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ABSTRACT 
Quadruped robot locomotion 
control is tough and complex 
due to the redundant DOF 
and interlocked movement of 
their four legs, even though a 
suitable control method has a 
significant impact on the 
performance of the control. 
The following contributions 
are made by the paper to the 
creation of the ideal gait 
controller for the legged 
robot. The quadruped robot's 
fundamental mechanical parts are first recreated in a virtual setting. Second, a TRPO model based on KL divergence is created, and the model's 
accuracy and computation speed are evaluated. Using curriculum learning and actor-critic approaches, the best gaits for various walking tasks 
are discovered. Finally, the virtual model is updated to incorporate the learnt gaits together with many additional behaviors, including vision and 
directional variance. According to preliminary findings, the robot can efficiently navigate and correct its walking paths in real time with no 
processing overhead.  
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INTRODUCTION 
Robots with several legs have been utilized extensively to 

explore different terrains. Quadruped robots have the advantage of 
having balanced properties for structural complexity, mobility, and 
locomotive stability among all extant categories of legged robots.1,2 
For such complex control situations, numerous control methods and 
analysis control theory are typically used. Deep reinforcement 
learning (DRL), a new alternative technique for enhancing leg 
motor skills, has lately come into existence due to the quick 
development of the artificial intelligence area. DRL's main tenet is 
that the control policy learns to choose actions based on the reward 
it receives from the environment in order to maximize benefit.5 

DRL has been used to automate elements of the design process, 
simplify the design of locomotion controllers, and learn behaviors 
that earlier control techniques were unable to accomplish.6 In recent 
years, a lot of effort has been paid to the study of DRL algorithms 
for legged robots. 

The model presented in this research is based on deep 
reinforcement learning (DRL) and artificial neural network (ANN), 
and it effectively replaces the conventional analysis-based control 
theory, including inverse kinematics, differential equations of 
motion, and governing equations. The ANN model is trained using 
training data produced by DRL, and it is then utilized to operate a 
quadruped robot. A virtual replica of a typical quadruped robot is 
used to test the experimental validity of the proposed AI-based 
robot-control system. The outcomes demonstrate that the suggested 
approach is a potential new controller that can take the place of the 
mathematically puzzling robot control system.  

RELATED WORK 
To transfer the rotating forces from electric motors to the robot 

leg joints for motion generation, the majority of the reported 
quadruped robots use rigid components such as beams and 
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bearings. These robots benefit from quick responses and precise 
movements, but their motion ranges are constrained by the 
difficulty of maintaining steady mobility.  

The mass center criteria, which asserts that a robot is statically 
stable if the projection of its center of mass CoM onto a horizontal 
plane, falls within the support grid, is one of the most well-known 
statically stable gait stability tests. To track the planned trajectories 
of walking robots, a number of control techniques, including 
Model-Based Algorithm (MBA) based on the feedback 
linearization approach, robust control, and others, have been 
developed and put into use. 

The complexity of conventional control methods is gradually 
raised when more scenarios are taken into account in order to 
explore quadrupedal locomotion on uneven terrain in greater detail. 
As a result, the accompanying development and maintenance 
become labor and time-intensive, and they continue to be 
susceptible to extreme circumstances. 

Deep reinforcement learning (DRL), a new alternative technique 
for enhancing leg motor skills, has lately come into existence due 
to the quick development of the artificial intelligence area. The 
fundamental tenet of DRL is that the control policy learns to choose 
actions that will yield the most benefit based on the reward from 
the environment.5 DRL has been used to automate some of the 
design process, learn behaviors that earlier control methods were 
unable to achieve, and simplify the design of locomotion 
controllers.6,9 In recent years, a lot of effort has been paid to the 
study of DRL algorithms for legged robots.  

Robotic quadrupeds typically use pipelined locomotion control 
methods, such as state estimation, contact scheduling, foot 
placement planning, etc.5,7 Both expert knowledge and precise 
dynamic models of the quadruped robot are needed for these 
activities. Model-free Reinforcement Learning (RL) techniques, on 
the other hand, don't need to be familiar with the robot system 
beforehand. In order to better the motion controller and achieve the 
motion target specified by human operators, RL algorithms can 
interact with the robot motion environment physically or virtually. 

There has been a lot of scientific interest in the creation of new 
algorithms that can determine a target's position more accurately 
while also taking eyesight and proprioceptive states into account. 
The authors of 8 proposed a regularized location estimator (RLE) 
open form technique for the adaptive control system. This method 
uses maximum likelihood estimation. They determined that on a 
desktop computer with 4 GB RAM and a 2.1 GHz processor, 
calculating a position only required 8 microseconds. When the 
classic localization problem was tackled using a regularized 
approach, the authors of 6 found that 0.1 (the value of the 
regularization parameter) was sufficient to get good results. And 
should be lowered as well if the degree of poor conditioning is 
decreased. In order to maximize coverage for a given accuracy, the 
authors of10 used a genetic algorithm; nevertheless, they failed to 
assess the impact on pattern reconstruction. 

One of the big challenges in reinforcement learning is the amount 
of simulation that needs to be performed for the agent to converge 
to a solution. All state-action pairs must be visited many times 
before the solution converges. As the state space and action space 
increases the amount of simulation required also increases. To use 

continuous state and action spaces and allow for faster convergence 
faster convergence an approximation of the policy function can be 
used, or so-called policy gradient method. Different types of 
approximations can be used, but in this research each function is 
approximated using a neural network that maps the respective input 
to the respective output. 

Modern, cutting-edge locomotion controllers frequently use a 
pipelined control strategy. The MIT Cheetah27 utilises a state 
machine over contact circumstances, creates straightforward 
reference trajectories, use model predictive control9 to prepare for 
desired contact forces, and then implements Jacobian transpose 
control to make those forces happen. The ANYmal robot23 uses the 
inverted pendulum model13 for foothold planning, CMA-ES19 for 
parameterized controller optimisation, and a hierarchical 
operational space control problem22 for body motion and joint 
torques. Although these techniques can result in efficient gaits, they 
necessitate extensive prior knowledge of the locomotion problem 
and, more significantly, of the dynamics of the robot. The proposed 
approach, in contrast, tries to control the robot without having any 
prior knowledge of either the dynamics or the gait. Since all 
learning occurs purely through real-world interaction, there are no 
assumptions about having access to any trajectory design, foothold 
planner, or robot dynamics model. 

Deep RL has been widely utilised to learn locomotion policies in 
simulation4 and even transfer them to real-world robots.21 However, 
this unavoidably results in a performance loss due to differences in 
the simulation and necessitates proper system identification. It has 
been difficult to apply such algorithms directly in the real world. 
Low-dimensional gait parameterizations8 or basic, inherently stable 
robots14 are frequently used in real-world applications, or both. In 
contrast, it is demonstrated how neural-net rules can be used to 
directly learn locomotion abilities in the actual environment. 

The proposed approach, maximises the weighted sum of the 
expected return and the expected entropy of the policy, is based on 
trust region policy optimisation. Similar approach has been applied 
in a variety of situations, including optimum control and inverse 
RL.5 Maximum entropy RL has the benefit of producing policies 
that are somewhat robust, as the introduction of structured noise 
during training encourages the policy to explore a larger portion of 
the state space and increases the resilience of the policy.16 However, 
the entropy term's weight is often determined arbitrarily.15 

Based on the background research conducted, it is observed that, 
this value is extremely sensitive, and manual adjusting may make 
it challenging to apply the maximum entropy framework in actual 
situations. Instead, limiting the predicted entropy of the policy and 
automatically adjusting the temperature to meet the limitation is 
suggested. Constrained MDP is a concept that is used in the 
formulation and was recently studied in 6. In contrast to the 
situation, where the constraint clearly depends on the policy, these 
works only take into account constraints that depend on the policy 
indirectly through the sampling distribution. The method applies 
directly to the entropy of the present policy but is also strongly 
related to KL-divergence requirements that restrict the policy 
change between iterations.2 On both simulated benchmarks and 
observed data, it was found that this straightforward tweak 
significantly decreases the burden of parameter tuning.  
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PROBLEM DOMAIN 
Before conceiving a gait controller, it is essential to first 

comprehend the characteristics of the old techniques, especially 
when taking adaptability and dynamic computation limits into 
account. The absolute continuity of movement that the system must 
be able to process without delays presents the biggest obstacle in 
creating a gait controller.  

Other challenges with these characteristics include: 
• Computational Convergence: Before the solution converges, all 

state-action pairs must be visited numerous times. The quantity 
of simulation required rises as the state space and action space 
expand. The so-called policy gradient approach, an 
approximation of the policy function, can be utilized to leverage 
continuous state- and action-spaces and enable faster 
convergence.  

• Synchronous control and Adaptability: To design an effective 
gait pattern, the controller must develop a pertinent motor 
control pattern that can support synchronous joint movement 
under a variety of circumstances. 

• Proprioceptive and Visual States: While controllers based on 
either of the aforementioned paradigms exhibit relatively few 
diffractions, a special type of parameterized vector control must 
be used for a controller to fully exploit both proprioceptive and 
visual states. 

METHODOLOGY 
As soon as we have a thorough understanding of the project that 

has been suggested, we shall talk about the development technique. 
Kinematical Analysis 

A robot that is bio-inspired is the quadruped robot. A redundant 
degree-of-freedom (DOF) system is a good example of a robot with 
four legs. A quadruped robot has a stiff body and four legs. The 
degrees of freedom for each leg are 3.15 By means of revolute joints, 
each link is joined to every other link. The coxa joint, femur joint, 
and tibia joint are the three joints.  

 
Figure 1. Quadruped robot single-leg coordinate systems. It consists of 
3 links and 3 revolute joints, which are L1, L2, L3, and J1, J2, J3. 

 
A quadruped robot may move in a variety of animalistic ways, 

including walking, jogging, pacing, cantering, galloping, creeping, 
and trotting. We must determine the forward and inverse kinematics 
of a quadruped robot in order to modify its gait. 

Degrees of freedom (DOFs) in the robot body are split into two 
groups: the major DOFs, which are necessary for walking, and 
preserving the secondary DOFs. By finding a proper kinematic 

 
Figure 2. Kinematical Analysis of the body link separated from the 
mechanical legs 
 
resolution of the motions of the minor DOFs, the motions of the 
major DOFs can be realized.11 Inverse kinematics problems can be 
solved using a variety of methods, including the Gradient 
Projection method (GP), Weighted Least Norm method (WLN), 
and Extended Jacobian matrix method (EJ method). Inverse 
kinematics are solved using the extended Jacobian matrix (EJ) 
approach, and the robot is controlled using the Time-Pose control 
method. An improved Jacobian pseudoinverse (mIJP) approach 
that has been developed was also used to overcome the inverse 
kinematics issue. Gait planning for a robot based on an SpotMini 
was created utilizing inverse kinematics and the Jacobian of the full 
body. 
Virtual Replication 

We developed a DH representation of the robot's structure for 
simplicity in the structural replication process based on our 
thorough examination of the SpotMini robot. The body of 
SpotMini, which contains computers and cameras, and its four legs 
are its main body sections. Each leg has a ball joint at the hip, where 
the upper leg attaches to the torso, as well as a hinged knee that 
joins the upper and lower leg pieces. 

 
Figure 3. DH representation for a Quadruped robot in mammal 
configuration 

 
In Autodesk Maya 2023, a virtual replication was made in 

accordance with the DH representation. The virtual model has three 
revolute joints in each leg, allowing for three degrees of freedom of 
movement. 

The quadruped is broken in two separate submeshes – one for 
torso/body and another for set of mechanical legs with joints and 
actuations. The robot's legs were eventually attached to the static 
body's mesh after the torso was first built.  
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Figure 4a. Virtual model of Quadruped robot 
 

The model had 46,830 triangles and 31,480 vertices after final 
design. Its measurements are 90cm x 40cm x 70cm, which are 
identical to the actual SpotMini, and a Unity rigidbody component 
with a mass of 30 kg was later added. The mechanical legs were 
created based on the kinematical and structural analysis of a real-
world mechanical leg with all the accuracies in joints and actuation 
functionalities. Each leg consisted around 5,110 vertices and 5,010 
traingles. Each leg acts as a complete dynamic surface with various 
movable parts and components to it. 
Perception 

For the agents to be able to observe and record their environment, 
we need to add some sort of sensors to them which can help them 
to detect and determine their environment. To accomplish this, we 
utilize the Raycast Perception Sensor provided by Unity Engine. 

 

 
Figure 4b. Perception setup with various sensors placement on virtual 
Quadruped robot model 
 

The observation vector is made up of all the environmental 
factors the AI system keeps track of during training.  

A ray-casting system was implemented originating from the 
quadruped’s model camera-head. It has an infinite reach and is 
intended to find any terrain-designated object in the scene. If the 
ray-casting system hits any object, the ray in question turns red or 
are white otherwise. 

We provide the quadruped with 3 sets of ray-cast sensors each 
having three child ray-casts. These 3 sets of ray-casts are extended 
in different directions each – the middle one directed towards the 
forward vector of robot while the other two also directed towards 
the forward vector but with an angle deviation of +15 degrees and 
-15 degrees in horizontal axes. This helps the agent to detect any 
sort of obstacle in its path – whether forward, left, or right. 

A Unity scene represents objects in a three-dimensional space. 
Unity must take a view and "flatten" it for display since the viewer's 
screen is two-dimensional. It does this using cameras. So, to render 

our simulation, we create a camera by adding a Camera component 
to our quadruped. The module defines a follow camera rig system 
which facilitates the target following based on a provided offset. 
The minimal offset can be defined as both in x-z and x-y quadruped 
facilitating a cam follow configuration. 
Basic Architecture 

Reinforcement learning (RL) problems are frequently used to 
model quadrupedal movement in the context of Markov decision 
processes. According to the fundamental concept, policies with the 
highest rise in incentives should be followed.30 For curved areas, 
the first-order optimizer is not very precise. Learning a control 
strategy that enables a legged robot to maximize its predicted return 
on a given task is the goal. At each time step, the robot observes a 
state in the surrounding area and determines a course of action 
based on its policy.21  
 

max
𝜃𝜃

𝐽𝐽 (𝜋𝜋𝜃𝜃) =  E
𝑟𝑟 ~ 𝜋𝜋𝜃𝜃

[�𝛾𝛾𝑡𝑡𝑟𝑟𝑡𝑡

∞

𝑡𝑡=0

 ] 

Equation 1. Standard mathematical representation of Trust region 
policy optimization 

 
Following this action, the robot experiences a novel state and 

receives a scalar reward. As a result, a trajectory can be created by 
using this contact process repeatedly. Formally speaking, to solve 
the RL problem, the robot must develop a decision-making strategy 
that maximizes the projected discounted return. 

In RL, a policy is optimized for the highest possible expected 
discounted rewards. Nevertheless, PG performance is hampered by 
a few issues. To update the policy in that direction, PG computes 
the rewards' steepest ascending direction (the policy gradient g). 
Because the learning rate is insensitive to the problem's geography, 
PG has a severe convergence problem. The parameter changes that 
are influenced by the terrain are limited by TRPO. But it is not 
straightforward to offer this answer. We modify the policy using 
basic model parameters. 

Equation 2. Mathematical representation of Steepest ascent policy 
gradient 
 

Finally, given only one policy update, we sample the entire 
trajectory. We are unable to change the policy at every interval. But 
after some time of testing, significant roadblocks appeared. The 
technical difficulties with PG can be summed up as follows:   

• Large policy changes disrupt training, 
• Unable to map changes between policy and parameter 

space, 
• Incorrect learning rate results in disappearing or 

exploding gradient, 
• Poor sample efficiency. 

 

𝑔𝑔 =  ∇𝜃𝜃𝐽𝐽(𝜋𝜋𝜃𝜃) =  E
𝑟𝑟 ~ 𝜋𝜋𝜃𝜃

[�𝛾𝛾𝑡𝑡∇𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)𝐴𝐴𝜋𝜋𝜃𝜃(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)
∞

𝑡𝑡=0

 ] 

𝜃𝜃𝑘𝑘+1 =  𝜃𝜃𝑘𝑘 +  𝛼𝛼𝛼𝛼 
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Figure 5. Overview of current architecture 
 

To advance our research, we must first construct a simulation 
environment (such as a floor, a set of steps, or a flight of stairs), 
after which we must create the state and action spaces, the reward 
function, and other crucial components. Additional DRL-based 
algorithms are created and utilized to teach simulation-based 
policy. Finally, the taught policy is put into use on the virtual robot 
to carry out the given task. 
Designing a new Approach 

For the time being, the conventional approach TRPO is effective, 
although as was already mentioned, TRPO has significant 
drawbacks when dealing with complex problems. We just add a few 
additional algorithms to our conventional TRPO in order to address 
this. To effectively compare the estimated distribution to the normal 
distribution, we used KL divergence. We required a way to 
conveniently determine the sample space without going overboard 
on the computing cost due to a large batch size and higher number 
of episodes. The following is a formal definition of KL divergence, 

Equation 3. Mathematical representation of KL divergence 

 

The closer our approximation to the genuine distribution, the 
lower the KL divergence value. The vanishing gradient problem is 
a new difficulty brought on by traditional TRPO and KL 
divergence. We used a broad strategy to overcome this problem by 
employing a rectified linear unit (ReLU) activation function. The 
rectified linear activation function is a piecewise linear function 
that outputs zero otherwise and the input directly if the input is 
negative. Because a model that utilizes it is simpler to train and 
frequently performs better, it has evolved into the standard 
activation function for many different kinds of neural networks 

Three components make up our final architecture: a gait planner, 
a gait controller, and a virtual PID. The state space, which describes 
the robot's state, and the action space, which is concerned with goal 
poise, make up the bulk of the gait planner architecture. A gait 
pattern is generated based on these variables. The Agent begins in 
a starting condition and then does an action in response to the 
observations. The transition function is used to calculate the 
observations by considering how actions affect the environment. 

The reward function receives a feed from the transition function 
once it has interpreted the new state. Reward function inference, a 
decision requester module, and an action inference module make 
up the gait controller. The basic function of the reward function 
module is the pessimistic bound reward. Then it is modified by the 
reward function to maximize the reward from the acts.  

The agent is then given this data once more, understands it, and 
decides what to do next. A domain randomization module and an 
adaptation module for the development of support for various robot 
configurations were later additions to the design. 
Finalizing the Approach 

A feedforward neural network with two input layers, twenty 
hidden layers, and one output layer makes up the final full model. 
435,024 weights are embedded in it. Action masks and output 
layers produce the action, while input layers supply the vector 
observations. The 20 hidden layers are made up of 5 activation 
layers, 4 dense layers, 2 of each min, max, mul, and add layers, as 
well as 1 layer each of RandomNormal, Div, and Nop. 

𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝||𝑞𝑞) =  �𝑝𝑝(𝑥𝑥𝑖𝑖)log (
𝑝𝑝(𝑥𝑥𝑖𝑖)
𝑞𝑞(𝑥𝑥𝑖𝑖)

)
𝑁𝑁

𝑖𝑖=1

 

 
Figure 6. Controller architecture 
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Figure 7. Generated neural model layout 
 

We'll now move on to the analysis of our experimental findings 
for the system developed through the robot simulation in Unity 
Engine. 

RESULTS AND DISCUSSION 
In this section, we simulate our robot using the learned model as 

the controller to verify our methodology. To replicate the dynamic 
physical laws of the robot itself more realistically and effectively 
resolve the collisions caused when the robot interacts with the 
environment, we need a tool or program. The majority of academics 
have opted for the Pybullet and RaiSim simulation systems over the 
last few years. The precision of the robotic simulators used in 
academics today, however, is far lower than that of simulators used 
in video games, and they are still quite basic. 

Common robotic simulators like Pybullet and RaiSim, which are 
extended for real-world simulations, can only address control-level 
simulations. They were created to function on CPUs with little 
parallel processing.  

However, despite being a well-known DRL algorithm 
verification simulator, mujoco is rarely used as a platform for the 
deployment and testing of quadrupedal locomotion algorithms. As 
a result, we used the Unity game engine, a well-known but still 
relevant piece of software with a strong physics engine.  

As for the actual training, we used a manual genetic technique. 
Agents were cloned in batches, trained in each batch, and the most 
productive batch was selected as the brain for the subsequent 
training phase. There were a total of three training phases, after 
which the outcomes were assessed.  
Model Evaluation  

 
Figure 8. Visualisation of Speed of Quadruped robot in Unity 
simulation 

 
Figure 9. Visualisation of Height samples of Quadruped robot in Unity 
simulation 

We build Unity-based graphs and plot our numbers in real-time 
to evaluate and track the performance of our model. We make a 
speed plot to help us track the discrepancy between the target speed 
and the robot's average measured speed, a height plot to track target 
and measured height samples, and an inclination map, as shown in 
Figure 8, 9 and 10.  
 

 
Figure 10. Visualisation of the Quadruped robot’s inclination in Unity 
simulation 
 

 
Figure 11. Visualisation of the Direction errors in Unity simulation 

 
Figure 12. Visualisation of the Agent reward parameters in Unity 
simulation 

 
We draw a graph that tracks the reward variables, net reward, 

and penalties for speed and directional faults in order to evaluate 
the system.  
 

 
Figure 13. Visualisation of the reward penalties in Unity simulation 

 
Figure 14. Visualisation of the Agent’s reward sum in Unity simulation 

 
The reward sum is then monitored in a final plot, as shown in 

Figure 14. Following are the different plots obtained via the 
tensorboard while training our agents. We used visual interpretation 
for evaluation as it will be much easier to evaluate the precision of 
agent and verify them.  
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Figure 15. Visualisation of Cumulative reward via tensorboard 

 
Figure 16. Visualisation of Episode length via tensorboard 
 

Figure 15 represents the nature of cumulative reward with 
respect to step. As it can be clearly perceived that the cumulative 
reward for the agent increases with the increasing steps. 
 

 
Figure 17. Visualisation of Lesson via tensorboard 

 
Figure 17 represents the nature of lesson with respect to step. The 

lesson cycle for the agent increases with the increasing steps but in 
an odd interval bound manner. The first rise can be observed after 
the step 3.69 M and then can be observed to be increasing at 
irregular intervals. 
 

 
Figure 18. Visualisation of Policy loss in agent via tensorboard 

 
Figure 19. Visualisation of Value loss in agent via tensorboard 

Figure 18 indicates the policy loss of the training agent in 
relation to the training steps. It can be observed to be decreasing 
with irregular spikes in between. Figure 19 indicates the value loss 
during the training session and can be clearly perceived as 
exponentially decreasing with minor spikes at irregular intervals. 
 

 
Figure 20. Visualisation of Entropy via tensorboard 
 

 
Figure 21. Visualisation of Extrinsic reward via tensorboard 
 

Figure 20, 21, 22 illustrates the various characteristic features of 
policy with relation to the training steps. Figure 20 illustrates the 
entropy vs step relation and thus the inversely proportional nature 
between the two can be observed. The relation between extrinsic 
reward and step is varied as it follows an irregular incremental 
curve with an irregular decay rate. The same can be said for the 
estimate value as it follows the similar characteristic to its reward 
counterpart. It can be observed that there is an irregular growth 
pattern in this particular relation and thus cannot be generalized.  

 

 
Figure 22. Visualisation of Extrinsic value estimate via tensorboard 
 

The relationship between learning rate and step is a unique 
relation to ponder on, as it basically follows a linear decrement 
nature. Hence, it can be concluded that with the increasing number 
of steps the learning rate decreases as the smarter the agent becomes 
the less it requires to learn. 

These all plots helped us to visualize the various relations 
between these crucial factors quite conveniently and thus also 
helped to monitor the status of our agent and its training 
performance. 

Once the training is completed or a satisfactory epoch is 
achieved, the training is terminated and the model is saved as a .nn 
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file via the aid of tensorboard. This model is then used as the new 
brain for our agent and thus the agent can then control the gait 
efficiently. 

This process is facilitated with the help of Barracuda extension 
for Unity and therefore simplifies the complex process for 
importing a neural network in the engine. 

Overall, we find that the model uses the virtual robot to 
successfully pass the initial walking test during real-time execution. 
The significant difference between the actual speed and the target 
speed is a serious flaw. This can be enhanced during the 
reinforcement learning process by reducing the modelling error and 
adding more significant environmental disturbances. Better 
sensors, algorithms for analyzing sensor data, and larger networks 
are examples of additional techniques for improvement. 

CONCLUSION 
The rationale, design patterns, thorough implementation, and 

testing procedures for developing a DRL-based agent that can 
regulate the gait patterns of a quadruped robot are all described in 
this work.  We may conclude that the model has done well and has 
shown to be relatively efficient for the task after having finished the 
analyses described in this paper. This project debuted a brand-new 
DRL-based quadruped robot gait controller system. It is introduced 
to provide the environment for mimicking robot movement. The 
entire system is broken down into a number of smaller systems, 
including the controller, PID, and gait planning modules. The 
environment was created using Unity Engine and has undergone 
experimental validation. It performs better than traditional control 
techniques in terms of precision and response time. Because it does 
not experience accuracy dilution, it can increase overall 
performance by a factor of up to 2.5 in our studied scenario. 

This experiment demonstrated to us how AI-powered self-
automation control systems may be built utilizing reinforcement 
learning. Since the agent is easily adaptable and can pick up new 
maneuvers in unfamiliar contexts, it may be trained for a 
straightforward situation like this one and then challenged to work 
in other situations. In the end, this research provides a solid 
foundation for further study into controls and human-machine 
interaction. Because it is modularly constructed, the system is 
extremely adaptable for future expansions and may be improved to 
make it more efficient.  

Although the system is not yet ready for usage in any kind of 
production context, it still proves an important point. This method 
of developing an autonomous control system might be used in more 
practical applications to handle not only the motion of the robot in 
an open area but also other control inputs for various more intricate 
patterns. In conclusion, neural networks can be extended to control 
sophisticated robots. These could eventually be enhanced to carry 
out more intricate control schemes on bigger and more advanced 
robotic systems. 
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