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ABSTRACT 
The objective of current research aims to 
enhance dissolution of dexlansoprazole 
(DLP) by organic solvent free and 
environment friendly approach through 
synthesis of hydrotropic solid dispersion 
(HSD) using water by solvent evaporation 
technique using sodium acetate and 
sodium alginate as hydrotropic agents. 
Central composite design was applied to 
analyze effect of drug: sodium alginate 
(X1) and drug: sodium acetate (X2) on 
response variables i.e. Q15 (Y1), Q45 (Y2), 
Q90 (Y3), t10% (Y4) and t50% (Y5) using 
Design Expert Software. This was revealed 
that quadratic model was superlative on account of insignificant p-value (p>0.05) for lack-of-fit analysis. The favourable values of optimized DLP-
HSD were drug: sodium alginate (1: 2.78) and drug: sodium acetate (1: 4.41) which demonstrated highest desirability function (0.993). The study 
demonstrated that aqueous solubility and dissolution profile of DLP in DLP-HSD was enhanced 24-folds and 4.25-folds, respectively. This research 
conclusively manifested that hydrotropic solid dispersion hold enormous potential as organic solvent free and therefore, environmental friendly 
technique for enhancing solubility and dissolution of BCS class II drugs. 

Keywords: Dexlansoprazole, Crystalline, Hydrotropic Solid Dispersion, Solvent Evaporation Technique, Sodium Acetate, Sodium Alginate

INTRODUCTION 
Dexlansoprazole (DLP) is an emerging new-generation proton-

pump inhibitor for therapeutic of gastroesophageal reflux disease 
and erosive esophagitis symptoms.1 The chemical formula of DLP 
is C16H14F3N3O2S with corresponding molecular weight of 369.36 
Daltons. DLP belong to biopharmaceutical classification system II 
drug with log P and aqueous solubility of 2.84 and 0.250 mg/ml, 
respectively.2–4 The chemical formula of Dexlansoprazole has been 

represented in Figure 1. The low aqueous solubility of DLP causes 
slow gastrointestinal drug absorption and limited oral 
bioavailability; therefore, augmentation in DLP solubility is 
required for amplifying its dissolution and bioavailability. In 
previous investigations of dexlansoprazole, researchers have 
developed superporous hydrogel tablets for gastroretentive drug 
delivery using sodium alginate, pectin and chitosan as 
hydrocolloids,5 extended-release tablet using hydroxypropyl 
methyl cellulose (HPMC) phthalate and HPMC K100,6 pH 
responsive nanoparticles using balangu seeds mucilage and 
Eudragit RS 100 for providing acid-protection as well as controlled 
drug delivery,7 and double walled microspheres using sodium 
alginate, hydroxypropyl methyl cellulose E15 and xanthan gum.8 In 
present research, an attempt has been made to enhance solubility of 
dexlansoprazole using hydrotropic solid dispersion (HSD) 
technique since previous researches have illustrated that HSD have 
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tremendous potential in solubility enhancement of BCS class II 
drugs. 9–11 

 
Figure 1. Chemical structure of Dexlansoprazole 

 
The objective of this research was to enhance solubility and 

dissolution of dexlansoprazole by environment friendly approach 
which avoids involvement of organic solvents. Therefore, the 
hydrotropic solid dispersion of dexlansoprazole (DLP-HSD) was 
manufactured by solvent evaporation technique using sodium 
alginate and sodium acetate as hydrotropic agents and distilled 
water as solvent. The sodium alginate is biocompatible polymer 12 
and sodium acetate has been approved as food additives by 
European Commission's food safety regulators.13 The central 
composite design response surface methodology was applied to 
investigate influence of independent parameters on response 
variables like Q15 (Y1), Q45 (Y2), Q90 (Y3), t10% (Y4) and t50% 

(Y5) and to investigate optimized composition of DLP-HSD using 
Design Expert Software and further in-vitro evaluations of 
optimized formulation. 

MATERIALS AND METHODS 
Dexlansoprazole was obtained from Alembic Pharmaceuticals 

Ltd, India. Sodium alginate and sodium acetate were bought from 
Loba Chemie Private Limited, India. The analytical grade 
chemicals were used during research. 
Experimental design 

Thirteen batches of hydrotropic solid dispersion formulations 
were synthesized according to two-factor central composite 
design. The coded and actual values of independent and 
dependent parameters investigated during formulation 
development are depicted in Table 1. The design layout for 2-
factor central composite design is shown in Table 2. 
 
Table 1. Variables and their levels of central composite design 
explored during dexlansoprazole-loaded hydrotropic solid 
dispersion development 

Independent 
variables 

Levels of variables 
-1.41 -1 0 1 1.41 

Drug: Hydrotrope-1 
(w/w) (X1) 

1:0.59 1:1 1:2 1:3 1:3.41 

Drug: Hydrotrope-2 
(w/w) (X2) 

1:1.59 1:2 1:3 1:4 1:4.41 

Dependent variables                               Constraint                                                                               
Y1= Q15 (%) Maximize 
Y2= Q45 (%) Maximize 
Y3= Q90 (%) Maximize 
Y4= t10% (Minutes) Minimize 
Y5= t50% (Minutes) Minimize 

Production of Dexlansoprazole hydrotropic solid dispersion 
(DLP-HSD) 

DLP-HSD formulations were manufactured by solvent 
evaporation technique using sodium alginate and sodium acetate 
as hydrotropic agent 9. In Brief, sodium alginate (hydrotrope-1) 
and sodium acetate (hydrotrope-2) at specific drug: hydrotrope 
(as mentioned in Table 1) were dissolved in distilled water with 
subsequent addition of dexlansoprazole and continuous stirring 
at magnetic stirrer until semisolid mass production. Afterwards, 
semisolid product was stretched over watch glass and placed in 
oven at 60±5oC till complete drying to yield DLP-HSD. 
Subsequently, DLP-HSD was screened through sieve # 30 and 
stored in desiccators. 

 
Table 2. Design layout of 2-factor central composite design as per 
Design Expert software used for production of dexlansoprazole-
loaded hydrotropic solid dispersion 

Batch  Independent variables 
X1 X2  

1 -1 -1  
2 1 -1  
3 -1 1  
4 1 1  
5 -1.41 0  
6 1.41 0  
7 0 -1.41  
8 0 1.41  
9 0 0  
10 0 0  
11 0 0  
12 0 0  
13 0 0  

X1: Drug: Hydrotrope-1; X2: Drug: Hydrotrope-2 
 
Evaluation of Dexlansoprazole hydrotropic solid dispersion  

In-vitro drug release from DLP-HSD was performed using 
USP type II dissolution equipment (Electrolab Dissolution 
Tester, USP-TDT-06L) in phosphate buffer having pH 6.8 at 
37±2oC temperature conditions. Samples withdrawn at regular 
intervals were analyzed by ultraviolet spectrophotometer at 247 
nm. Y1-Y5 was estimated from graph plotted between 
percentage cumulative drug release versus time (in minute) 
plot.14–19  
Selection of suitable design model for Y1-Y5 by Design-Expert 
Software 

Y1-Y5 data investigation was executed to investigate sequential 
and lack-of-fit p-value, R², Adjusted-R² and Predicted-R² for 
choosing appropriate model among four different models i.e. linear, 
2-factors-interaction (2-FI), quadratic and cubic model 20–22. 
Statistical analysis and model graphs investigation for Y1-
Y5 

Analysis of variance was executed to estimate p-value for chosen 
model and main, interaction and quadratic effect of independent 
parameters. The two- and three-dimensional graphs were 
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developed using model graph tool in design-expert software to 
show graphical manifestation of outcome of independent variables 
on Y1-Y5.20,22–24 
Optimization and Validation of DLP-HSD 

The composition of optimized DLP-HSD was found using 
predetermined standards of increasing Y1-Y3 while decreasing Y4-
Y5 by numerical optimization using Design-Expert software.25–27 
Check point analysis 

The desirability function of design model was validated by 
manufacturing checkpoint batch of HSD which were further 
evaluated for Y1-Y5. The percentage bias was estimated using Eq. 
1 for authenticating the optimization scheme.28–30 

 
% Bias = Predicted value−Experimental value

Predicted value
× 100         Eq. 1 

Fourier transforms infrared spectroscopy (FTIR) 
FTIR spectrum of drug, sodium acetate, sodium alginate, 

physical mixture and optimized DLP-HSD were recorded on FTIR 
spectrophotometer (Shimadzu, Germany). The samples were 
blended with 1% KBr powder and compressed to self-supporting 
disks. Every spectrum was scanned in the analytical range of 400-
4000 cm−1. 
Percentage yield and solubility study of DLP-HSD 

The weight of DLP-HSD was accurately weighed using 
analytical balance and yield was calculated using Eq. 2 15,31. The 
saturation solubility of pure DLP and DLP-HSD in distilled water 
was performed using orbital shaker (Remi, India) at 37oC.14,32 

 
 % Yield = Recovered weight of hydrotropic solid dispersion

Initial weight of Dexlansoprazole+hydrotropes
× 100   Eq. 2 

In-vitro drug dissolution study and release kinetics of optimized 
DLP-HSD 

The composition of optimized DLP-HSD was found using 
predetermined standards of increasing Y1-Y3 whereas decreasing 
Y4-Y5 by numerical In-vitro drug release from optimized DLP-
HSD was performed till 2 hours using USP dissolution paddle 
apparatus (Electrolab Dissolution Tester, USP-TDT-06L) in 
phosphate buffer, pH 6.8 under 100 rpm at 37±0.5oC (n=3). The 
samples taken at regular time periods of 15, 30, 45, 60, 90 and 120 
minutes were analysed by spectrophotometer at 247 nm 33,34. The 
drug release pattern from optimized DLS-SD was analysed by 
kinetic models viz. Zero order, First order, Higuchi, and 
Korsmeyer-Peppas on the basis of correlation coefficient (r2) 
values.35,36 
 Statistical Analysis 

The design optimization was executed by Design-Expert 
software while statistical analysis was performed using Bonferroni 
post-test using GraphPad Prism Software. The statistical difference 
was considered significant (p < 0.05). 

RESULTS AND DISCUSSION 
Selection of appropriate design model for Y1-Y5 

The difference between adjusted r2 and predicted r2 for Y1-Y5 
for quadratic model was <0.2, p-value for lack-of-fit greater than 
0.05 and sequential-p-value was <0.05 which illustrated suitability 
of quadratic model for analysis of Y1-Y5 (Table 3). 

Table 3. Model summary statistics for estimation of best fit model 
for Y1-Y5 of DLP-HSD 

Source Y R² Ad. 
R² 

Pred. 
R² 

LOF- 
p 

Seq. 
p-value 

Linear Y1 0.8694 0.8433 0.7743 0.0101 < 0.0001 
Y2 0.9580 0.9496 0.9313 0.0039 < 0.0001 
Y3 0.8521 0.8225 0.7492 0.0002 < 0.0001 
Y4 0.7859 0.7430 0.6227 0.0623 0.0005 
Y5 0.8741 0.8490 0.7701 < 0.0001 0.0211 

2FI Y1 0.8994 0.8658 0.7677 0.0124 0.1361 
Y2 0.9607 0.9476 0.9159 0.0033 0.4530 
Y3 0.8769 0.8359 0.7446 0.0002 0.2104 
Y4 0.8048 0.7397 0.5695 0.0561 0.3747 
Y5 0.8893 0.8525 0.6490 0.2949 0.0202 

Quadr
atic 

Y1 0.9891 0.9813 0.9529 0.3869 0.0004 
Y2 0.9966 0.9942 0.9821 0.1748 0.0002 
Y3 0.9961 0.9934 0.9777 0.0998 < 0.0001 
Y4 0.9497 0.9138 0.7731 0.3399 0.0087 
Y5 0.9580 0.9280 0.7447 0.0603 0.0336 

Cubic Y1 0.9944 0.9867 0.9885 0.8657 0.1842 
Y2 0.9987 0.9968 0.9825 0.3959 0.0999 
Y3 0.9980 0.9953 0.9328 0.1037 0.1829 
Y4 0.9753 0.9407 0.8891 0.6803 0.1691 
Y5 0.9815 0.9556 0.3033 0.1286 0.0790 

 
Statistical and Model Graph Analysis of Y1-Y5  
Q15 (%) (Y1): The main, interaction and quadratic effect of X1 
and X2 over Q15 (%) was significant (p < 0.05) (p < 0.05) (Table 
4). The polynomial Eq. 3 demonstrated that drug: hydrotrope 1 (X1) 
and drug: hydrotrope 2 (X2) have synergistic effect on Q15 (%). 

(b1= 7.81; b2 = 7.83) which has been illustrated in Figure 2a. This 
could be attributed to the solubilising characteristics of sodium 
alginate and sodium acetate which augmented the in-vitro drug 
dissolution.37,38. The previous research has also illustrated that HSD 
technique has potential effect in solubility enhancement of several 
other drugs like Gliclazide,39 nimodipine,40 and Rosuvastatin 
calcium.41 
 
Y1 = 19.25 + 7.81X1 + 7.83 X2 + 2.9 X1X2 + 2.84 X1² + 2.89 X2²                                  
   Eq. 3 
Table 4. Analysis of variance for Y1 of DLP-HSD 

Source Sum of 
Squares 

Df Mean 
Square 

F-value p-value 

Model 1108.94 5 221.79 126.75 < 0.0001* 
X1 485.91 1 485.91 277.68 < 0.0001* 
X2 488.88 1 488.88 279.38 < 0.0001* 
X1X2 33.58 1 33.58 19.19 0.0032* 
X12 55.60 1 55.60 31.78 0.0008* 
X22 57.79 1 57.79 33.03 0.0007* 
Lack of fit 6.07 3 2.02 1.31 0.3869 

*p < 0.05 
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Q45 (%) (Y2) 

 
Figure 2. Contour plot and response surface plots for (a) Q15 (%) (b) Q45 (%) and (c) Q90 (%) of DLP-HSD 
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From polynomial equation 4, it has been revealed that drug: 
hydrotrope 1 (X1) and drug: hydrotrope 2 (X2) produced 
synergistic effect on Q45 (%). (b1= 8.43; b2 = 8.55) (Table 5) as 
represented graphically in Figure 2b. This could be attributed to 
solubilizing characteristics of sodium alginate and sodium acetate 
which augmented in-vitro drug dissolution.40,42–44 

 
Y2 = 57.74 + 8.43X1 + 8.55 X2 + 0.8975 X1X2 + 1.88 X1² + 1.87 
X2²                                           Eq. 4 
Table 5. Analysis of variance for Y2 of DLP-HSD 

Source Sum of 
Squares 

Df Mean 
Square 

F-value p-value 

Model 1195.45 5 239.09 413.95 < 0.0001* 

X1 566.59 1 566.59 980.98 < 0.0001* 

X2 582.54 1 582.54 1008.60 < 0.0001* 

X1X2 3.22 1 3.22 5.58 0.0502 

X12 24.29 1 24.29 42.06 0.0003* 

X22 24.29 1 24.29 42.06 0.0003* 

Lack of fit 2.73 3 0.9100 2.77 0.1748 
*p < 0.05 

Q90 (%) (Y3) 
From polynomial equation 5, it has been revealed that drug: 

hydrotrope 1 (X1) and drug: hydrotrope 2 (X2) produced 
synergistic effect on Q90 (%) (b1= 7.59; b2 = 7.89) (Table 6 and 
Figure 2c). This could be attributed to solubilizing characteristics 
of sodium alginate and sodium acetate which augmented the in-
vitro drug dissolution.41,45–47 

 
Y3 = 83.45 + 7.59X1 + 7.89 X2 - 2.64 X1X2 - 3.62 X1² - 2.94 X2²                                    
                Eq. 5 
 
Table 6. Analysis of variance for Y3 of DLP-HSD 

Source Sum of 
Squares 

Df Mean 
Square 

F-value p-value 

Model 1116.78 5 223.36 360.57 < 0.0001* 

X1 459.35 1 459.35 741.54 < 0.0001* 

X2 495.93 1 495.93 800.59 < 0.0001* 

X1X2 27.88 1 27.88 45.00 0.0003* 

X12 90.58 1 90.58 146.22 < 0.0001* 

X22 59.61 1 59.61 96.23 < 0.0001* 

Lack of fit 3.29 3 1.10 4.20 0.0998 
*p < 0.05 

t10% (Y4) 
The polynomial equation 6 illustrated that X1 and X2 have 

antagonistic effect on t10% (b1= – 1.15; b2 = – 1.27) (Table 7). This 
confirmed that higher levels of sodium acetate and sodium alginate 
in HSD tend to reduce dissolution time (Figure 3a).48–51 

 
Y4 = 10.6 – 1.15X1 -1.27 X2 +0.375 X1X2 – 0.2685 X1² - 0.1715 
X2²                                                   Eq. 6 
 

Table 7. Analysis of variance for Y5 of DLP-HSD 
Source Sum of 

Squares 
Df Mean 

Square 
F-value p-value 

Model 28.24 5 5.65 26.44 0.0002* 

X1 10.47 1 10.47 49.04 0.0002* 

X2 12.89 1 12.89 60.36 0.0001* 

X1X2 0.5625 1 0.5625 2.63 0.1486 

X12 0.4974 1 0.4974 2.33 0.1708 

X22 4.11 1 4.11 19.22 0.0032* 

Lack of fit 3.29 3 1.10 4.20 0.0998 

 
t50% (Y5) 

This was revealed from equation 7 that drug: hydrotrope 1 and 
drug: hydrotrope 2 produced antagonistic influence on t50% (b1= – 
4.71; b2 = – 4.78) (Table 8). This evidently proved that higher 
concentrations of sodium acetate and sodium alginate have a 
propensity for decreasing drug dissolution time (Figure 3b) 42,52–54. 
 
Y5 = 41.40 – 4.71X1 -4.78 X2 + 1.25 X1X2 – 1.08 X1² - 1.83 X2²       
Eq. 7 
 
Table 8. Analysis of variance for Y5 of DLP-HSD 

Source Sum of 
Squares 

Df Mean 
Square 

F-value p-value 

Model 393.82 5 78.76 31.95 0.0001* 

X1 176.87 1 176.87 71.75 < 0.0001* 

X2 182.47 1 182.47 74.02 < 0.0001* 

X1X2 6.25 1 6.25 2.54 0.1553 

X12 8.04 1 8.04 3.26 0.1138 

X22 23.21 1 23.21 9.42 0.0181* 

Lack of fit 14.06 3 4.69 5.86 0.0603 

 
Optimization and validation of DLP-HSD 

Optimal values of optimized DLP-HSD were found 1: 2.78 of 
drug: sodium alginate and 1: 4.41 of drug: sodium acetate with 
desirability (D-value) of 0.993 as proposed by Design-Expert 
shown in Figure 3c. The predicted values of Q15, Q45, Q90, t10% 
and t50% of optimized DLP-HSD were found 47.04%, 82.22%, 
89.54%, 6.63 minutes and 28 minutes, respectively.29,55 

 
Check point analysis 

Optimized batch of DLP-HSD was synthesized and percentage 
bias for experimental and predicted Y1-Y5 was found < 5% which 
validated accuracy of predictive competence of designed model 
(Table 9).56–58 
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Figure 3. Contour plot and response surface plots for (a) t10% (b) t50%  and (c) desirability function of DLP-HSD 
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Table 9. The perentage bias between experimental versus predicted 
values of Y1-Y5 for optimized DLP-HSD 

Response variables Predicted 
value 

Experimental 
value 

Bias 
(%)  

Y1= Q15 (%) 47.04 46.48 1.19 

Y2= Q45 (%) 82.22 81.15 1.30 

Y3= Q90 (%) 89.54 90.79 1.39 

Y4= t10% (Minutes) 6.63 6.4  3.46 

Y5= t50% (Minutes) 28  27  3.57 

 
Fourier transforms infrared spectroscopy 

The prominent peaks corresponding to drug and polymers were 
observed in FTIR spectra of drug-polymer blend (Figure 4). FTIR 
absorption peaks of DLS appeared at 3065, 1581, 1111, and 1034 
cm-1 for -NH- stretching vibration, carbon-carbon vibrations (s) in 
aromatic ring, the ether bond and the sulfinyl (S═O), 
respectively.7,59 Sodium alginate exhibited absorption bands at 
3553, 1631 and 1020 cm-1 corresponding to –OH (stretching), 
asymmetric vibration (s) of -COO- and elongation of -C-O-, 
respectively.60 Sodium acetate revealed stretching vibration at 1624 
and 1408 cm-1 of carbonyl groups, at 2926 cm-1 of -CH vibration (s) 
of alkane and 3537 cm-1 of –OH (s) of carboxylic acids.61,62 FTIR 
spectra of DLP-HSD illustrated that neither additional peaks of 
DLP appeared nor any peak vanished in FTIR spectra of 
formulation which confirmed integration of drug within DLP-
HSD.63 

 

 
Figure 4. Fourier transform infrared spectroscopy of (a) 
dexlansoprazole (b) sodium acetate (c) sodium alginate (d) physical 
mixture, and (e) dexlansoprazole hydrotropic solid dispersion 

Percent yield and solubility of DLP-HSD 
The percentage yield of DLP-HSD was found to be 97.32 % ± 

0.17. The aqueous solubility of DLP and DLP-HSD was 0.84 
mg/ml and 20.16 mg/ml, respectively, which demonstrated that 
solubility of DLP was amplified 24-folds by synthesis of 
hydrotropic solid dispersion which could be due to highly 
hydrophilic characteristics of hydrotropes i.e. sodium alginate and 
sodium acetate 14,15,31,32. 
 
In-vitro drug release profile and release kinetics for optimized 
DLP-HSD 

Dexlansoprazole, physical mixture and optimized DLP-HSD 
delivered cumulative drug release of 15.14%, 20.72% and 85.69% 
within 60 minutes, respectively and 22.17%, 37.18% and 94.28% 
within 120 minutes, respectively which demonstrated that % drug 
dissolution was amplified 4.25-fold which could be attributed to 
hydrophilic nature of hydrotropic solid dispersion (Figure 5A). 
DLP revealed low dissolution in phosphate buffer pH 6.8 which 
might be due to floating of drug on surface of dissolution medium. 
The improved dissolution rate was attributed to increase in drug 
wettability in presence of hydrotropic polymer and conversion of 
drug from crystalline to amorphous form.64–66 The correlation 
coefficient (r2) for drug release kinetic models from DLP-HSD was 
in sequence like higuchi (0.9474) > first-order (0.9454) > 
Korsmeyer-peppas (0.9109) > zero-order (0.6786). This revealed 
that drug release kinetics was best fitted in higuchi model which 
demonstrated that drug release from solid dispersion was 
dominated by fickian diffusion (Figure 5B).67–69 This might be 
attributed to the increase in aqueous solubility of dexlansoprazole 
due to formation of the hydrophilic solid dispersion using water 
soluble sodium alginate and sodium acetate as hydrotropes. 

 

(A)  



R. Gulia et. al. 

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(4), 559       Pg   8 

(B) 

 
Figure 5. (a) In-vitro drug release model from DLP, physical mixture 
and optimized DLP-HSD (values reported are mean ± SEM; n = 3) and 
(b) In-vitro drug release kinetic models for dexlansoprazole 
hydrotropic solid dispersion 

CONCLUSIONS 
Hydrotropic solid dispersion of Dexlansoprazole was simply 

manufactured by environment friendly solvent-free strategy by 
solvent evaporation technique using sodium alginate and sodium 
citrate as hydrotropes. Central composite design analysed effect of 
drug: sodium alginate and drug: sodium acetate on dissolution 
parameters like Q15 (Y1), Q45 (Y2), Q90 (Y3), t10% (Y4) and t50% 

(Y5) of HSD. This has been disclosed that quadratic model was 
preeminent on account of p > 0.05 for lack-of-fit which indicated 
minimum signal/noise. The composition of optimized DLP-HSD 
was found 1: 2.78 (drug: sodium alginate) and 1: 4.41 (drug: 
sodium acetate) with desirability function of 0.993. The predicted 
response parameters for optimized DLP-HSD were Q15 (47.04%), 
Q45 (82.22%), Q90 (89.54%), t10% (6.63 minutes) and t50% (28 
minutes) which were in close proximity with actual values. The 
study showed that synthesis of hydrotropic solid dispersion leads to 
increase in aqueous solubility and percentage drug dissolution of 
DLP by 24-folds and 4.25-folds, respectively. This research 
conclusively manifested that hydrotropic solid dispersion 
technology has enormous potential as organic solvent free approach 
in modifying the dissolution profile of BCS class II drugs in product 
development process. 
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