
Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(4), 564 1

J. Integr. Sci. Technol. 2023, 11(4), 564 . Article .

Journal of Integrated

SCIENCE & TECHNOLOGY

Failure recovery model in big data using the checkpoint approach
Sonika Chorey*, Neeraj Sahu

Computer Science and Engineering, G. H. Raisoni University, Amravati, India.

Received on: 12-Jan-2023 Accepted and Published on: 17-May-2023

ABSTRACT

Distributed Stream Processing systems are becoming an increasingly crucial aspect of Big Data processing platforms as customers grow ever more
reliant on their capacity to deliver fast access to fresh findings. As a result, the ability of a system to tolerate failure is necessary for making
prompt judgments based on these data. By using checkpoint, these systems typically achieve fault tolerance and the capacity to automatically
recover from partial failures. An innovative method for automatic runtime optimization of fault detection and tolerance methods have been
developed and used in this work.

Keywords: Big data, DSP, fault tolerance, Checkpoint, Deep learning

INTRODUCTION
 The era of big data has arrived with the advent of the Internet of

Things, cloud computing, biological science, and other associated
new sectors.1 Many data applications today require the processing
of a huge volume of data in order to obtain insight into the data and
resolve challenging issues. Data-intensive applications use parallel
processing of massive amounts of data to get results quickly.2
Distributed Stream Processing (DSP) systems are becoming an
ever-more-important component of data processing environments
due to the rising need to quickly process enormous volumes of
unbounded data. Events must pass through this area of a graph of
streaming operators in order to retrieve outcomes, which are most
important as soon as the data arrive.3

A DSP can malfunction for a variety of reasons, including
software bugs, hardware issues, user error, or even natural
calamities. Hence, anytime a system or component failure occurs,
it is essential to create an efficient system recovery mechanism so
that the system may be reconfigured and restored in a timely way

to restart the mission function.4 In order to maintain the systems'
efficacy, handling data replication in failure circumstances is
essential. The key difficulties in data replication are in maintaining
the replica's consistency while updates take place notwithstanding
any failures that may occur while the transaction is being processed.
By activating fault tolerance, these issues can only be resolved. In
distributed computing, fault tolerance is a critical issue since. It
maintains the transaction vulnerable to failure and in an operational
state.5 The ability of a system (computer, network, cloud cluster,
etc.) to continue operating normally in the event that one or more
of its components fail is known as fault tolerance.6 The main goal
of it is to keep the transaction going even if one of its components
fails or malfunctions.7 The dynamic method employed in DSP to
maintain interconnected transactions while putting up with
dependability and availability is known as fault tolerance.8

Checkpointing9 has recently been added to boost fault-tolerance
in the most recent actual deployments of distributed stream
processing systems, such as Apache Flink and Storm10, which
typically display a directed acyclic graph (DAG) architecture of
stream processing operators. Each map task's computing progress,
including the current input data offset and computation results, can
be periodically recorded using checkpointing. The most recent
computing progress can be collected from the checkpoint in the
event of task or node failure and the requirement to recover the
failed task. The recovered job can then continue processing the

*Correspondence to: Sonika Anant Chorey
Tel: 9021899158
Email: sonikachorey@gmail.com

Cite as: J. Integr. Sci. Technol., 2023, 11(4), 564.

©Authors; ScienceIN ISSN: 2321-4635
http://pubs.thesciencein.org/jist

S. Chorey et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(4), 564 2

input data block starting from the most recent offset without having
to process the entire data block.11 There are various checkpointing
methods that have been developed. Although checkpoints are
necessary for an efficient recovery mechanism, the added overhead
associated with checkpointing methods themselves can have a
detrimental effect on system performance.12 A few design elements
that are prone to errors should be carefully taken into account. First
off, saving all of these data greatly adds to the burden on computers.
The subsequent high network bandwidth utilisation caused by
storing intermediate findings on stable storage prevents computing
nodes from exchanging data in a timely manner.13 In order to lessen
the detrimental consequences of the checkpoint method on system
performance, several checkpoint placement policies, such as
adaptive, age-dependent, or online checkpoints14 have been
investigated.

Globally, Check Point Software Technologies is a top supplier
of cyber security solutions to businesses and governmental
organisations. With an industry-leading catch rate for malware,
ransomware, and other sorts of assaults, its solutions safeguard
consumers from 5th generation cyberattacks. Check Point provides
"Infinity" Complete Protection with Gen V advanced threat
prevention, a layered security architecture that protects businesses'
cloud, network, and mobile device-held data. The most complete
and user-friendly single point of control security management
system is offered by Check Point. Almost 100,000 enterprises of all
sizes are protected by Check Point.15

Knowledge discovery in databases (KDD), another name for
data mining, is a fast developing discipline. The demand for
innovative methods to analyse, comprehend, or even display the
vast amounts of stored data gathered from commercial and
academic applications is what drives this technology. It is the
process of extracting valuable information from massive amounts
of data held in databases, data warehouses, or other information
repositories, such as patterns, associations, changes, anomalies, and
noteworthy structures. It can be utilised to assist businesses in
reaching better decisions so they can continue to compete in the
market.

Summarization, association, classification, prediction, and
clustering are some of the main data mining functions that have
been developed in both the commercial and research worlds.5 A
range of technologies, including database-oriented techniques,
machine learning, and statistical techniques, can be used to achieve
these functionalities. Applications and prototypes for data mining
have recently been created for a variety of industries, including
marketing, banking, finance, manufacturing, and health care.
Several types of data, including time-series, geographic,
telecommunications, web, and multimedia data, have also been
subject to data mining applications. In general, the application
domain and the type of data that are available have a significant
impact on the data mining process, as well as the approach and
function that will be used.

Structured Data Mining
The KDN website provides a list of the most popular data mining

technologies that are either commercially or publicly available. The
customer service database's structured data on sales, maintenance,
and employee and customer information can be mined using these

tools. It's intriguing to observe how many tools support various
strategies, or different data mining methodologies. Darwin from
Thinking Machine Corp., for instance, provides case-based
reasoning, regression tree (CART), k-means algorithm, neural
networks, and these functions for classification, prediction, and
clustering. There are also certain tools that are solely intended to
perform one particular data mining task. In order to get the best
results, customers can choose from a variety of data mining
methods for specific issue domains.16

Data Mining Method
The structure of the data mining process is shown in the figure

below. It comprises of two main processes: the online fault
diagnosis procedure and the offline knowledge extraction method.
The first creates a knowledge base with the neural network models
and a rule-base by extracting information from the customer service
database. The second employs the four stages of the CBR cycle
(retrieve, reuse, revise, and retain) to diagnose customer reported
problems. The neural network models and the rule base cooperate
inside the CBR cycle to support the second. It takes the user's
description of the problem as input, maps it to the nearest fault-
conditions of the faults already stored in the knowledge base, and
then gets the appropriate checkpoint solutions for the user. The
issue and its resolution are revised in light of user comments on the
fault diagnosis procedure. At the end, the new finding is kept in
mind as knowledge to improve future problem performance.18

LITERATURE REVIEW
 Algorithm is a fault-tolerant scheduling. Advantage: Reduce
projected execution time as much as possible and reduce time spent
on fault-tolerant consumption. The performance increase ratio
suffers from maximum probability failure, which is a drawback.1
The approach uses a dynamic checkpointing policy-based
evaluation mechanism for mission success probability (MSP). The
advantage of using this approach is that optimisation problems are
developed and addressed, and the best dynamic checkpoint policy,
policy, or combination of checkpoint policy and element activation
sequence is found to maximise MSP of the under consideration
standby system.2 A proactive method of system auto-tuning for
Distributed Stream Processing jobs running on changing workloads
is Phoebe. Phoebe can provide consistent end-to-end latencies.
Moreover, it offers improved resource management. It disregards
the recuperation time or the execution time.3 Benefit of the
Technique for Distributed Stream Processing Systems Checkpoint
Intervals This model includes message latency, depth of the system
topology, checkpoint interval, failure rate, checkpoint cost, failure
detection, and restart costs, which improve the system's correctness
and efficiency. This paradigm doesn't change to accommodate
shifting workloads.4 Quick Recovery Map Reduction is the method
(FAR MR). In the event of task failure recovery, node failure
recovery, and node failure recovery, improve computing job
performance.5 Disadvantage The procedure that uses the most
resources is recovering from failures in tasks. Technique is McTAR
(a Multi-trigger Checkpointing Tactic for fAstTAsk Recovery)
McTAR shortens the job recovery time and boosts performance in
failure-prone situations. The management of fail-stop faults,
however, was not addressed, and the forecast based on random fault

S. Chorey et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(4), 564 3

information is unable to appropriately depict the condition of
nodes.6 This is known as Khaos method. The latency and recovery
time violations are reduced by this Khaos model. Instead of
producing an estimate, this model does not examine whether
continuous optimisation is feasible.7 Technique based on fuzzy
logic. The system's reliability is improved by this model. Working
with erroneous data causes the system's accuracy to decline.8
Binary Vote Assignment on Grid (BVAG) method includes roll-
back recovery and checkpoints. BVAGCRobtain a dependable
performance of data replication in distributed databases with a
failure situation. Data replication transactions take a long time to
complete.9
 Dynamic Check-Point Policy

Any operating element s(j) performs checkpointing activities
during the mission so that the following checkpoint is carried out.
after a predetermined number of operations j have been
successfully completed since the previous checkpoint. It is
expected that the system checkpointing process is completely
accurate and error-free.10

We make j dependent on the index of the element being activated
and the total number of operations left until the mission is finished
in order to create a dynamic checkpoint policy.

There are K equal sections that make up the overall mission task
(M operations). We suppose that k=xK/M portions should be
finished if, following a failure, the remaining elements are required
to carry out x actions in order to complete the mission. Upon failure,
element s(j) shall activate and carry out n(j,k) equally spaced
checkpoints until the task is complete, i.e. Checkpoint Dynamic
Policy Dynamic Checkpoint Procedure Checkpoint Policy for
Amic the completion of j=x/(n(j,k)+1) operations since the
beginning.11

The checkpoint policy n(j,k)=k-1 for each j corresponds to
j=M/K for any element activated at any moment, meaning the fixed
checkpoint frequency with the sum of K-1 checkpoints throughout
the operation.

According to the quantity and timing of element failures, the
overall number of checkpoints carried out during the mission may
vary. The dynamic checkpoint policy is defined by the specified
value of K and the function n(j,k) for j=1,...,N and k=1,...,K.
Using K and n(j,k), one can specify the number of checkpoints that
element s(j) should complete given that it must carry out x mission
activities till the completion of the mission.

In general, the mission's total number of checkpoints might vary
depending on the quantity and timing of
elemental blunders.The dynamic checkpoint policy is defined by
the specified value of K and the function n(j,k) for j=1,...,N and
k=1,...,K.

The number of checkpoints that element s(j) should conduct
given that it must complete x mission activities is defined as
nj(x)=n(j,xK/M) when K and n(j,k) are available. Because element
s(1) is always activated at the start of the mission and only n1(M)
specifies the number of checkpoints this element completes, it is
important to note that for j=1, any value of n(1,k) for kK has no
meaning.17

Take, for instance, a work finished by element s(4) in Figure 1
after three failures of the earlier elements. The checkpoint policy

has the following parameters: K=3, n(1,3)=4, n(2,1)=0, n(2,2)=2,
n(2,3)=1, n(3,1)=1, n(3,2)=n(3,3)=2, n(4,1)=1, n(4,2)=n(4,3)=2,
and n(4,3)=0. Mission operations and checkpoint operations are
differentiated in this section and throughout the text. Checkpoint
operations are not counted in the number of mission operations
remaining until the mission is finished. In particular, n(1,3)=4
establishes that element s(1) performs 4 checkpoints. In other
words, if the mission job is not failed, element s(1) should perform
checkpoints after finishing each 1/5 of the assignment, i.e.,
1=M/5.18

The element s(1) in this illustration fails between the first and
second checkpoints.

After retrieving the previously saved information, the remaining
components should carry out x=M-1=4M/5 mission actions to
finish the task. k=xK/M=(4M/5)(3/M)=3 following the failure of
element s(1). Assuming that n(2,3)=1, element s(2) should perform
checkpoints when each remaining mission job is half-complete, or
2=(4M/5)/2=0.4M. Before reaching the end of its first checkpoint,
element s(2) fails.

The amount of work that has to be done after this failure remains
the same because no more successful checkpoints were reached.18,19

Hence, x=4M/5 and k=3. Due to the fact that n(3,3)=2, element
s(3) must conduct checkpoints after finishing each 1/3 of the
mission's remaining tasks, or 3=(4M/5)/3=4M/15. Between the first
and second checkpoints of element s(3), it fails. After data retrieval,
the remaining components should finish x=4M/5- 3=8M/15
mission activities, which translates to k=(8M/15)(3/M)=2. Element
s(4) shall perform checkpoints after finishing each 1/3 of the
remaining mission job, or 4=(8M/15)/3=8M/45, since n(4,2)=2 and
element s(4). Element s(j) performs the h-th checkpoint procedure,
which calls for Bjh operations. Depending on the checkpoint
scheme chosen, Bjh may be a result of the work completed since
the last successful checkpoint or from the mission's inception.

The quantity of data saved during the checkpoint, and therefore
Bjh, rely on the amount of work finished since the last successful
checkpoint, specifically if an incremental checkpoint technique is
utilised. In this instance, Bjh=b(j) for every h=1,..., n(j,k) is true,
and b(x) is a function that returns the number of operations required
to store the data produced during x mission activities. Bjh relies on
the number of mission operations completed from the start of the
mission till the checkpoint time if a total checkpoint technique is
used.10 Large-scale use of big data and the development of Internet
of Things (IoT) technologies have made it possible for cities to gain
insightful knowledge from a wealth of data that is produced in real-
time. Numerous IoT devices in a smart city continuously produce
data, which must be analysed quickly using big data techniques.
The applicability of using distributed stream processing
frameworks at the data processing layer of a smart city is examined
in this article, along with the acceptance and maturity of these
frameworks across various Smart City use cases. The goal of our
investigations is to compare the effectiveness of three SDPSs:
Apache Storm, Apache Spark Streaming, and Apache Flink.14 In
this research, consider a novel stochastic model for the file recovery
action with checkpointing under a homogeneous Poisson failure of
the system. the current checkpoint model heavily depends on the
system age. In order to find the best checkpoint interval that

S. Chorey et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(4), 564 4

maximises system availability while taking into consideration the
queuing effect caused by inactivity in the transaction processing
system, we offer three different types of approximation approaches.
The checkpoint model, which is based on three approximation
approaches, is quantitatively compared with older models using
numerical examples, and it is demonstrated that it can reduce
system overhead that may result in unanticipated system
downtime.26

In this research, when a system failure happens based on a
homogeneous Poisson process, we consider a new stochastic model
for file recovery action with checkpointing. In contrast to the
models by Gelenbe (1979) and Goes and Sumita (1995), the current
checkpoint model heavily depends on the system age. In order to
find the best checkpoint interval that maximises system availability
while taking into consideration the queuing effect caused by
inactivity in the transaction processing system, we offer three
different types of approximation approaches. The checkpoint
model, which is based on three approximation approaches, is
quantitatively compared with older models using numerical
examples, and it is demonstrated that it can reduce system overhead
that may result in unanticipated system downtime.27

A prominent method for speeding up computer system recovery
from errors is checkpointing. Checkpointing enables one to lessen
the processing time loss brought on by faults by preserving interim
states of programmes in a dependable storage medium. The
duration of the checkpoint breaks has an impact on how quickly the
programmes run. Long checkpoint intervals result in lengthy
reprocessing times, while frequent checkpoints have a large
overhead. In this research, we describe an online checkpoint
placement technique. When deciding whether or not to put a
checkpoint, the algorithm leverages online knowledge of the
current cost of a checkpoint. We demonstrate how to evaluate a
program's execution time using this approach.28

For broad rollback and recovery systems, a numerical method for
calculating the best dynamic checkpointing strategies is described.
Modelled as a Markov renewal decision process, the system.
Reprocessing-dependent recovery times, general failure
distributions, and random checkpointing intervals are all
acceptable. To maximise the average system availability across an
unlimited time horizon, a dynamic decision rule must be found. It
is suggested to use computational methods to approximate such a
regulation. This method is based on stochastic dynamic
programming with value and policy functions approximated using
splines or finite elements. Illustrations using numbers are offered.29
In-depth research has been done over the past 20 years to develop
effective checkpointing methods for use in conventional distributed
computing. More focus has recently been placed on developing
checkpointing methods for mobile systems. Some of these
protocols were developed specifically for mobile systems, while
others were modified from the conventional distributed
environment. A checkpoint is a predetermined moment in a
programme where regular processing is paused particularly to
preserve the status data required to enable processing to resume at
a later time. The procedure of checkpointing involves preserving
the status data. This study reviews the checkpointing techniques for

mobile distributed systems that have been published in the
literature.30
 Another study simulates a mission that requires repairable
computing equipment to complete a certain amount of work within
a given amount of time or by a certain deadline. To enable an
efficient system recovery and prevent starting the mission over
from scratch when a system failure occurs, the system is subjected
to a series of complete and incremental data backup procedures
while the mission is in progress. The system time-to-failure can
follow any arbitrary form of distributions, however the repair time
is fixed. In order to assess the mission success probability and
anticipated completion time of the studied repairable real-time
computing systems subject to mixed full and incremental backups,
a new numerical algorithm was initially developed in this study.
Validity of the suggested evaluation algorithm have been
reported.31

CHALLENGES
• Allocating sufficient resources to ensure recovery is within
acceptable bounds in the presence of QoS recovery time targets is
one of the difficult challenges.3
• In a streaming application, the depth of the system topology and
message delay have an impact on the multi-level checkpointing
procedure.4
• Depth of the system topology and message latency • The majority
of the fault tolerance strategies now in use are ineffective and
recovery from failures takes an excessively lengthy time.5
• The depth of the system's topology and message latency. Keeping
interim results on reliable storage also uses up a lot of the network's
capacity, making it difficult for compute nodes to exchange data
promptly.7
• The main problems encountered in coordinated check points
include deep system topology, communication delay, consistent
checkpoint, and high latency for saving the checkpoints storage.

 OBJECTIVES
 • To analyze and explore various failure detection and fault
tolerance methods in big data application
• To design and develop failure detection model based on modified
Deep learning techniques.
• To design and develop a fault tolerance model based on the deep
learning techniques.
• To design and develop a novel algorithm for the effective tuning
of hyper parameters in classifiers
• To design and develop an automated notification for system
failure, which enables to take backup up to current check point
before the destruction of data.
Problem Statement

Modern multi-core CPUs are impressively capable of handling
sophisticated, huge transactions in databases. Depending on the
magnitude of the transaction, these databases can process millions
to billions of transactions every second. Such databases must,
however, be resilient to errors. Logging to disc can be used to
ensure database persistence. Database systems also employ
frequent checkpoints in addition to logging, as this speeds up
recovery and prevents the system from running out of disc space.

S. Chorey et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(4), 564 5

 There are various difficulties in implementing persistence for a
quick and big in-memory database. Logging is quick because it
makes full use of the disc throughput by using sequential writes.
Checkpoints demand a tour over the full database, though. Database
performance may be impacted by data transfer, cache pollution, and
logging interference brought on by writing the database to disc. It
is difficult for such a system to recover.

More than 50 GB of log data can be produced per minute by
modern databases, which can process tens of millions of tiny
transactions every second. This is up to many orders of magnitude
higher than the results reported in earlier studies on in-database
durability in terms of transaction rates and log sizes. Recovery is
tough since there is so much data to read and recover when the log
size is so large.

There is a need ot a plan and its execution to address the
problems listed above, especially as follows:

• Making all of the significant durability mechanisms parallel is
possible and recommended.

• Logging and checkpointing in tandem can be quick without
affecting typical transaction processing.

• During recovery, log replay becomes a bottleneck because of
the large flow of data.
 Depth of the system topology and message delay Distributed
stream processing (DSP) systems are becoming an increasingly
crucial component of data processing environments due to the
growing need to quickly process enormous volumes of unbounded
data. The DSP frequently fails for a variety of reasons, including
software faults, hardware issues, user error, or natural calamities.
So that the system may be quickly changed and restored, it is
essential to create an efficient system recovery mechanism. Several
checkpoint strategies have been proposed for failure recovery, but
these models have added overhead. So, the goal of this project is to
provide
 a) A defect or failure detection technique based on deep learning
that uses checkpoints and has lower computing overheads.
b) To fully satisfy the QoS specifications, which include fast
throughput and minimal delay.

 METHODOLOGY
recovery model. Users enter a certain amount of tasks into the

cloud centre to begin the technique. On the basis of internal
schedule management, the tasks are given to the virtual machine.
The adjusted deep learning system's required parameters will be
extracted within a predetermined time frame using the monitoring
component. The fault detection system will forecast the presence or
absence of a fault based on the input parameters that this component
retrieves from the Deep CNN-based fault detection system. The
suggested Advanced rescue optimisation, which will be created by
fusing the features of teaching and learning with those of human
rescuers,21,22 will be used to modify the hyperparameters of the deep
learning classifier. The monitoring component once more retrieves
the parameters needed by the Deep CNN based checkpoint-enabled
tolerance mechanism in the case of a fault. Lastly, the fault
tolerance system assigns the proper checkpoints through the
redundant output based on the built-in fault tolerance algorithms.

Figure 1. Flow chart for the adopted Methodology

Performance metrics: Latency, recovery time and average
percentage of error.

 RESULTS AND DISCUSSION
This section implements the performance and comparative

analysis for the partial recovery system's deep CNN approach.
Accuracy, recovery time, precision, and recall are the parameters
that have been taken into account when assessing the performance
of current CNN model.

Performance analysis using database
In the CNN performance is analyzed by considering the training

percentage, the accuracy of the MRRO-deep CNN at the initial
breaking epoch 4 and the final breaking epoch 24 for the training
percentage 90 is 93.500 % and 100.200 %, . The recovery time of
the MRRO-deep CNN at the initial breaking epoch 4 and the final
breaking epoch 24 for the training percentage 90 is 19.050 s and
9.200 s, CNN at the initial breaking epoch 4 and the final breaking
epoch 24 for the training percentage 90 is 93.052 % and 98.050 %.
The recall of CNN for the training percentage 90 at the initial
breaking epoch 4 and the final breaking epoch 24 is 72.95% and
76.81%.

Comparative discussion

Methods

90 % training
Database

Accuracy % Recovery
time (s)

Precision
%

Recall
%

Fault tolerant
scheduling
algorithm 84.016 10.700 70.500 72.400
FAR-MR 88.275 11.326 72.080 73.995

ECAC 91.000 9.100 72.092 75.692
Deep CNN 93.500 9.200 72.956 76.817

CONCLUSION
In this study, we developed a checkpoint-based failure recovery

model built on a modified Deep CNN. In order to maintain the
lowest latency and avoid recovery time violations, it monitors the

S. Chorey et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(4), 564 6

virtual machine to identify task execution errors. Due to the proper
tuning of the Deep CNN classifier, it is anticipated that the
developed Deep CNN based failure recovery model employing
checkpoint strategy would outperform the current methods.

CONFLICT OF INTEREST
Authors do not have any conflict of interest in publishing of this

work. No Academic or financial interest to be declared for this
work.

REFERENCES AND NOTES
1. H. Xuan, S. Wei, W. Tong, D. Liu, C. Qi. Fault-Tolerant Scheduling

Algorithm with Re-Allocation for Divisible Task. IEEE Access 2018, 6,
73147–73157.

2. G. Levitin, L. Xing, Y. Dai, V.M. Vokkarane. Dynamic Checkpointing
Policy in Heterogeneous Real-Time Standby Systems. IEEE Trans.
Comput. 2017, 66 (8), 1449–1456.

3. M.K. Geldenhuys, D. Scheinert, O. Kao, L. Thamsen. Phoebe: QoS-Aware
Distributed Stream Processing through Anticipating Dynamic Workloads.
Proceedings - IEEE International Conference on Web Services, ICWS
2022. 2022, pp 198–207.

4. S. Jayasekara, A. Harwood, S. Karunasekera. A utilization model for
optimization of checkpoint intervals in distributed stream processing
systems. Futur. Gener. Comput. Syst. 2020, 110, 68–79.

5. Y. Zhu, J. Samsudin, R. Kanagavelu, et al. Fast Recovery MapReduce
(FAR-MR) to accelerate failure recovery in big data applications. J.
Supercomput. 2020, 76 (5), 3572–3588.

6. Y. Fang, Q. Chen, N. Xiong. A multi-factor monitoring fault tolerance
model based on a GPU cluster for big data processing. Inf. Sci. (Ny). 2019,
496, 300–316.

7. A multi-trigger checkpointing tactic for fast task recovery in mapreduce".
IEEE Trans. Serv. Comput.

8. M.K. Geldenhuys, B.J.J. Pfister, D. Scheinert, L. Thamsen, O. Kao. Khaos:
Dynamically Optimizing Checkpointing for Dependable Distributed
Stream Processing. Proceedings of the 17th Conference on Computer
Science and Intelligence Systems, FedCSIS 2022. 2022, pp 553–561.

9. N. Hagshenas, M. Mojarad, H. Arfaeinia. A Fuzzy Approach to Fault
Tolerant in Cloud using the Checkpoint Migration Technique. Int. J. Intell.
Syst. Appl. 2022, 14 (3), 18–26.

10. S. Hafizah Sy Ahmad Ubaidillah, B. Alkazemi, A. Noraziah. An Efficient
Data Replication Technique with Fault Tolerance Approach using BVAG
with Checkpoint and Rollback-Recovery. Int. J. Adv. Comput. Sci. Appl.
2021, 12 (1), 473–480.

11. J. Mervis. Agencies Rally to Tackle Big Data. Science. 2012, pp 22–22.
12. G. Cattaneo, U.F. Petrillo, R. Giancarlo, G. Roscigno. An effective

extension of the applicability of alignment-free biological sequence
comparison algorithms with Hadoop. J. Supercomput. 2017, 73 (4), 1467–
1483.

13. Y. Zhu, S. Juniarto, H. Shi, J. Wang. VH-DSI: Speeding up data
visualization via a heterogeneous distributed storage infrastructure. In
Proceedings of the International Conference on Parallel and Distributed
Systems - ICPADS; 2016; Vol. 2016-January, pp 658–665.

14. H. Nasiri, S. Nasehi, M. Goudarzi. A survey of distributed stream
processing systems for smart city data analytics. In ACM International
Conference Proceeding Series; 2018; pp 1–7,.

15. H. Isah, T. Abughofa, S. Mahfuz, et al. A survey of distributed data stream
processing frameworks. IEEE Access 2019, 7, 154300–154316.

16. H. Nasiri, S. Nasehi, M. Goudarzi. Evaluation of distributed stream
processing frameworks for IoT applications in Smart Cities. J. Big Data
2019, 6 (1), 1–24,.

17. A. Sarı, E. Çağlar. Performance Simulation of Gossip Relay Protocol in
Multi-Hop Wireless Networks. In Owner: Girne American University.;
2015; p 145.

18. P. Carbone, A. Katsifodimos, S. Ewen, et al. Apache flink: Stream and
batch processing in a single engine. Bull. Tech. Comm. Data Eng. 2015, 38
(4), 28–38.

19. P. Carboney, S. Ewenz, G. Fóra, et al. State management in Apache Flink:
® consistent stateful distributed stream processing. Proc. VLDB Endow.
2017, 10 (12), 1718–1729.

20. E. Kail, K. Karóczkai, P. Kacsuk, M. Kozlovszky. Provenance based
checkpointing method for dynamic health care smart system. Scalable
Comput. 2016, 17 (2), 143–153.

21. A. Shabani, B. Asgarian, M. Salido, S. Asil Gharebaghi. Search and rescue
optimization algorithm: A new optimization method for solving constrained
engineering optimization problems. Expert Syst. Appl. 2020, 161, 113698.

22. R. V. Rao, V.J. Savsani, D.P. Vakharia. Teaching-learning-based
optimization: A novel method for constrained mechanical design
optimization problems. In CAD Computer Aided Design; 2011; Vol. 43, pp
303–315.

23. P.A. Chorey, N. Sahu. Secure Online Transactions Using a Blockchain-
Based Checkpoint Approach. Comput. Integr. Manuf. Syst. 2022, 28 (11),
1–11.

24. A.W. Burange, V.M. Deshmukh. Trust based secured Routing System for
low power networks. J. Integr. Sci. Technol. 2023, 11 (1), 431.

25. S. Muhammad Abrar Akber, H. Chen, Y. Wang, H. Jin. Minimizing
Overheads of Checkpoints in Distributed Stream Processing Systems. In
Proceedings of the 2018 IEEE 7th International Conference on Cloud
Networking, CloudNet 2018; 2018; pp 1–4.

26. Y. Zhang, K. Chakrabarty. Adaptive Checkpointing with Dynamic Voltage
Scaling in Embedded Real-Time Systems. Embed. Softw. SoC 2005, 449–
463.

27. T. Dohi, N. Kaio, K.S. Trivedi. Availability models with age-dependent
checkpointing. In Proceedings of the IEEE Symposium on Reliable
Distributed Systems; 2002; pp 130–139.

28. A. Ziv, J. Bruck. An on-line algorithm for checkpoint placement. In IEEE
Transactions on Computers; White Plains, NY, 1997; Vol. 46, pp 976–985.

29. J. Malenfant. Computing Optimal Checkpointing Strategies for Rollback
and Recovery Systems. IEEE Trans. Comput. 1988, 37 (4), 491–496.

30. A. Khunteta, P. Kumar. An Analysis of Checkpointing Algorithms for
Distributed Mobile Systems. Int. J. Comput. Sci. Eng. 2010, 02 (04), 1314–
1326.

31. G. Levitin, L. Xing, Q. Zhai, Y. Dai. Optimization of Full versus
Incremental Periodic Backup Policy. IEEE Trans. Dependable Secur.
Comput. 2016, 13 (6), 644–656.

	ABSTRACT
	Introduction
	Literature review
	Challenges
	Objectives
	Methodology
	Results and discussion
	Conclusion
	Conflict of Interest
	References and notes

