for many different kinds of neural networks

Three components make up our final architecture: a gait planner,
a gait controller, and a virtual PID. The state space, which describes
the robot's state, and the action space, which is concerned with goal
poise, make up the bulk of the gait planner architecture. A gait
pattern is generated based on these variables. The Agent begins in
a starting condition and then does an action in response to the
observations. The transition function is used to calculate the
observations by considering how actions affect the environment.

The reward function receives a feed from the transition function
once it has interpreted the new state. Reward function inference, a
decision requester module, and an action inference module make
up the gait controller. The basic function of the reward function
module is the pessimistic bound reward. Then it is modified by the
reward function to maximize the reward from the acts.

The agent is then given this data once more, understands it, and
decides what to do next. A domain randomization module and an
adaptation module for the development of support for various robot
configurations were later additions to the design.
Finalizing the Approach

A feedforward neural network with two input layers, twenty
hidden layers, and one output layer makes up the final full model.
435,024 weights are embedded in it. Action masks and output
layers produce the action, while input layers supply the vector
observations. The 20 hidden layers are made up of 5 activation
layers, 4 dense layers, 2 of each min, max, mul, and add layers, as
well as 1 layer each of RandomNormal, Div, and Nop.

𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝||𝑞𝑞) = �𝑝𝑝(𝑥𝑥𝑖𝑖)log (
𝑝𝑝(𝑥𝑥𝑖𝑖)
𝑞𝑞(𝑥𝑥𝑖𝑖)

)
𝑁𝑁

𝑖𝑖=1

Figure 6. Controller architecture

A. C. Jaiswal et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(4), 574 6

Figure 7. Generated neural model layout

We'll now move on to the analysis of our experimental findings
for the system developed through the robot simulation in Unity
Engine.

RESULTS AND DISCUSSION
In this section, we simulate our robot using the learned model as

the controller to verify our methodology. To replicate the dynamic
physical laws of the robot itself more realistically and effectively
resolve the collisions caused when the robot interacts with the
environment, we need a tool or program. The majority of academics
have opted for the Pybullet and RaiSim simulation systems over the
last few years. The precision of the robotic simulators used in
academics today, however, is far lower than that of simulators used
in video games, and they are still quite basic.

Common robotic simulators like Pybullet and RaiSim, which are
extended for real-world simulations, can only address control-level
simulations. They were created to function on CPUs with little
parallel processing.

However, despite being a well-known DRL algorithm
verification simulator, mujoco is rarely used as a platform for the
deployment and testing of quadrupedal locomotion algorithms. As
a result, we used the Unity game engine, a well-known but still
relevant piece of software with a strong physics engine.

As for the actual training, we used a manual genetic technique.
Agents were cloned in batches, trained in each batch, and the most
productive batch was selected as the brain for the subsequent
training phase. There were a total of three training phases, after
which the outcomes were assessed.
Model Evaluation

Figure 8. Visualisation of Speed of Quadruped robot in Unity
simulation

Figure 9. Visualisation of Height samples of Quadruped robot in Unity
simulation

We build Unity-based graphs and plot our numbers in real-time
to evaluate and track the performance of our model. We make a
speed plot to help us track the discrepancy between the target speed
and the robot's average measured speed, a height plot to track target
and measured height samples, and an inclination map, as shown in
Figure 8, 9 and 10.

Figure 10. Visualisation of the Quadruped robot’s inclination in Unity
simulation

Figure 11. Visualisation of the Direction errors in Unity simulation

Figure 12. Visualisation of the Agent reward parameters in Unity
simulation

We draw a graph that tracks the reward variables, net reward,

and penalties for speed and directional faults in order to evaluate
the system.

Figure 13. Visualisation of the reward penalties in Unity simulation

Figure 14. Visualisation of the Agent’s reward sum in Unity simulation

The reward sum is then monitored in a final plot, as shown in

Figure 14. Following are the different plots obtained via the
tensorboard while training our agents. We used visual interpretation
for evaluation as it will be much easier to evaluate the precision of
agent and verify them.

A. C. Jaiswal et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(4), 574 7

Figure 15. Visualisation of Cumulative reward via tensorboard

Figure 16. Visualisation of Episode length via tensorboard

Figure 15 represents the nature of cumulative reward with
respect to step. As it can be clearly perceived that the cumulative
reward for the agent increases with the increasing steps.

Figure 17. Visualisation of Lesson via tensorboard

Figure 17 represents the nature of lesson with respect to step. The

lesson cycle for the agent increases with the increasing steps but in
an odd interval bound manner. The first rise can be observed after
the step 3.69 M and then can be observed to be increasing at
irregular intervals.

Figure 18. Visualisation of Policy loss in agent via tensorboard

Figure 19. Visualisation of Value loss in agent via tensorboard

Figure 18 indicates the policy loss of the training agent in
relation to the training steps. It can be observed to be decreasing
with irregular spikes in between. Figure 19 indicates the value loss
during the training session and can be clearly perceived as
exponentially decreasing with minor spikes at irregular intervals.

Figure 20. Visualisation of Entropy via tensorboard

Figure 21. Visualisation of Extrinsic reward via tensorboard

Figure 20, 21, 22 illustrates the various characteristic features of
policy with relation to the training steps. Figure 20 illustrates the
entropy vs step relation and thus the inversely proportional nature
between the two can be observed. The relation between extrinsic
reward and step is varied as it follows an irregular incremental
curve with an irregular decay rate. The same can be said for the
estimate value as it follows the similar characteristic to its reward
counterpart. It can be observed that there is an irregular growth
pattern in this particular relation and thus cannot be generalized.

Figure 22. Visualisation of Extrinsic value estimate via tensorboard

The relationship between learning rate and step is a unique
relation to ponder on, as it basically follows a linear decrement
nature. Hence, it can be concluded that with the increasing number
of steps the learning rate decreases as the smarter the agent becomes
the less it requires to learn.

These all plots helped us to visualize the various relations
between these crucial factors quite conveniently and thus also
helped to monitor the status of our agent and its training
performance.

Once the training is completed or a satisfactory epoch is
achieved, the training is terminated and the model is saved as a .nn

A. C. Jaiswal et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(4), 574 8

file via the aid of tensorboard. This model is then used as the new
brain for our agent and thus the agent can then control the gait
efficiently.

This process is facilitated with the help of Barracuda extension
for Unity and therefore simplifies the complex process for
importing a neural network in the engine.

Overall, we find that the model uses the virtual robot to
successfully pass the initial walking test during real-time execution.
The significant difference between the actual speed and the target
speed is a serious flaw. This can be enhanced during the
reinforcement learning process by reducing the modelling error and
adding more significant environmental disturbances. Better
sensors, algorithms for analyzing sensor data, and larger networks
are examples of additional techniques for improvement.

CONCLUSION
The rationale, design patterns, thorough implementation, and

testing procedures for developing a DRL-based agent that can
regulate the gait patterns of a quadruped robot are all described in
this work. We may conclude that the model has done well and has
shown to be relatively efficient for the task after having finished the
analyses described in this paper. This project debuted a brand-new
DRL-based quadruped robot gait controller system. It is introduced
to provide the environment for mimicking robot movement. The
entire system is broken down into a number of smaller systems,
including the controller, PID, and gait planning modules. The
environment was created using Unity Engine and has undergone
experimental validation. It performs better than traditional control
techniques in terms of precision and response time. Because it does
not experience accuracy dilution, it can increase overall
performance by a factor of up to 2.5 in our studied scenario.

This experiment demonstrated to us how AI-powered self-
automation control systems may be built utilizing reinforcement
learning. Since the agent is easily adaptable and can pick up new
maneuvers in unfamiliar contexts, it may be trained for a
straightforward situation like this one and then challenged to work
in other situations. In the end, this research provides a solid
foundation for further study into controls and human-machine
interaction. Because it is modularly constructed, the system is
extremely adaptable for future expansions and may be improved to
make it more efficient.

Although the system is not yet ready for usage in any kind of
production context, it still proves an important point. This method
of developing an autonomous control system might be used in more
practical applications to handle not only the motion of the robot in
an open area but also other control inputs for various more intricate
patterns. In conclusion, neural networks can be extended to control
sophisticated robots. These could eventually be enhanced to carry
out more intricate control schemes on bigger and more advanced
robotic systems.

DECLARATION OF CONFLICTING INTERESTS
The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this article.

REFERENCES AND NOTES
1. Y. Zhong, R. Wang, H. Feng, Y. Chen. Analysis and research of quadruped

robot’s legs: A comprehensive review. Int. J. Adv. Robot. Syst. 2019, 16 (3),
172988141984414.

2. M. Hutter, C. Gehring, D. Jud, et al. ANYmal - a highly mobile and
dynamic quadrupedal robot. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS); IEEE, 2016; Vol. 2016, pp 38–
44.

3. Y. Duan, X. Chen, R. Houthooft, J. Schulman, P. Abbeel. Benchmarking
deep reinforcement learning for continuous control. In 33rd International
Conference on Machine Learning, ICML 2016; 2016; Vol. 3, pp 2001–
2014.

4. M.M. Gor, P.M. Pathak, A.K. Samantaray, J.M. Yang, S.W. Kwak. Control
oriented model-based simulation and experimental studies on a compliant
legged quadruped robot. Rob. Auton. Syst. 2015, 72, 217–234.

5. V. Tsounis, M. Alge, J. Lee, F. Farshidian, M. Hutter. DeepGait: Planning
and Control of Quadrupedal Gaits Using Deep Reinforcement Learning.
IEEE Robot. Autom. Lett. 2020, 5 (2), 3699–3706.

6. K. Xu, H. Ma, J. Chen, et al. Design and Analysis of a Metamorphic
Quadruped Robot. In 2018 International Conference on Reconfigurable
Mechanisms and Robots, ReMAR 2018 - Proceedings; 2018.

7. L. Yao, H. Yu, Z. Lu. Design and driving model for the quadruped robot:
An elucidating draft. Adv. Mech. Eng. 2021, 13 (4).

8. G. Kenneally, A. De, D.E. Koditschek. Design Principles for a Family of
Direct-Drive Legged Robots. IEEE Robot. Autom. Lett. 2016, 1 (2), 900–
907.

9. S. Kitano, S. Hirose, G. Endo, E.F. Fukushima. Development of lightweight
sprawling-type quadruped robot TITAN-XIII and its dynamic walking. In
IEEE International Conference on Intelligent Robots and Systems; 2013;
pp 6025–6030.

10. P. Biswal, P.K. Mohanty. Development of quadruped walking robots: A
review. Ain Shams Eng. J. 2021, 12 (2), 2017–2031.

11. J. Zhang, J. Zhang, C. Wang. Dynamic analysis and simulation on bionics
quadruped robot. Open Autom. Control Syst. J. 2015, 7 (1), 1088–1093.

12. X. Sang, G. Du, H. Wu, D. Zhang. Gait Analysis and Realization of
Quadruped Bionic Robot with 8 Degrees of Freedom. In 2021 IEEE
International Conference on Advances in Electrical Engineering and
Computer Applications, AEECA 2021; 2021; pp 90–93.

13. S. Zhang, M. Fan, Y. Bin Li, X. Rong, M. Liu. Generation of a continuous
free gait for quadruped robot over rough terrains. Adv. Robot. 2019, 33 (2),
74–89.

14. L. Ding. Key technology analysis of BigDog quadruped robot. Jixie
Gongcheng Xuebao/Journal Mech. Eng. 2015, 51 (7), 1–23.

15. M.H. Rahman, M.M. Islam, M.F. Al Monir, et al. Kinematics analysis of a
quadruped robot: Simulation and Evaluation. In 2022 2nd International
Conference on Image Processing and Robotics, ICIPRob 2022; 2022.

16. J. Hwangbo, J. Lee, A. Dosovitskiy, et al. Learning agile and dynamic
motor skills for legged robots. Sci. Robot. 2019, 4 (26).

17. J. Che, Y. Pan, W. Yan, J. Yu. Leg Configuration Analysis and Prototype
Design of Biped Robot Based on Spring Mass Model. Actuators 2022, 11
(3).

18. C. Gonzalez, V. Barasuol, M. Frigerio, et al. Line walking and balancing
for legged robots with point feet. In IEEE International Conference on
Intelligent Robots and Systems; 2020; pp 3649–3656.

19. K. Michael. Meet Boston Dynamics’ LS3 - The Latest Robotic War
Machine. Fac. Eng. Inf. Sci. - Pap. 2012, Part A, 2773.

20. C. Yang, K. Yuan, Q. Zhu, W. Yu, Z. Li. Multi-expert learning of adaptive
legged locomotion. Sci. Robot. 2020, 5 (49).

21. K. Mitobe, N. Mori, K. Aida, Y. Nasu. Nonlinear feedback control of a
biped walking robot. In Proceedings - IEEE International Conference on
Robotics and Automation; 1995; Vol. 3, pp 2865–2870.

22. K. Xu, S. Wang, B. Yue, et al. Obstacle-negotiation performance on
challenging terrain for a parallel leg-wheeled robot. J. Mech. Sci. Technol.
2020, 34 (1), 377–386.

23. S. Ma, T. Tomiyama, H. Wada. Omnidirectional static walking of a
quadruped robot. IEEE Trans. Robot. 2005, 21 (2), 152–161.

A. C. Jaiswal et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(4), 574 9

24. E. Garcia, J.C. Arevalo, G. Mũnoz, P. Gonzalez-de-Santos. On the
biomimetic design of agile-robot legs. Sensors 2011, 11 (12), 11305–
11334.

25. L. Wang, C. Wang, W. Du, et al. Parameter optimization of a four-legged
robot to improve motion trajectory accuracy using signal-to-noise ratio
theory. Robot. Comput. Integr. Manuf. 2018, 51, 85–96.

26. J. Guzzi, R.O. Chavez-Garcia, M. Nava, L.M. Gambardella, A. Giusti. Path
Planning with Local Motion Estimations. IEEE Robot. Autom. Lett. 2020,
5 (2), 2586–2593.

27. P.M. Wensing, A. Wang, S. Seok, et al. Proprioceptive actuator design in
the MIT cheetah: Impact mitigation and high-bandwidth physical
interaction for dynamic legged robots. IEEE Trans. Robot. 2017, 33 (3),
509–522.

28. L. Liu, X. Liu, C. Zhang. Realization of Neural Network for Gait
Characterization of Quadruped Locomotion∗. J. Appl. Anal. Comput. 2022,
12 (2), 455–463.

29. C. Lee, D. An. Reinforcement learning and neural network-based artificial
intelligence control algorithm for self-balancing quadruped robot. J. Mech.
Sci. Technol. 2021, 35 (1), 307–322.

30. R.S. Sutton, A.G. Barto. Reinforcement Learning: An Introduction; MIT
Press, 1998.

31. S. Tzafestas, M. Raibert, C. Tzafestas. Robust sliding-mode control applied
to a 5-link biped robot. J. Intell. Robot. Syst. Theory Appl. 1996, 15 (1), 67–
133.

32. Y. Jia, X. Luo, B. Han, et al. Stability criterion for dynamic gaits of
quadruped robot. Appl. Sci. 2018, 8 (12).

33. Q. Hao, Z. Wang, J. Wang, G. Chen. Stability-guaranteed and high terrain
adaptability static gait for quadruped robots. Sensors (Switzerland) 2020,
20 (17), 1–26.

34. J.P. Chen, H.J. San, X. Wu, B.Z. Xiong. Structural design and gait research
of a new bionic quadruped robot. Proc. Inst. Mech. Eng. Part B J. Eng.
Manuf. 2022, 236 (14), 1912–1922.

35. M. RS. Test and evaluation of a versatile walking truck. In Off-Road
Mobility Research Symposium, International Socity for Terrain Vehicle
Systems; 1968; pp 359–379.

36. J. Estremera, K.J. Waldron. Thrust control, stabilization and energetics of a
quadruped running robot. Int. J. Rob. Res. 2008, 27 (10), 1135–1151.

	Received on: 18-May-2023, Accepted and Published on: 17-Jul-2023
	ABSTRACT
	Introduction
	Related work
	Problem Domain
	Methodology
	Results and discussion
	Conclusion
	Declaration of conflicting interests
	References and notes

