
Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(4), 564          1 

 

J. Integr. Sci. Technol. 2023, 11(4), 564                                                              .   Article . 

 
Journal of Integrated 

SCIENCE & TECHNOLOGY 

Failure recovery model in big data using the checkpoint approach 
Sonika Chorey*, Neeraj Sahu 

Computer Science and Engineering, G. H. Raisoni University, Amravati, India. 

Received on: 12-Jan-2023 Accepted and Published on: 17-May-2023 

ABSTRACT 

 
Distributed Stream Processing systems are becoming an increasingly crucial aspect of Big Data processing platforms as customers grow ever more 
reliant on their capacity to deliver fast access to fresh findings. As a result, the ability of a system to tolerate failure is necessary for making 
prompt judgments based on these data. By using checkpoint, these systems typically achieve fault tolerance and the capacity to automatically 
recover from partial failures. An innovative method for automatic runtime optimization of fault detection and tolerance methods have been 
developed and used in this work. 
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INTRODUCTION 
 The era of big data has arrived with the advent of the Internet of 

Things, cloud computing, biological science, and other associated 
new sectors.1 Many data applications today require the processing 
of a huge volume of data in order to obtain insight into the data and 
resolve challenging issues. Data-intensive applications use parallel 
processing of massive amounts of data to get results quickly.2 
Distributed Stream Processing (DSP) systems are becoming an 
ever-more-important component of data processing environments 
due to the rising need to quickly process enormous volumes of 
unbounded data. Events must pass through this area of a graph of 
streaming operators in order to retrieve outcomes, which are most 
important as soon as the data arrive.3  

A DSP can malfunction for a variety of reasons, including 
software bugs, hardware issues, user error, or even natural 
calamities. Hence, anytime a system or component failure occurs, 
it is essential to create an efficient system recovery mechanism so 
that the system may be reconfigured and restored in a timely way 

to restart the mission function.4 In order to maintain the systems' 
efficacy, handling data replication in failure circumstances is 
essential. The key difficulties in data replication are in maintaining 
the replica's consistency while updates take place notwithstanding 
any failures that may occur while the transaction is being processed. 
By activating fault tolerance, these issues can only be resolved. In 
distributed computing, fault tolerance is a critical issue since. It 
maintains the transaction vulnerable to failure and in an operational 
state.5 The ability of a system (computer, network, cloud cluster, 
etc.) to continue operating normally in the event that one or more 
of its components fail is known as fault tolerance.6 The main goal 
of it is to keep the transaction going even if one of its components 
fails or malfunctions.7 The dynamic method employed in DSP to 
maintain interconnected transactions while putting up with 
dependability and availability is known as fault tolerance.8  

Checkpointing9 has recently been added to boost fault-tolerance 
in the most recent actual deployments of distributed stream 
processing systems, such as Apache Flink and Storm10, which 
typically display a directed acyclic graph (DAG) architecture of 
stream processing operators. Each map task's computing progress, 
including the current input data offset and computation results, can 
be periodically recorded using checkpointing. The most recent 
computing progress can be collected from the checkpoint in the 
event of task or node failure and the requirement to recover the 
failed task. The recovered job can then continue processing the 
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input data block starting from the most recent offset without having 
to process the entire data block.11 There are various checkpointing 
methods that have been developed. Although checkpoints are 
necessary for an efficient recovery mechanism, the added overhead 
associated with checkpointing methods themselves can have a 
detrimental effect on system performance.12 A few design elements 
that are prone to errors should be carefully taken into account. First 
off, saving all of these data greatly adds to the burden on computers. 
The subsequent high network bandwidth utilisation caused by 
storing intermediate findings on stable storage prevents computing 
nodes from exchanging data in a timely manner.13 In order to lessen 
the detrimental consequences of the checkpoint method on system 
performance, several checkpoint placement policies, such as 
adaptive, age-dependent, or online checkpoints14 have been 
investigated. 

Globally, Check Point Software Technologies is a top supplier 
of cyber security solutions to businesses and governmental 
organisations. With an industry-leading catch rate for malware, 
ransomware, and other sorts of assaults, its solutions safeguard 
consumers from 5th generation cyberattacks. Check Point provides 
"Infinity" Complete Protection with Gen V advanced threat 
prevention, a layered security architecture that protects businesses' 
cloud, network, and mobile device-held data. The most complete 
and user-friendly single point of control security management 
system is offered by Check Point. Almost 100,000 enterprises of all 
sizes are protected by Check Point.15 

Knowledge discovery in databases (KDD), another name for 
data mining, is a fast developing discipline. The demand for 
innovative methods to analyse, comprehend, or even display the 
vast amounts of stored data gathered from commercial and 
academic applications is what drives this technology. It is the 
process of extracting valuable information from massive amounts 
of data held in databases, data warehouses, or other information 
repositories, such as patterns, associations, changes, anomalies, and 
noteworthy structures. It can be utilised to assist businesses in 
reaching better decisions so they can continue to compete in the 
market. 

Summarization, association, classification, prediction, and 
clustering are some of the main data mining functions that have 
been developed in both the commercial and research worlds.5 A 
range of technologies, including database-oriented techniques, 
machine learning, and statistical techniques, can be used to achieve 
these functionalities. Applications and prototypes for data mining 
have recently been created for a variety of industries, including 
marketing, banking, finance, manufacturing, and health care. 
Several types of data, including time-series, geographic, 
telecommunications, web, and multimedia data, have also been 
subject to data mining applications. In general, the application 
domain and the type of data that are available have a significant 
impact on the data mining process, as well as the approach and 
function that will be used.  

Structured Data Mining 
The KDN website provides a list of the most popular data mining 

technologies that are either commercially or publicly available. The 
customer service database's structured data on sales, maintenance, 
and employee and customer information can be mined using these 

tools. It's intriguing to observe how many tools support various 
strategies, or different data mining methodologies. Darwin from 
Thinking Machine Corp., for instance, provides case-based 
reasoning, regression tree (CART), k-means algorithm, neural 
networks, and these functions for classification, prediction, and 
clustering. There are also certain tools that are solely intended to 
perform one particular data mining task. In order to get the best 
results, customers can choose from a variety of data mining 
methods for specific issue domains.16 

Data Mining Method 
The structure of the data mining process is shown in the figure 

below. It comprises of two main processes: the online fault 
diagnosis procedure and the offline knowledge extraction method. 
The first creates a knowledge base with the neural network models 
and a rule-base by extracting information from the customer service 
database. The second employs the four stages of the CBR cycle 
(retrieve, reuse, revise, and retain) to diagnose customer reported 
problems. The neural network models and the rule base cooperate 
inside the CBR cycle to support the second. It takes the user's 
description of the problem as input, maps it to the nearest fault-
conditions of the faults already stored in the knowledge base, and 
then gets the appropriate checkpoint solutions for the user. The 
issue and its resolution are revised in light of user comments on the 
fault diagnosis procedure. At the end, the new finding is kept in 
mind as knowledge to improve future problem performance.18 

LITERATURE REVIEW 
    Algorithm is a fault-tolerant scheduling. Advantage: Reduce 
projected execution time as much as possible and reduce time spent 
on fault-tolerant consumption. The performance increase ratio 
suffers from maximum probability failure, which is a drawback.1 
The approach uses a dynamic checkpointing policy-based 
evaluation mechanism for mission success probability (MSP). The 
advantage of using this approach is that optimisation problems are 
developed and addressed, and the best dynamic checkpoint policy, 
policy, or combination of checkpoint policy and element activation 
sequence is found to maximise MSP of the under consideration 
standby system.2 A proactive method of system auto-tuning for 
Distributed Stream Processing jobs running on changing workloads 
is Phoebe. Phoebe can provide consistent end-to-end latencies. 
Moreover, it offers improved resource management. It disregards 
the recuperation time or the execution time.3 Benefit of the 
Technique for Distributed Stream Processing Systems Checkpoint 
Intervals This model includes message latency, depth of the system 
topology, checkpoint interval, failure rate, checkpoint cost, failure 
detection, and restart costs, which improve the system's correctness 
and efficiency. This paradigm doesn't change to accommodate 
shifting workloads.4 Quick Recovery Map Reduction is the method 
(FAR MR). In the event of task failure recovery, node failure 
recovery, and node failure recovery, improve computing job 
performance.5 Disadvantage The procedure that uses the most 
resources is recovering from failures in tasks. Technique is McTAR 
(a Multi-trigger Checkpointing Tactic for fAstTAsk Recovery) 
McTAR shortens the job recovery time and boosts performance in 
failure-prone situations. The management of fail-stop faults, 
however, was not addressed, and the forecast based on random fault 
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information is unable to appropriately depict the condition of 
nodes.6 This is known as Khaos method. The latency and recovery 
time violations are reduced by this Khaos model. Instead of 
producing an estimate, this model does not examine whether 
continuous optimisation is feasible.7 Technique based on fuzzy 
logic. The system's reliability is improved by this model. Working 
with erroneous data causes the system's accuracy to decline.8 
Binary Vote Assignment on Grid (BVAG) method includes roll-
back recovery and checkpoints. BVAGCRobtain a dependable 
performance of data replication in distributed databases with a 
failure situation. Data replication transactions take a long time to 
complete.9 
 Dynamic Check-Point Policy 

Any operating element s(j) performs checkpointing activities 
during the mission so that the following checkpoint is carried out. 
after a predetermined number of operations j have been 
successfully completed since the previous checkpoint. It is 
expected that the system checkpointing process is completely 
accurate and error-free.10 

We make j dependent on the index of the element being activated 
and the total number of operations left until the mission is finished 
in order to create a dynamic checkpoint policy. 

There are K equal sections that make up the overall mission task 
(M operations). We suppose that k=xK/M portions should be 
finished if, following a failure, the remaining elements are required 
to carry out x actions in order to complete the mission. Upon failure, 
element s(j) shall activate and carry out n(j,k) equally spaced 
checkpoints until the task is complete, i.e. Checkpoint Dynamic 
Policy Dynamic Checkpoint Procedure Checkpoint Policy for 
Amic the completion of j=x/(n(j,k)+1) operations since the 
beginning.11 

The checkpoint policy n(j,k)=k-1 for each j corresponds to 
j=M/K for any element activated at any moment, meaning the fixed 
checkpoint frequency with the sum of K-1 checkpoints throughout 
the operation. 

According to the quantity and timing of element failures, the 
overall number of checkpoints carried out during the mission may 
vary. The dynamic checkpoint policy is defined by the specified 
value of K and the function n(j,k) for j=1,...,N and k=1,...,K. 
Using K and n(j,k), one can specify the number of checkpoints that 
element s(j) should complete given that it must carry out x mission 
activities till the completion of the mission. 

In general, the mission's total number of checkpoints might vary 
depending on the quantity and timing of 
elemental blunders.The dynamic checkpoint policy is defined by 
the specified value of K and the function n(j,k) for j=1,...,N and 
k=1,...,K. 

The number of checkpoints that element s(j) should conduct 
given that it must complete x mission activities is defined as 
nj(x)=n(j,xK/M) when K and n(j,k) are available. Because element 
s(1) is always activated at the start of the mission and only n1(M) 
specifies the number of checkpoints this element completes, it is 
important to note that for j=1, any value of n(1,k) for kK has no 
meaning.17 

Take, for instance, a work finished by element s(4) in Figure 1 
after three failures of the earlier elements. The checkpoint policy 

has the following parameters: K=3, n(1,3)=4, n(2,1)=0, n(2,2)=2, 
n(2,3)=1, n(3,1)=1, n(3,2)=n(3,3)=2, n(4,1)=1, n(4,2)=n(4,3)=2, 
and n(4,3)=0. Mission operations and checkpoint operations are 
differentiated in this section and throughout the text. Checkpoint 
operations are not counted in the number of mission operations 
remaining until the mission is finished. In particular, n(1,3)=4 
establishes that element s(1) performs 4 checkpoints. In other 
words, if the mission job is not failed, element s(1) should perform 
checkpoints after finishing each 1/5 of the assignment, i.e., 
1=M/5.18 

The element s(1) in this illustration fails between the first and 
second checkpoints. 

After retrieving the previously saved information, the remaining 
components should carry out x=M-1=4M/5 mission actions to 
finish the task. k=xK/M=(4M/5)(3/M)=3 following the failure of 
element s(1). Assuming that n(2,3)=1, element s(2) should perform 
checkpoints when each remaining mission job is half-complete, or 
2=(4M/5)/2=0.4M. Before reaching the end of its first checkpoint, 
element s(2) fails. 

The amount of work that has to be done after this failure remains 
the same because no more successful checkpoints were reached.18,19 

Hence, x=4M/5 and k=3. Due to the fact that n(3,3)=2, element 
s(3) must conduct checkpoints after finishing each 1/3 of the 
mission's remaining tasks, or 3=(4M/5)/3=4M/15. Between the first 
and second checkpoints of element s(3), it fails. After data retrieval, 
the remaining components should finish x=4M/5- 3=8M/15 
mission activities, which translates to k=(8M/15)(3/M)=2. Element 
s(4) shall perform checkpoints after finishing each 1/3 of the 
remaining mission job, or 4=(8M/15)/3=8M/45, since n(4,2)=2 and 
element s(4). Element s(j) performs the h-th checkpoint procedure, 
which calls for Bjh operations. Depending on the checkpoint 
scheme chosen, Bjh may be a result of the work completed since 
the last successful checkpoint or from the mission's inception. 

The quantity of data saved during the checkpoint, and therefore 
Bjh, rely on the amount of work finished since the last successful 
checkpoint, specifically if an incremental checkpoint technique is 
utilised. In this instance, Bjh=b(j) for every h=1,..., n(j,k) is true, 
and b(x) is a function that returns the number of operations required 
to store the data produced during x mission activities. Bjh relies on 
the number of mission operations completed from the start of the 
mission till the checkpoint time if a total checkpoint technique is 
used.10 Large-scale use of big data and the development of Internet 
of Things (IoT) technologies have made it possible for cities to gain 
insightful knowledge from a wealth of data that is produced in real-
time. Numerous IoT devices in a smart city continuously produce 
data, which must be analysed quickly using big data techniques. 
The applicability of using distributed stream processing 
frameworks at the data processing layer of a smart city is examined 
in this article, along with the acceptance and maturity of these 
frameworks across various Smart City use cases. The goal of our 
investigations is to compare the effectiveness of three SDPSs: 
Apache Storm, Apache Spark Streaming, and Apache Flink.14 In 
this research, consider a novel stochastic model for the file recovery 
action with checkpointing under a homogeneous Poisson failure of 
the system. the current checkpoint model heavily depends on the 
system age. In order to find the best checkpoint interval that 
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maximises system availability while taking into consideration the 
queuing effect caused by inactivity in the transaction processing 
system, we offer three different types of approximation approaches. 
The checkpoint model, which is based on three approximation 
approaches, is quantitatively compared with older models using 
numerical examples, and it is demonstrated that it can reduce 
system overhead that may result in unanticipated system 
downtime.26 

In this research, when a system failure happens based on a 
homogeneous Poisson process, we consider a new stochastic model 
for file recovery action with checkpointing. In contrast to the 
models by Gelenbe (1979) and Goes and Sumita (1995), the current 
checkpoint model heavily depends on the system age. In order to 
find the best checkpoint interval that maximises system availability 
while taking into consideration the queuing effect caused by 
inactivity in the transaction processing system, we offer three 
different types of approximation approaches. The checkpoint 
model, which is based on three approximation approaches, is 
quantitatively compared with older models using numerical 
examples, and it is demonstrated that it can reduce system overhead 
that may result in unanticipated system downtime.27 

A prominent method for speeding up computer system recovery 
from errors is checkpointing. Checkpointing enables one to lessen 
the processing time loss brought on by faults by preserving interim 
states of programmes in a dependable storage medium. The 
duration of the checkpoint breaks has an impact on how quickly the 
programmes run. Long checkpoint intervals result in lengthy 
reprocessing times, while frequent checkpoints have a large 
overhead. In this research, we describe an online checkpoint 
placement technique. When deciding whether or not to put a 
checkpoint, the algorithm leverages online knowledge of the 
current cost of a checkpoint. We demonstrate how to evaluate a 
program's execution time using this approach.28   

For broad rollback and recovery systems, a numerical method for 
calculating the best dynamic checkpointing strategies is described. 
Modelled as a Markov renewal decision process, the system. 
Reprocessing-dependent recovery times, general failure 
distributions, and random checkpointing intervals are all 
acceptable. To maximise the average system availability across an 
unlimited time horizon, a dynamic decision rule must be found. It 
is suggested to use computational methods to approximate such a 
regulation. This method is based on stochastic dynamic 
programming with value and policy functions approximated using 
splines or finite elements. Illustrations using numbers are offered.29 
In-depth research has been done over the past 20 years to develop 
effective checkpointing methods for use in conventional distributed 
computing. More focus has recently been placed on developing 
checkpointing methods for mobile systems. Some of these 
protocols were developed specifically for mobile systems, while 
others were modified from the conventional distributed 
environment. A checkpoint is a predetermined moment in a 
programme where regular processing is paused particularly to 
preserve the status data required to enable processing to resume at 
a later time. The procedure of checkpointing involves preserving 
the status data. This study reviews the checkpointing techniques for 

mobile distributed systems that have been published in the 
literature.30  
      Another study simulates a mission that requires repairable 
computing equipment to complete a certain amount of work within 
a given amount of time or by a certain deadline. To enable an 
efficient system recovery and prevent starting the mission over 
from scratch when a system failure occurs, the system is subjected 
to a series of complete and incremental data backup procedures 
while the mission is in progress. The system time-to-failure can 
follow any arbitrary form of distributions, however the repair time 
is fixed. In order to assess the mission success probability and 
anticipated completion time of the studied repairable real-time 
computing systems subject to mixed full and incremental backups, 
a new numerical algorithm was initially developed in this study. 
Validity of the suggested evaluation algorithm have been 
reported.31 

CHALLENGES 
• Allocating sufficient resources to ensure recovery is within 
acceptable bounds in the presence of QoS recovery time targets is 
one of the difficult challenges.3 
• In a streaming application, the depth of the system topology and 
message delay have an impact on the multi-level checkpointing 
procedure.4 
• Depth of the system topology and message latency • The majority 
of the fault tolerance strategies now in use are ineffective and 
recovery from failures takes an excessively lengthy time.5 
• The depth of the system's topology and message latency. Keeping 
interim results on reliable storage also uses up a lot of the network's 
capacity, making it difficult for compute nodes to exchange data 
promptly.7 
• The main problems encountered in  coordinated check points 
include deep system topology, communication delay, consistent  
checkpoint,  and high latency for saving the checkpoints storage. 

 OBJECTIVES 
 • To analyze and explore various failure detection and fault 
tolerance methods in big data application 
• To design and develop failure detection model based on modified 
Deep learning techniques. 
• To design and develop a fault tolerance model based on the deep 
learning techniques. 
• To design and develop a novel algorithm for the effective tuning 
of hyper parameters in classifiers 
• To design and develop an automated notification for system 
failure, which enables to take backup up to current check point 
before the destruction of data. 
Problem Statement  

Modern multi-core CPUs are impressively capable of handling 
sophisticated, huge transactions in databases. Depending on the 
magnitude of the transaction, these databases can process millions 
to billions of transactions every second. Such databases must, 
however, be resilient to errors. Logging to disc can be used to 
ensure database persistence. Database systems also employ 
frequent checkpoints in addition to logging, as this speeds up 
recovery and prevents the system from running out of disc space. 
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   There are various difficulties in implementing persistence for a 
quick and big in-memory database. Logging is quick because it 
makes full use of the disc throughput by using sequential writes. 
Checkpoints demand a tour over the full database, though. Database 
performance may be impacted by data transfer, cache pollution, and 
logging interference brought on by writing the database to disc. It 
is difficult for such a system to recover. 

More than 50 GB of log data can be produced per minute by 
modern databases, which can process tens of millions of tiny 
transactions every second. This is up to many orders of magnitude 
higher than the results reported in earlier studies on in-database 
durability in terms of transaction rates and log sizes. Recovery is 
tough since there is so much data to read and recover when the log 
size is so large. 

There is a need ot a plan and its execution to address the 
problems listed above, especially as follows: 

• Making all of the significant durability mechanisms parallel is 
possible and recommended. 

• Logging and checkpointing in tandem can be quick without 
affecting typical transaction processing. 

• During recovery, log replay becomes a bottleneck because of 
the large flow of data. 
     Depth of the system topology and message delay Distributed 
stream processing (DSP) systems are becoming an increasingly 
crucial component of data processing environments due to the 
growing need to quickly process enormous volumes of unbounded 
data. The DSP frequently fails for a variety of reasons, including 
software faults, hardware issues, user error, or natural calamities. 
So that the system may be quickly changed and restored, it is 
essential to create an efficient system recovery mechanism. Several 
checkpoint strategies have been proposed for failure recovery, but 
these models have added overhead. So, the goal of this project is to 
provide 
 a) A defect or failure detection technique based on deep learning 
that uses checkpoints and has lower computing overheads.  
b) To fully satisfy the QoS specifications, which include fast 
throughput and minimal delay. 

 METHODOLOGY 
recovery model. Users enter a certain amount of tasks into the 

cloud centre to begin the technique. On the basis of internal 
schedule management, the tasks are given to the virtual machine. 
The adjusted deep learning system's required parameters will be 
extracted within a predetermined time frame using the monitoring 
component. The fault detection system will forecast the presence or 
absence of a fault based on the input parameters that this component 
retrieves from the Deep CNN-based fault detection system. The 
suggested Advanced rescue optimisation, which will be created by 
fusing the features of teaching and learning with those of human 
rescuers,21,22 will be used to modify the hyperparameters of the deep 
learning classifier. The monitoring component once more retrieves 
the parameters needed by the Deep CNN based checkpoint-enabled 
tolerance mechanism in the case of a fault. Lastly, the fault 
tolerance system assigns the proper checkpoints through the 
redundant output based on the built-in fault tolerance algorithms. 

 

 
Figure 1.  Flow chart for the adopted Methodology 
 
Performance metrics: Latency, recovery time and average 
percentage of error. 

 RESULTS AND DISCUSSION 
This section implements the performance and comparative 

analysis for the partial recovery system's deep CNN approach. 
Accuracy, recovery time, precision, and recall are the parameters 
that have been taken into account when assessing the performance 
of current CNN model. 

Performance analysis using database 
In the CNN performance is analyzed by considering the training 

percentage, the accuracy of the MRRO-deep CNN at the initial 
breaking epoch 4 and the final breaking epoch 24 for the training 
percentage 90 is 93.500 % and 100.200 %, . The recovery time of 
the MRRO-deep CNN at the initial breaking epoch 4 and the final 
breaking epoch 24 for the training percentage 90 is 19.050 s and 
9.200 s,  CNN at the initial breaking epoch 4 and the final breaking 
epoch 24 for the training percentage 90 is 93.052 % and 98.050 %. 
The recall of CNN for the training percentage 90 at the initial 
breaking epoch 4 and the final breaking epoch 24 is 72.95% and 
76.81%. 

 
Comparative discussion 

 
Methods 

90 % training  
Database  

Accuracy % Recovery 
time (s) 

Precision 
% 

Recall 
% 

Fault tolerant 
scheduling 
algorithm 84.016 10.700 70.500 72.400 
FAR-MR 88.275 11.326 72.080 73.995 

ECAC 91.000 9.100 72.092 75.692 
Deep CNN 93.500 9.200 72.956 76.817 

 

CONCLUSION 
In this study, we developed a checkpoint-based failure recovery 

model built on a modified Deep CNN. In order to maintain the 
lowest latency and avoid recovery time violations, it monitors the 
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virtual machine to identify task execution errors. Due to the proper 
tuning of the Deep CNN classifier, it is anticipated that the 
developed Deep CNN based failure recovery model employing 
checkpoint strategy would outperform the current methods.  

CONFLICT OF INTEREST 
Authors do not have any conflict of interest in publishing of this 

work. No Academic or financial interest to be declared for this 
work. 

REFERENCES AND NOTES 
1. H. Xuan, S. Wei, W. Tong, D. Liu, C. Qi. Fault-Tolerant Scheduling 

Algorithm with Re-Allocation for Divisible Task. IEEE Access 2018, 6, 
73147–73157. 

2.  G. Levitin, L. Xing, Y. Dai, V.M. Vokkarane. Dynamic Checkpointing 
Policy in Heterogeneous Real-Time Standby Systems. IEEE Trans. 
Comput. 2017, 66 (8), 1449–1456. 

3.  M.K. Geldenhuys, D. Scheinert, O. Kao, L. Thamsen. Phoebe: QoS-Aware 
Distributed Stream Processing through Anticipating Dynamic Workloads. 
Proceedings - IEEE International Conference on Web Services, ICWS 
2022. 2022, pp 198–207. 

4.  S. Jayasekara, A. Harwood, S. Karunasekera. A utilization model for 
optimization of checkpoint intervals in distributed stream processing 
systems. Futur. Gener. Comput. Syst. 2020, 110, 68–79. 

5.  Y. Zhu, J. Samsudin, R. Kanagavelu, et al. Fast Recovery MapReduce 
(FAR-MR) to accelerate failure recovery in big data applications. J. 
Supercomput. 2020, 76 (5), 3572–3588. 

6.  Y. Fang, Q. Chen, N. Xiong. A multi-factor monitoring fault tolerance 
model based on a GPU cluster for big data processing. Inf. Sci. (Ny). 2019, 
496, 300–316. 

7.  A multi-trigger checkpointing tactic for fast task recovery in mapreduce". 
IEEE Trans. Serv. Comput. 

8.  M.K. Geldenhuys, B.J.J. Pfister, D. Scheinert, L. Thamsen, O. Kao. Khaos: 
Dynamically Optimizing Checkpointing for Dependable Distributed 
Stream Processing. Proceedings of the 17th Conference on Computer 
Science and Intelligence Systems, FedCSIS 2022. 2022, pp 553–561. 

9.  N. Hagshenas, M. Mojarad, H. Arfaeinia. A Fuzzy Approach to Fault 
Tolerant in Cloud using the Checkpoint Migration Technique. Int. J. Intell. 
Syst. Appl. 2022, 14 (3), 18–26. 

10.  S. Hafizah Sy Ahmad Ubaidillah, B. Alkazemi, A. Noraziah. An Efficient 
Data Replication Technique with Fault Tolerance Approach using BVAG 
with Checkpoint and Rollback-Recovery. Int. J. Adv. Comput. Sci. Appl. 
2021, 12 (1), 473–480. 

11.  J. Mervis. Agencies Rally to Tackle Big Data. Science. 2012, pp 22–22. 
12.  G. Cattaneo, U.F. Petrillo, R. Giancarlo, G. Roscigno. An effective 

extension of the applicability of alignment-free biological sequence 
comparison algorithms with Hadoop. J. Supercomput. 2017, 73 (4), 1467–
1483. 

13.  Y. Zhu, S. Juniarto, H. Shi, J. Wang. VH-DSI: Speeding up data 
visualization via a heterogeneous distributed storage infrastructure. In 
Proceedings of the International Conference on Parallel and Distributed 
Systems - ICPADS; 2016; Vol. 2016-January, pp 658–665. 

14.  H. Nasiri, S. Nasehi, M. Goudarzi. A survey of distributed stream 
processing systems for smart city data analytics. In ACM International 
Conference Proceeding Series; 2018; pp 1–7,. 

15.  H. Isah, T. Abughofa, S. Mahfuz, et al. A survey of distributed data stream 
processing frameworks. IEEE Access 2019, 7, 154300–154316. 

16.  H. Nasiri, S. Nasehi, M. Goudarzi. Evaluation of distributed stream 
processing frameworks for IoT applications in Smart Cities. J. Big Data 
2019, 6 (1), 1–24,. 

17.  A. Sarı, E. Çağlar. Performance Simulation of Gossip Relay Protocol in 
Multi-Hop Wireless Networks. In Owner: Girne American University.; 
2015; p 145. 

18.  P. Carbone, A. Katsifodimos, S. Ewen, et al. Apache flink: Stream and 
batch processing in a single engine. Bull. Tech. Comm. Data Eng. 2015, 38 
(4), 28–38. 

19.  P. Carboney, S. Ewenz, G. Fóra, et al. State management in Apache Flink: 
® consistent stateful distributed stream processing. Proc. VLDB Endow. 
2017, 10 (12), 1718–1729. 

20.  E. Kail, K. Karóczkai, P. Kacsuk, M. Kozlovszky. Provenance based 
checkpointing method for dynamic health care smart system. Scalable 
Comput. 2016, 17 (2), 143–153. 

21.  A. Shabani, B. Asgarian, M. Salido, S. Asil Gharebaghi. Search and rescue 
optimization algorithm: A new optimization method for solving constrained 
engineering optimization problems. Expert Syst. Appl. 2020, 161, 113698. 

22.  R. V. Rao, V.J. Savsani, D.P. Vakharia. Teaching-learning-based 
optimization: A novel method for constrained mechanical design 
optimization problems. In CAD Computer Aided Design; 2011; Vol. 43, pp 
303–315. 

23.  P.A. Chorey, N. Sahu. Secure Online Transactions Using a Blockchain-
Based Checkpoint Approach. Comput. Integr. Manuf. Syst. 2022, 28 (11), 
1–11. 

24.  A.W. Burange, V.M. Deshmukh. Trust based secured Routing System for 
low power networks. J. Integr. Sci. Technol. 2023, 11 (1), 431. 

25.  S. Muhammad Abrar Akber, H. Chen, Y. Wang, H. Jin. Minimizing 
Overheads of Checkpoints in Distributed Stream Processing Systems. In 
Proceedings of the 2018 IEEE 7th International Conference on Cloud 
Networking, CloudNet 2018; 2018; pp 1–4. 

26.  Y. Zhang, K. Chakrabarty. Adaptive Checkpointing with Dynamic Voltage 
Scaling in Embedded Real-Time Systems. Embed. Softw. SoC 2005, 449–
463. 

27.  T. Dohi, N. Kaio, K.S. Trivedi. Availability models with age-dependent 
checkpointing. In Proceedings of the IEEE Symposium on Reliable 
Distributed Systems; 2002; pp 130–139. 

28.  A. Ziv, J. Bruck. An on-line algorithm for checkpoint placement. In IEEE 
Transactions on Computers; White Plains, NY, 1997; Vol. 46, pp 976–985. 

29.  J. Malenfant. Computing Optimal Checkpointing Strategies for Rollback 
and Recovery Systems. IEEE Trans. Comput. 1988, 37 (4), 491–496. 

30.  A. Khunteta, P. Kumar. An Analysis of Checkpointing Algorithms for 
Distributed Mobile Systems. Int. J. Comput. Sci. Eng. 2010, 02 (04), 1314–
1326. 

31.  G. Levitin, L. Xing, Q. Zhai, Y. Dai. Optimization of Full versus 
Incremental Periodic Backup Policy. IEEE Trans. Dependable Secur. 
Comput. 2016, 13 (6), 644–656. 

 

 
 

 
 
 
 
 


	ABSTRACT
	Introduction
	Literature review
	Challenges
	Objectives
	Methodology
	Results and discussion
	Conclusion
	Conflict of Interest
	References and notes


