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A brain tumor 
is considered as an abnormal 
growth or lesion inside of the 
brain or near it. These tumors can 
be cancerous; malignant, known 
as Glioma due to abnormal 
growth of glial cells, or it can be 
noncancerous or benign as well. 
As such, the early detection and 
treatment of brain tumors is a crucial task today. Various technologies exist and are continuously being developed to capture high quality images 
of brain tissue, allowing experienced medical professionals to diagnose tumors in its early stage, so that they can take action to provide the 
necessary treatment based on their findings. With emerging interests and technological advancements in Artificial Intelligence and Machine 
Learning models, the task of manually classifying and segmenting medical images can become less burdensome. Automated diagnosis and 
classification of brain tumors using deep learning models can provide a way to overcome the problems of manual segmentation. This work aims 
to compare various studies involving brain tumor segmentation using deep learning methods on various aspects like accuracy the data used and 
hyper parameters of those architectures for task of brain tumor segmentation. The work compares  existing model proposed using  U-Net ,Link-
Net,PSP-Net and FPN. Where the the performance stydy is compared using Accuracy, Dice Coefficient, Sensitivity, Precision and Specificity. The 
result shows PSP-Net achieves the highest Dice coefficient, indicating superior segmentation accuracy at the expense of computational intensity. 
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INTRODUCTION 
A brain tumor can be defined as abnormal growth of cells inside 

the brain or skull. The cells grow uncontrollably for reasons we still 
do not fully understand. Brain tumors are of different types, and can 
vary based on the place of growth, growth rate, and the type of cells 
that are growing uncontrollably.1 The three important categories of 
brain tumors are benign, malignant, and metastatic tumors. Within 

these categories there are various subtypes as well. A malignant 
tumor is a tumor comprising of cancerous cells that typically grows 
from the glial tissue of the brain. The cancerous tumors that grow 
from the glial tissue are also known as gliomas. These tumors grow 
at variable rates and can spread to other regions of the body, so swift 
detection and treatment are necessary.2,3 A benign tumor is a 
noncancerous tumor. The most common type of benign brain 
tumors are meningiomas, which are tumors that form in the 
meninges, which is a layer of tissue protecting the brain and also 
the spinal cord. Another category of brain tumors are metastatic, 
which are tumors that form from the spreading of cancerous 
growths from other parts of the body. 

Whether a brain tumor is cancerous or not, it can still cause life 
threatening problems. The skull or cranium is solid and does not 
move to accommodate the tumor, causing other regions of the brain 
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to be hampered or under pressure, which can affect brain from 
functioning properly. So, it is highly beneficial if the tumors are 
detected early, and treatment is provided at the right time. 
Numerous medical imaging techniques, including magnetic 
resonance imaging (MRI), computed tomography (CT), simple 
photon emission computed tomography (SPECT), ultrasound, 
positron emission tomography (PET), and X-ray, are available to 
diagnose brain tumors. Because it provides a more contrasting 
image than other medical imaging methods, magnetic resonance 
imaging (MRI) is the imaging technique most frequently used to 
detect tumors. A medical professional such as a radiologist or a 
neurologist would use these images to detect brain tumors and then 
segment or outline the tumor so that it is easily visible. But there 
are parts of a tumor, such as the necrotic region containing dead 
cells or the fluid region surrounding the tumor, known as edema, 
which needs to be clearly differentiated from the actual core of the 
tumor. This can be strenuous work for medical professionals. In a 
3-Dimensional MRI, the number of sections of the brain being 
scanned goes up to 240 slides, and having multiple viewing angles 
of the brain also adds to the number of images to be segmented. 
Here, automating the segmentation of brain MRIs can provide 
significant help to the radiologist or neurologist. Over the years, 
deep learning techniques such as Convolutional Neural Networks 
(CNNs), has shown great promise in automating the segmentation 
and classification tasks. The advanced models being created today 
use neural networks to extract important features from medical 
images, thereby creating an accurate identification and 
categorization of brain tumors.  
 

 
Figure 1. An MRI scan of brain with a tumor from the BraTS 2023 
dataset. 

 
The motivation behind this project is the important need for more 

accurate, reliable, and efficient methods for diagnosing brain 
tumors. Brain tumor detection in medical imaging provides 
significant challenge, requiring accurate identification and 
segmentation of the tumor so that we can give the patient the 
required treatment at the right time before it is too late. Manual 
segmentation of brain tumors from MRI scans is subjective, time 
consuming, and can lead to human error. This highlights the 
pressing need for an automatic method of segmenting brain MRIs. 

LITERATURE REVIEW 
During the research phase of this project leading up to the review 

of semantic segmentation models, I read and reviewed papers and 

articles from peers and different sources to gain an understand of 
the general approach and techniques of segmenting brain tumor 
images. Across most sources, semantic segmentation was achieved 
using many different methods.4 Of them, 5 common techniques are 
going to be reviewed in this study, namely U-Net, Link-Net, 
SegCaps-Net, AttU-Net, and SegFormer. 

 
U-NET ARCHITECTURE: 
The U-Net architecture is a model that consists of a contracting 

or downsampling path known as encoder, and an expanding or 
upsampling path known as decoder. This path gives the model a ‘U’ 
shape, which is why the model is named so. The encoder-decoder 
architecture is a common structure in image segmentation models. 
Each encoder consists of two convolutional layers and a max 
pooling layer to decrease the spatial dimensions of the image.  

 
 

 
Figure 2. Architecture of U-Net. 

 
The value from max pooling layer is sent to two places, first, for 

further downsampling, and second, to merge with the upsampling 
layer on the other side. The decoder consists of 2 convolutional 
layers and a transposed convolution layer that increases the spatial 
dimensions of the image. The deepest layer in the network is the 
bottleneck which has the smallest spatial dimensions and the most 
feature channels. The following is a review of 5 studies conducted 
on brain tumor segmentation using this model. 

H. Dong et al.5 introduced a U-Net-like architecture with an 
encoding and decoding branch with zero padding along the 
encoding path to ensure that all output sizes in the convolutional 
layers of the encoding and decoding path are matching. Their 
approach reached comparable results to us in the total tumor 
volumes and core tumor volumes with the advantage over by 
having a Dice Similarity Coefficient of 0.86 for High Grade and 
Low-Grade Gliomas. T. A. Tuan et al.6 proposed a technique where 
first round of processing was applied on Bitplane slicing for 
arranging pixels of significant bit pattern and then further image 
samples were generated from the database. The U-Net CNN 
network is then used. with multi-kernels employed for 
segmentation to figure out the most suitable k: states. Form 
validation in 2018 BRATS challenge data, the method achieved 
82%, 68% and 70% of Dice in validation and 51%, 48%, 77% in 
testing for Tumor Core, Enhancing Tumor and Whole Tumor 
respectively. A. Kermi et al.7 presented a U-Net-like network for 
2D images based on Deep Convolutional Neural Networks, 
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optimised with Stochastic Gradient Descent for loss minimisation. 
On average, our method achieved an enhancing tumor, whole tumor 
and core tumor dice score of 0.783, 0.868 and 0.805 respectively 
which are competitive of top models. W. Chen et al.8 questioned 
the restric-tions of 2D and 3D convolutions, and brought in a 
Separable 3D U-Net for brain tumor segmentation. Their work 
designed by a Stereoscopic 3D (S3D) model and proposed an 
architecture, i.e., the S3D-UNet, for brain tumor segmentation. On 
the testing set, they achieved similar performance (Dice score: 
0.68946 for enhancing tumor, 0.83893 for whole tumor, and 
0.78347 for tumor core). Another investigation of Isensee et al.9 
introduced a network based on a variation of the U-Net architecture, 
specifically designed to be used in conjunction with 3D input data, 
with blocks of voxels 128x128x128 in size, instead of 2D patches 
of pixels. Another advantage is that this U-Net based framework 
fuses input information with multiple scale, since the modified U-
Net-like network could naturally fuse information at each level 
across scales, compared to early methods that manually integrated 
the inputs with a mixture of resolutions and/or pathways with 
different F sizes. On the BRATS 2017 test set, the proposed model 
achieves combined large dice score of 0.8523, 0.7762, 0.6475 for 
whole, core and enhancing tumor respectively. Zhu Meng et al.10 
presented a novel U-Net-like model to improve the brain tumor 
segmentation on MRI by incorporating an end-to-end noise 
suppression. 

 The architecture, named ENS-Unet, incorporates a noise 
suppression into the UNet directly, it makes the network to be more 
noise robust. This method attempts to better delineate glioma sub-
regions such as the Enhancing Tumor (ET), Tumor Core (TC) and 
Whole Tumor (WT). The ENS-Unet was tested on the BRATS 
2018 and produced excellent Dice scores of 89% for the Whole 
Tumor, 80% for Tumor Core, and 74% for the Enhancing Tumor. 
These results indicate that the model performs better than 
conventional U-Net implementations, and has clear potential for 
clinical applications in the diagnosis and treatment planning of 
brain tumor. Pravitasari et al.11, they introduced a hybrid U-Net 
architecture with VGG-16 and a transfer learning to simplify the 
network by decreasing the layers and parameters. The U-VGG16 
U-Net was obtained by modifying the VGG16 by appending a set 
of multiple upsampling and convolution layers to the bottom of the 
VGG16 so as to mirror its U-Net architecture. This iteration was 
repeated until the global model structure became symmetrical, 
making a U. The model achieved an accuracy of 96%, and CCR 
was 95.69%. P. Gadosey et al.12 presented a Stripping-Down UNet 
(SD-UNet), a light-weight novel U-Net version to perform efficient 
biomedical image segmentation over resource-constrained 
computing ecosystem by exploiting the depthwise separable 
convolutions, and weight-standardization and group-normalization 
for drastically minimizing the model magnitude and complexity, 
while keeping the competitive performance on the ISBI neuronal 
structure segmentation and MSD BRATs brain tumor segmentation 
benchmarks. It obtained a mean Dice Score of 82.75% on Brats 
dataset. U. Baid et al.13 proposed the use of thw Deep Learning 
Radiomics Algorithm for Gliomas (DRAG) Model, which is used 
to both segment and predict survival of glioma brain tumors using 
MRI data with a 3D patch-based U-Net architecture tested on the 

BraTS challenge 2018. On the validation set the model achieved 
promising Dice score values as follows -whole tumor (0.88), core 
(0.83), enhancing (0.75). Regarding survival prediction, it achieved 
an accuracy of 57.1% on the validation data, ranking the third in 
the task of OS prediction of the BraTS 2018 challenge. Q. Jin et 
al.14 proposed a residual attention U-Net (RAU-Net) architecture 
for liver tumor segmentation, which was motivated by fusing the 
advantages of residual attention learning and U-Net. This method 
consists of three main stages targeted to extract, in a sequential 
order, the liver and tumor regions. We first use a 2D RA-UNet (RA-
UNet-I) that is cascaded to obtain a crude liver boundary box at a 
lower computational complexity. Then 3D RA-UNet (RA-UNet-II) 
follows to finetune such learned contours for getting a complete 
precise liver VOI. The architecture was capable of obtaining a Dice 
score of 83% for the on 3DIRCADb liver dataset. 

Outcome: It is seen that applying U-Net architecture on the brain 
tumor semantic segmentation task is fruitful, as the U-Net is a 
network that was designed for this task. The architecture is able to 
give decent dice scores and various studies were able to use the 
network using different approaches in segmenting the brain MRI 
scans. 
 

LINK-NET ARCHITECTURE 
The Link-Net architecture is another architecture that utilizes 

convolutional layers designed for image segmentation tasks. It 
follows the same encoder-decoder design used in most architectures 
for the task of segmentation. The main idea behind the network is 
to create a balance between high accuracy and efficient 
computation, making it suitable for real-time applications and 
scenarios with limited computational resources. 
 

 
Figure 3. Architecture of Link-Net. 
 

As seen from Figure 3, the architecture of Link-Net and U-Net 
is quite similar, with the only difference being that Link-Net uses 
simple addition to keep the lost features while U-Net uses 
concatenation. This greatly reduces the complexity and 
intensiveness of the model when processing images. 

Gayathri Ramasamy et al.15 used a modified multi-modal Link-
Net model with a Squeeze and Excitation ResNet152 backbone to 
develop an effective deep learning model for semantic 
segmentation. A multi-modal MRI dataset comprising T1weighted, 
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FLAIR-weighted, and T2-weighted MRI images of the human 
brain is used by their model. With a 99.2% accuracy rate in tumor 
segmentation, it shows strong performance. In another study, due 
to differences in tumor shape and size depending on image angles, 
Zahra Sobhaninia et al.16 used individual LinkNet networks for 
three different types of MR images (sagittal, coronal, and axial). 
When they used a single LinkNet network for all images, they did 
not achieve the same Dice scores for two angles (0.78 for coronal 
and 0.79 for sagittal). T. Ruba et al.17 suggested an architecture 
which first uses a light deep neural network to segment brain 
images, then integrates the semantic segmentation results with a 
CNN made up of LinkNet Layers. It achieved an accuracy of 
0.9867. Adel Sulaiman et al.18 presented a technique that 
concentrates on the encoder portion’s image downsampling. An 
intelligent LinkNet-34 model based on semantic segmentation 
using the EfficientNetB7 encoder was developed for this technique. 
Then, three separate optimizers (RMSProp, Adamax, and Adam) 
were used to optimize the model. With the aid of the Adamax 
optimizer, a very high dice coefficient of 0.915 was attained. Zahra 
Sobhaninia et al.16 in their further study proposed an architecture 
that utilized a Cascaded Dual-Scale LinkNet model that addresses 
the issues of tumor location and brightness level similarity with 
brain tissue. The Cascaded model was able to achieve a Dice 
coefficient of 0.8003 on evaluation criteria. P. Sameer et al.19 
compared the performance of various transfer learning models such 
as Inception, ResNet, and ResNext when embedded with the 
LinkNet Decoder. The proposed models were able to produce high 
Dice scores, one of which achieved a notable score of 94%. P. 
Rajesh et al.20 compared the performance of LinkNet with a 
ResNet50 encoder against UNet with EfficientNetB7 encoder. The 
LinkNet model outperformed the U-Net model, achieving a Dice 
score of 98.76%. T. M. Geethanjali et al.21 proposed a LinkNet 
architecture with a ResNet18 backbone for the task of Semantic 
Segmentation in Kidney tumors. The model achieved a remarkable 
dice score of 93%. C. Akyel et al.22 proposed a LinkNet with 
EfficientNetB7 encoder to segment lesions in images of Skin 
Cancer. The model achieved a high Dice score of 96.75%. An 
article by M. Widiansyahet al.23 proposed a model which used a 
MobileNet encoder and a LinkNet decoder for segmentation of skin 
cancer. It achieved a considerable segmentation score, with 
intersection over union score as 71.5%. 

Outcome: The LinkNet architecture is an impressive architecture 
that can provide highly accurate results that can even outperform 
other networks, while having a smaller amount of data to learn or 
train on. Since it is also a lighter network, being able to be applied 
in scenarios where the computational power is not enough to 
maintain other networks, is a huge advantage. 

PSP-NET 
The Pyramid Scene Parsing Network (PSPNet) is a deep learning 

architecture designed for semantic segmentation, introduced by 
Hengshuang Zhao et al. in 2017.24 It extends traditional 
convolutional neural networks by incorporating a pyramid pooling 
module, which captures contextual information at multiple scales.  

 

 
Figure 4. Architecture of PSP-Net. 
 

The PSPNet divides feature maps into four different pyramid 
scales, applying pooling operations of varying kernel sizes to 
capture global and local context. Subsequently, the original feature 
map is concatenated with the pooled features, improving the 
network’s comprehension of intricate scenes. By integrating 
contextual information across different image regions, PSPNet is 
able to achieve state-of-the-art performance in a variety of semantic 
segmentation benchmarks thanks to this multi-scale approach. 

Zhao et al.25 published an article on using the PSPNet for the task 
of segmentation of brain tumors from MRI images. The authors 
leveraged the multi-scale feature extraction capabilities of PSPNet 
to effectively segment brain tumors. While the article did not 
provide quantitative results, it demonstrated the potential of the 
PSPNet model for this application. D. Seeli et al.26 discussed a brain 
disease detection approach using the PSPNet model for multiclass 
segmentation. The authors claimed that the method was useful for 
evaluating and optimizing brain tumor segmentation models. Zhu 
et al.27 proposed a coronary angiography image segmentation 
method based on the PSPNet network. Their technique reached an 
accuracy of 95.7%, outperforming traditional algorithms by 
26.75% and the U-Net model by 4.59%. By employing transfer 
learning with the PSPNet model, they boosted the segmentation 
accuracy from 92.6% to 93.6%, increased sensitivity from 84.6% 
to 86.5%, and enhanced specificity from 92.1% to 94.9%. The 
authors concluded that the PSPNet network not only minimizes the 
need for manual intervention in diagnoses but also reduces reliance 
on medical personnel and improves overall efficiency in disease 
diagnosis.  

Weng et al.28 the automatic brain tumor segmentation approach 
using three models of convolutional neural network, SegNet, U-
Net and PSP-Net, were compared. The proposed models were 
evaluated on the BraTS 2018 database. The PSP-Net model was 
reported to have a Dice score of 0.89 in brain tumor segmentation 
by the authors. They emphasized the capability of the pyramid 
pooling module to collect global context information, which 
helped the PSP-Net outperform state-of-the-art methods in the 
segmentation task. In summary, our results indicate the PSP-Net 
architecture offers an effective solution to accurate and robust brain 
tumor segmentation on 3D MRI scans, thus a promising model for 
CADx and treatment planning purposes. S. Suhara et al.29 used a 
FCN and PSP-Net fusion approach for brain tumor segmentation. 
The proposed architecture was evaluated against SegNet, FCN and 



G. Raghuwanshi et. al. 

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2025, 13(7), 1153           Pg  5 

PSP-Net. The model ensemble reached a Dice score of 87%. 
Samudrala et al.30 presented a model scheduled on the combination 
of DenseNet and PSPNet for improved segmentation of breast 
cancer images. The goal of this work was to exploit the connectivity 
patterns of DenseNet, which are known to enable deeper and dense 
feature propagation and to use a PSPNet-inspired pyramid pooling 
module, to alleviate the limitations incurred by the limited context 
in DenseNet and other densely connected architectures. The Dice 
coefficient score of the model was 0.897, suggesting the model 
provided an excellent segmentation for breast cancer images. 
Sindhura et al.31, a light-weight model that fuses with efficient 
computing operations PSPNet to improve performance with 
reducing the complexity is proposed. This strategy can find a trade-
off between accuracy and efficiency which may be ad¬vantageous 
in clinical, real-time situations. The achieved Dice score (a measure 
to evaluate segmentation's correctness) is 0.82, which demonstrates 
the performance of proposed method to correctly segment the liver 
and tumor regions in CT images. 

Li-Yin Ye et al.32 proposed a deep learning PSP-Net + VGG16 
architecture on Prostate tumor MRIs. The three-dimensional 
prostate MRI scans are transformed into two-dimensional image 
slices, which are then processed using the PSP-Net neural network 
for training. To analyze regions of interest and differentiate 
between prostate cancer and normal prostate tissue, the VGG16 
network is employed. This method has demonstrated high 
classification accuracy and recognition rates, achieving around 
87%. P. Wen et al.33 proposed an Advanced PSP-Net architecture 
that integrates an adaptive PSP-Network with the traditional PSP-
Net architecture to enhance the segmentation performance by 
utilizing multiscale feature aggregation and context information. It 
was tested on renal ultrasound images and indicated significant 
improvements in segmentation accuracy, achieving a Dice score of 
0.875, demonstrating the method’s effectiveness in accurately 
delineating renal structures in ultrasound images. S. Wang et al.34 
proposed a DPAM-PSPNet model, where a Dual Path Attention 
Mechanism (DPAM) captures global information through one 
channel and focuses on nodal margins on another channel, before 
being used in conjunction with PSP-Net. The model was tested on 
Thyroid nodule images for segmentation and achieved a high dice 
score of 92.13 

Outcome: The PSPNet architecture shows its versatility and 
superior performance in various medical imaging tasks, particularly 
in medical image segmentation tasks. The high Dice Similarity 
Coefficient received from brain tumor segmentation in Weng et 
al.’s research illustrate PSPNet’s robust multi-scale feature 
extraction capabilities, which enhance segmentation accuracy and 
efficiency across diverse medical imaging applications. 

FPN 
The Feature Pyramid Network (FPN) is a type of neural network 

architecture designed to enhance object detection and segmentation 
by effectively utilizing features at different scales. Think of it like 
a multi-story building where each floor provides a different view of 
the surroundings. In an FPN, the network takes an image and 
processes it through several layers, each capturing different levels 
of detail - from fine details like textures to broader, more abstract 
features.  

 
Figure 5. Architecture of FPN. 

 
These multi-scale features are then combined, creating a rich, 

pyramid-like representation of the image. This helps the network 
recognize and locate objects of various sizes more accurately, 
improving performance in tasks like detecting small objects in 
cluttered scenes or segmenting different parts of an image. 

Bai et al.35 proposed a fully convolutional network (FCN) based 
on the Feature Pyramid Network (FPN) architecture for automated 
segmentation of the left ventricle in cardiac MRI images. They 
reported that their FPN-based model achieved a Dice similarity 
coefficient (DSC) of 0.92, outperforming the standard U-Net 
architecture which had a DSC of 0.89. The authors attributed the 
improved performance to the FPN’s ability to effectively capture 
multi-scale features, which is crucial for accurate delineation of the 
left ventricle boundaries. Syazwany et al.36 proposes a novel multi-
modality fusion network called MM-BiFPN for accurate 
segmentation of brain tumors from MRI scans. The key innovation 
is the use of a Bi-directional Feature Pyramid Network (Bi-FPN) to 
effectively fuse features from different MRI modalities (T1, T1ce, 
T2, FLAIR) at multiple scales. The authors report that their MM-
BiFPN model achieved a Dice similarity coefficient (DSC) of 0.91 
for whole tumor segmentation, 0.87 for tumor core, and 0.84 for 
enhancing tumor on the BraTS 2020 dataset. This outperformed 
other state-of-the-art methods like UNet++, nnU-Net, and 
TransBTS. The authors attribute the strong performance to the Bi-
FPN’s ability to capture cross-scale and cross-modality 
dependencies, as well as the effective fusion of multi-modal MRI 
features. 

Our findings present the evidence of the promising performance 
for the accurate and robust segmentation of brain tumor, a critical 
step in treatment planning and evaluation. S. Ghosh et al.37 report 
that the FPN models perform well for brain tumor segmentation, 
and it further preserved the tumor boundaries and small tumor 
regions with a good performance. Wang et al.38 developed a 
RFPNet and added a residual link embedded between the bottom-
up and top-down components to enhance the medical image 
segmentation model. We also tested our proposed model on 
multiple medical image segmentation tasks, e.g., skin lesion 
segmentation, polyp segmentation, organ segmentation. RFPNet 
also achieved a mean Dice coefficient of 0.8421 on the ISIC 2018 
skin lesion segmentation challenge, which surpassed the 
performance of the original FPN by 2.5%. When polyp is 
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segmented on the ETIS-Larib Polyp DB dataset, RFPNet achieved 
82.01% Dice score, which is 3.2% higher than FPN. On the 
Synapse multi-organ segmentation test set, an average Dice score 
of 0.8012 was achieved by the RFPNet, which outperformed FPN 
by 2.8%. The strong performance is attributed by the authors to the 
reorganized pyramid structure and the adaptive feature fusion, 
which can capture multi-scale context and preserve the details well 
in RFPNet. Experiments show the superiority of the adopted 
modifications to the FPN structure on accurate medical image 
segmentation. Z. Xu et al.39 presented a novel enhanced backbone 
model, named EFPN (Enhanced Feature Pyramid Network), to 
detect medical images. The multi-scale feature fusion problems are 
solved by a top-down pyramid, scale attention modules and feature 
fusion attention modules in EFPN. Tested on the datasets PenD (X-
ray) and BraTs (MRI), the presented EFPN-based models yielded 
significant performance boosts. 

Y. Su et al.40 introduced a Feature Augmented Pyramid Network 
(FAPN), designed for the task of polyp segmentation. The 
structure of the model consists of three modules: Cross-
Embedding Module (CEM), Predictive Calibration Module (PCM), 
and Hierarchical Feature Fusion Module (HFFM). The CEM is 
comprised by a two-stages fusion method, which first performs an 
interaction embedding of multi-level feature, and then performs a 
second fusion to refine the fused feature representation. Following 
this, the PCM calibrates the fused feature representations using its 
stage-wise predicted probability maps, fine-tuned with supervision. 
This procedure emphasizes areas of interest while reducing other 
unrelated noises. Finally, HFFM adopts top-down sequential 
feature fusion based multi-scale feature extraction, which enhances 
the ability of polyp segmentation. The proposed model showed a 
promising Dice score of 90.2% on the Kvasir-SEG public dataset, 
demonstrating its effectiveness and outperforming other methods. 
Chiu-Han Hsiao et al.41 utilized EfficientNetB7 and FPN as 
encoder and segmentor for sematic segmentation of Kidney Tumor. 
The proposed model has attained a good performance; it reached a 
Dice score up to 96%. W. Huang et al.42 introduced the FPN along 
with a level-aware attention mechanism to improve the condition 
of capturing rich and abundant multi-scale features. This level-
aware attention can adaptively enhances desirable features in 
different pyramid layers, which brings higher accuracy to segment 
meningiomas that have various sizes and appearances. The model 
obtained a high Dice score of 0.876, which demonstrates the model 
is capable to accurately segment meningiomas as compared with 
other existing methods. V. Allapakam et al.43 fused CT scans and 
PET scans of Gastrointestinal stromal tumors based on DenseNet 
and VGG model and used FPN to realize effective tumor detection. 
The FPN using EfficientNetB0 was capable of segmenting the 
fusion images with an IoU of 85.21%. 

Outcome: Overall, the literature review highlights the potential 
of the FPN architecture for medical image segmentation, 
particularly in the domain of brain tumor detection and cardiac 
structure analysis. The model’s ability to capture multiscale 
features and its state-of-the-art performance make it a promising 
approach for computer-aided diagnosis and image analysis44 in the 
healthcare domain. 

 

Table 1: Literature Review analysis 
Author Model Analysis report 
H. Dong et 
al. 

U-Net Reached a Score of 0.86 for both High Grade and 
Low-Grade Gliomas. 

T. A. Tuan 
et al. 

U-Net Achieved Dice scores of 82%, 68%, and 70% on 
validation data, and 77%, 48%, and 51% on testing 
data for the three modalities of the tumor scans. 

A. Kermi 
et al. 

U-Net Achieved a mean Dice score of 0.783, 0.868, and 
0.805 for the three modalities of the tumor scans. 

W. Chen et 
al. 

U-Net Achieved Dice scores of 0.68946, 0.83893, and 
0.78347 for the three modalities of the tumor scans. 

Isensee et 
al. 

U-Net Achieved Dice scores of 0.858 for whole, 0.775 for 
core, and 0.647 for enhancing tumor on the test set 
for BRATS 2017. 

Zhu Meng 
et al. 

U-Net Achieved Dice scores of 89%, 80%, and 74% for 
the Whole Tumor, Tumor Core, and Enhancing 
Tumor, respectively. 

Pravitasari 
et al. 

U-Net Achieved an accuracy of 96% and a Correct 
Classification Ratio (CCR) of 95.69%. 

P. 
Gadosey 
et al. 

U-Net Achieved an average Dice Score of 82.75% on the 
BraTS dataset. 

Weng et 
al. 

PSP-
Net 

Achieved a Dice score of 0.89 for brain tumor 
segmentation on the BraTS 2018 dataset, 
highlighting the effectiveness of the pyramid 
pooling module. 

S. Suhara 
et al. 

PSP-
Net 

Combined FCN and PSPNet for brain tumor 
segmentation, achieving a high Dice score of 87%. 

Samudrala 
et al. 

PSP-
Net 

Integrated DenseNet and PSPNet for breast cancer 
image segmentation, achieving a Dice coefficient 
score of 0.897. 

Sindhura 
et al. 

PSP-
Net 

Proposed a lightweight PSPNet model for liver and 
tumor segmentation in CT images, achieving a 
Dice score of 0.82. 

Li-Yin Ye 
et al. 

PSP-
Net 

Developed a PSPNet + VGG16 architecture for 
prostate tumor MRIs, achieving high classification 
accuracy and recognition rates around 87%. 

P. Wen et 
al. 

PSP-
Net 

Proposed an Advanced PSPNet for renal 
ultrasound image segmentation, achieving a Dice 
score of 0.875. 

S. Wang et 
al. 

PSP-
Net 

Developed a DPAM-PSPNet model for thyroid 
nodule segmentation, achieving a high Dice score 
of 
92.13%. 

Bai et al. FPN Proposed an FPN-based model for automated 
segmentation of the left ventricle in cardiac MRI 
images, achieving a DSC of 0.92. 

Syazwany 
et al. 

FPN Proposed MM-BiFPN for brain tumor 
segmentation, achieving DSCs of 0.91 for whole 
tumor, 0.87 for tumor core, and 0.84 for enhancing 
tumor. 

Sourodip 
Ghosh et 
al. 

FPN Suggested FPN models achieve strong 
performance for brain tumor segmentation, 
preserving tumor boundaries and small tumor 
regions. 

Wang et 
al. 

FPN Proposed RFPNet with a residual connection, 
achieving Dice scores of 0.8421 for skin lesion, 
0.8201 for polyp, and 0.8012 for organ 
segmentation. 

Zhenghua 
Xu et al. 

FPN Proposed EFPN, achieving substantial 
performance improvements on PenD (X-ray) and 
BraTs (MRI) datasets. 

Haimei Li 
et al. 

FPN Proposed a 3D Improved FPN for gastric tumor 
segmentation, achieving a Dice score of 65.5%. 
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Yanzhou 
Su et al. 

FPN Proposed FAPN for polyp segmentation, achieving 
a Dice score of 90.2% on Kvasir-SEG dataset. 

Chiu-Han 
Hsiao et 
al. 

FPN Used EfficientNetB7 and FPN for kidney tumor 
segmentation, achieving a Dice score of 96%. 

W. Huang 
et al. 

FPN Integrated FPN with a level-aware attention 
mechanism for meningioma segmentation, 
achieving a Dice score of 0.876. 

Venu 
Allapakam 
et al. 

FPN Used FPN with EfficientNetB0 for segmentation of 
fused CT and PET scans of gastrointestinal stromal 
tumors, achieving an IoU score of 85.21%. 

 
This study summarizes the performance of three popular 

architectures – U-Net, PSP-Net (Pyramid Scene Parsing Network) 
and FPN (Feature Pyramid Network) on the BraTS (Brain Tumor 
Segmentation) data sets as showsn in table 1. U-Net based 
architectures also achieve strong results with 68% to 89% union of 
compare (Dice) scores of different sub-regions (whole, core, 
enhancing) of the tumor, while the PSP-Net gives competitive 
results (Dice of 82–92%) by using the pyramid pooling for the 
multi-scale context aggregation.30 FPN-based models push 
segmentation accuracy further, with Dice scores ranging from 84 to 
96% and are even more successful at preserving the boundary of 
tumor and small regions through hierarchical feature fusion. 
Hybrid methods (eg FPN coupled with EfficientNet or residual 
connections) demonstrate state-ofthe-art performance (eg, 96% 
Dice for kidney tumors). Compared to U-Net, which is also still a 
baseline benchmark under different degrees of task specificity, the 
PSP-Net and FPN demonstrate improvements towards complex 
sub-regions of the tumor. 

METHODOLOGY 
This section provides a detailed explanation of the approach used 

to create the model for our needs. We will be creating a model for 
each segmentation architecture and comparing the results of the 
model on the BraTS 2024 dataset.15 

The BraTS (Brain Tumor Segmentation) 2024 dataset is a multi-
modal magnetic resonance imaging (MRI) dataset aimed at 
fostering research in automated brain tumor segmentation, 
radiogenomic classification, and as well as overall and 
progression-free survival prediction. This dataset contains high 
quality expert annotated MRi (T1, T1Gd, T2 and FLAIR 
sequences) images of glimoa patients with labeled tumor sub-
regions which include enhancing tumor, edema and necrotic core. 
Apart from segmentation challenges, BraTS 2024 leverages 
clinical and molecular data, such as MGMT promoter methylation 
status - a fundamental biomarker for treatment response in 
glioblastoma - and survival outcome of patients. The dataset has a 
potential to be a baseline for developing and validating machine 
and deep learning models in computational neuro-oncology. The 
dataset is made publicly available for research purpose, 
encouraging researchers to develop novel methods for addressing 
this problem and allowing research communities of medical 
imaging and artificial intelligence collaboration. The dataset is a 
pre processed dataset and ready to use data. 
 
HARDWARE AND SOFTWARE REQUIREMENTS: 

Hardware Requirements: 
The model was developed and trained on Kaggle’s cloud-based 
environment, which provides the following resources: 

– CPU: Dual-core Intel Xeon Processors 
– GPU: NVIDIA Tesla P100 
– RAM: 28GB – Storage: 100GB SSD 

Software Requirements: 
The software environment was based on Kaggle’s standard setup 
with the following specifics: 

– Operating System: Linux-based environment – 
Programming Language: Python 3.8 – Libraries and 
Frameworks: 

* NumPy 
* Pandas 
* Scikit-learn 
* TensorFlow 
* Keras 
* Matplotlib 
* OpenCV 
 

DATA EXPLORATOIN: 
We utilize the BraTS 2023 dataset, which includes patient MRI 

scans across four different modalities: Native Tumor, Tumor Core 
Enhanced, Tumor Whole, and Flair. The segmentation mask in this 
dataset categorizes areas into four classes: ”Not Tumor” (purple), 
”Necrotic and Non-Enhancing Tumor” (green), ”Fluid or 
Peritumoral Edema” (yellow), and ”Enhancing Tumor” (blue). 
 

 
Figure 6. Four different modalities: Native Tumor (T1), Tumor 
Core Enhanced (T1CE), Whole Tumor (T2), Flair (FLAIR). 

 
Figure 7. Segmentation Mask with each colour representing different 
parts of the tumor. 

There are three different views for the images as well, that are 
axial, coronal, and sagittal views. 
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Figure 8. Three Different Views. 
 
DATA PREPROCESSING AND GENERATION: 

Our goal is to train the models to predict how the segmentation 
masks are going to look like for a test image. So, we need to provide 
it with the correct and most valuable information we have to 
achieve this, and also to have more efficiency in computing the 
images, it is important to disregard information that may seem not 
as helpful. 

From the four modalities of the brain tumor MRI scans, we 
decide to leave the native tumor as it holds the least valuable 
information compared to the other three modalities. 
 

 
Figure 9. Different Slices of the same tumor, creating a 3D 
representation. 

  
Also note that each dimension or view consists of a series of two-

dimensional images, called slices, all containing the same number 
of pixels. These slices are stacked together to form the 3D 
representation. But as we can see in Fig. 9 most of the slides 
towards the left and right ends are blank or have no valuable 
information. So we keep the number of slides for each modality as 
75 (i.e. between slide 60 and slide 135) since most of these slides 
have the most information regarding the tumor. 

 
Preparing the data: 

We have to split the data into training, validation and testing sets. 
The training set is used to teach the model. During this phase, the 
model learns by adjusting its parameters to minimize the difference 
between its predictions and the actual segmentations. The 
validation set helps fine-tune the model’s hyperparameters, which 
are preset before training and influence the model’s behavior. By 
comparing different hyperparameter configurations, we can choose 
the best one for our model. Finally, the test set evaluates the 
model’s performance on new, unseen data to assess how well it has 
learned. 

For this analysis, we’ve used a training set of 251 samples, a 
validation set of 74 samples, and a testing set of 45 samples to 
compare the models’ performance. 

Creating the data generator: 
To teach a neural network how to identify and segment objects 

in images, you need to provide it with both the original images and 
the correct segmentations. This way, the neural network can learn 
to spot tumor patterns and make precise predictions about what’s in 
a patient’s scan. 

So for each sample, we will: 
Get the paths for its different types of scans: T1CE, FLAIR, and 

T2W, as these two offer complementary details about the brain’s 
anatomy and tissue contrast. 

Retrieve the path of the Ground truth, also known as the original 
segmentation. 

Load the three modalities & the segmentation mask. 
Create an X array that includes all the important slices (60-135) 

from these three scan types. 
Create a Y array that holds all the chosen slices of the 

segmentation. 
Set all the values of 4 in the mask array to 3 to address the three 

missing cases mentioned earlier. 
 

 
Figure 10. Original Array of Segmentation Mask. 

 
Figure 11. One-Hot encoding of Non Tumor Region. 

 
To segment regions into different classes (0 to 3), we need to use 

One-Hot Encoding to transform our categorical data into a format 
suitable for our neural network. This is crucial because neural 
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networks operate on numerical data. Without One-Hot Encoding, 
using the class labels directly would imply an incorrect hierarchy, 
suggesting that higher class numbers are superior to lower ones 
(e.g., class 1 being less than class 4). One-Hot Encoding helps us 
avoid this by converting class labels into binary vectors, making it 
clear that no class is superior to another. This simplifies the 
network’s understanding and processing of the data. 

 
DEFINING THE MODELS: 
For defining the model, the segmentation models python 

library45 is used, since it works well with Keras and Tensorflow. 
All of the four models will be created using the same parameters so 
that we can compare the performance of each model. The backbone 
used will be resnet 34, and the activation function will be softmax. 
The only difference would be seen in PSP-Net, since it takes an 
image size of dimensions (384,384) by default. The rest of the 
models will take an image size of (128,128). 

U-NET: 
The U-Net model creation process involves several key steps, 

each contributing to its ability to perform image segmentation 
effectively: 

a. Initialize Submodules: The necessary Keras submodules 
(backend, layers, models, utils) are imported and initialized. 
b. Backbone: A pre-trained backbone model (in our case, 
ResNet 34) is selected and loaded. This model, without its top 
classification layers, serves as the encoder, extracting high-level 
features from the input image. The backbone can be initialized 
with pre-trained weights (e.g., from ImageNet) to leverage pre-
learned features. 
c. Skip Connections: Layers from the backbone are chosen 
as skip connections. These intermediate feature maps from the 
encoder are saved and later concatenated with the decoder 
layers. Skip connections help the model retain spatial 
information that might be lost during downsampling in the 
encoder. 
d. Center Block: If the backbone ends with a MaxPooling 
layer, additional convolutional layers (center block) are added 
to further process the features before the upsampling begins. 
e. Decoder Blocks: These blocks progressively upsample 
the features back to the original image size. Two types of 
decoder blocks can be used: 

Upsampling Block: Uses UpSampling2D followed by Conv2D and 
optional batch normalization. 

Transpose Convolution Block: Uses Conv2DTranspose 
followed by Conv2D and optional batch normalization.Each 
decoder block takes the output of the previous block and the 
corresponding skip connection from the encoder, concatenates 
them, and processes the combined features. 

f. Final Convolution and Activation: The number of 
channels is lowered to the required number of output classes 
using a final Conv2D layer. The final segmentation map is 
generated by applying an activation function, such as the 
sigmoid for binary segmentation. 

This setup allows the U-Net model to effectively learn the mapping 
from input images to their segmented outputs, making it highly 
useful for various image segmentation tasks. 

LINK-NET: 
The creation of Link-Net model is very similar to the U-Net 

model. 
a. Backbone: Utilizes a pre-trained model to extract high-
level features from input images. 
b. Skip Connections: Intermediate feature maps from the 
backbone are preserved and later fused with decoder outputs to 
maintain spatial information. 
c. Decoder Blocks: Employed to upsample feature maps 
back to the original image resolution. Two types are used: 

Upsampling Block: Utilizes UpSampling2D and Convolution 
layers. 
Transpose Convolution Block: Employs Conv2DTranspose for 
upsampling. 

d. Final Layers: A final convolutional layer reduces feature 
maps to the desired number of output classes. Activation 
functions are applied. 
 

       PSP-NET: 
The PSPNet model is designed for semantic segmentation of 

images using a powerful backbone for feature extraction and a 
Pyramid Pooling Module (PSP) for context aggregation. Key steps 
include: 

a. Backbone: Uses a pre-trained model to extract detailed 
features from input images. 
b. PSP Module: Constructs spatial pyramid pooling blocks 
at different scales (1x1, 2x2, 3x3, 6x6) to capture contextual 
information effectively. 
c. Feature Aggregation: Integrates outputs from the 
backbone and PSP blocks to enhance feature representation. 
d. Final Layers: Applies a convolutional layer followed by 
upsampling to generate the segmentation map. Activation 
functions (e.g., softmax for multiclass segmentation) determine 
pixel-wise class probabilities. 

This structure makes PSPNet highly effective for tasks requiring 
accurate pixel-level segmentation, benefiting from both local and 
global context awareness. 
 
       FPN: 

The FPN (Feature Pyramid Network) model is crafted for 
semantic segmentation by leveraging a backbone network for 
feature extraction and a feature pyramid for multi-scale processing. 
Key steps include: 

a. Backbone: Uses a pre-trained model to extract 
hierarchical features from input images. 
b. FPN Blocks: Constructs feature pyramid blocks at 
different stages, integrating high-resolution and low-resolution 
features using upsampling and skip connections. 
c. Segmentation Heads: Adds segmentation heads to each 
FPN block, refining features with convolutional layers. 
d. Aggregation: Aggregates outputs from all pyramid levels, 
either by summing or concatenating them, followed by 
additional convolution and upsampling. 
e. Final Layers: Applies a final convolutional layer and 
activation function (e.g., softmax for multiclass segmentation) 
to produce the segmentation map. 
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This design makes FPN effective for capturing and utilizing 
features at multiple scales, enhancing the accuracy of image 
segmentation tasks. 

COMPILING THE MODELS: 
There are other factors that can affect how the model performs 

as well, such as what optimizer is being used or what the loss 
function is. The optimizer used will be the Adam optimizer 
provided by the Keras library. The Adam optimizer is an adaptive 
learning rate optimization algorithm created especially for deep 
neural network training 

The loss function used will be categorical cross entropy, which, 
for a single sample, is given by, 
 
L = −XXyi,c log(ˆyi,c) 
i=1 c=1 Where: 
 
OTHER METRICS: 

The following metrics will be used to monitor the model’s 
performance: 

Accuracy: This metric shows the overall percentage of pixels 
that are correctly classified, whether they are positive or negative. 

Dice Coefficient: This metric evaluates how much the predicted 
segmentation matches the ground truth. It ranges from 0, indicating 
no overlap, to 1, indicating a perfect overlap. Its equation can be 
written as, 

Dice =  
Where: X and Y are two sets. 

|X ∩ Y | is the number of elements in the intersection of sets X and 
Y . – |X| and |Y | are the number of elements in sets X and Y , 
respectively. 

Sensitivity: Also known as recall or true positive rate. It 
measures the percentage of actual positive pixels in the ground truth 
that were accurately predicted as positive. 

Its formula can be written as, 
TP 

Sensitivity =  
TP + FN 

Precision (positive predictive value): It calculates the percentage 
of positively predicted pixels that are positively pixelated. Its 
formula can be written as 

TP 
Precision =  

TP + FP 
 

Specificity: Often called the true negative rate, it shows the 
percentage of actual negative pixels in the ground truth that were 
correctly predicted as negative.  

RESULTS AND DISCUSSIONS: 
The four models were run for 20 epochs against the training 

dataset and evaluation using the validation dataset was also done 
along with it. The accuracy and Dice Coefficient after training is 
mentioned in the table bellow. 

Table 2: Performance metrics for different models 

Mod
el 

Accura
cy 

Dice 
Coefficie
nt 

Sensitivi
ty 

Precisio
n 

Specifici
ty 

U-
Net 0.9948 0.6055 0.9928 0.9952 0.9984 

Link-
Net 0.9939 0.588 0.992 0.9946 0.9982 

PSP-
Net 0.9965 0.7487 0.9955 0.996 0.9986 

FPN 0.9908 0.5051 0.9889 0.9918 0.9972 
 

From the bloated Accuracy values we can see that it is not a good 
metric to use for medical image segmentation as class 0 or the 
background class can be over-represented in our real and predicted 
images. So even though the blank pixels are being represented well, 
it does not mean that the segmentation mask is accurate. From the 
dice coefficient values in our training, we can see that Link-Net has 
a very close score to U-Net. The computational time taken for Link-
Net was significantly lesser than U-Net, but despite that it was able 
to achieve a very close score. Which shows that Link-Net would be 
more suitable in situations where computing power is low or dataset 
is not as rich. The high dice coefficient of PSP-Net shows that it 
has outperformed its outperformed 

Its competition, but with the cost of being computationally 
intensive. The model took way more time in training, so it would 
not be optimal in places where computational power is low. But it 
would do well in places where the accuracy of the answer is 
important, meaning the margin of error should be low.For 
predicting tumor segmentations, the models gave similar results. 
 
Table 3: Testing Results 

Model Mean Dice Coef. 
U-Net 0.42088 
Link-Net 0.38227 
PSP-Net 0.48382 
FPN 0.34547 

 

The PSP-Net has come out at the top again with the highest mean 
dice coefficient due to it being computationally intensive. Link-Net 
is not as close to U-Net now, but again, it does depend on the 
dataset. FPN however is the lower performing of the four models. 
But it could be improved by creating hybrid models, since the 
computational intensity of the model is low.  

Performance Divergence: The comparative results from table 2 
and table 3 show distinct performance profiles for the four models 
in this specific study's experimental setup. 

PSP-Net achieved the highest Dice Coefficient in both the 
training/validation (0.7487) and testing (0.48382) phases. The 
sources explicitly state this indicates superior segmentation 
accuracy. 

Link-Net achieved Dice scores lower than PSP-Net and U-Net in 
testing (0.38227), but had a score close to U-Net during training 
(0.588 vs 0.6055). 
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U-Net showed a Dice Coefficient of 0.6055 in training/validation 
and 0.42088 in testing, described as able to give "decent dice 
scores". 

FPN had the lowest Dice Coefficient in both training/validation 
(0.5051) and testing (0.34547), but the sources note its 
computational intensity is low and it could be improved by creating 
hybrid models. 

Trade-offs Highlighted: PSP-Net's superior accuracy came at the 
expense of computational intensity, taking significantly more time 
in training and being deemed not optimal where computational 
power is low. Link-Net, while not reaching PSP-Net's peak 
accuracy in this study's test results, is highlighted for its ability to 
balance high accuracy and efficient computation, making it suitable 
for real-time applications or resource-constrained scenarios. 

They attribute PSP-Net's strong segmentation performance, in 
part, to its pyramid pooling module's ability to capture global 
context information. Link-Net is highlighted for its ability to 
balance high accuracy and efficient computation, making it suitable 
for real-time applications and scenarios with limited computational 
resources. U-Net is described as a network designed for semantic 
segmentation tasks and is able to give decent dice scores. Therefore, 
while the sources do argue for PSP-Net's superiority in terms of 
segmentation accuracy based on the Dice Coefficient results from 
the experiments. 

CONCLUSION AND FUTURE WORK 
 To sum up, this study shows that several neural network 

architectures, including U-Net, Link-Net, PSP-Net, and FPN, are 
effective at segmenting brain tumors from MRI images. PSP-Net 
achieves the highest Dice coefficient, indicating superior 
segmentation accuracy at the expense of computational intensity. 
All models demonstrate different strengths. Link-Net is appropriate 
for situations with constrained resources because it strikes a 
compromise between computational efficiency and performance. 
Even though they are not as good as PSP-Net and U-Net, they still 
offer important insights into the trade-offs between segmentation 
accuracy and computational demands. 

Future work should aim to create hybrid architectures that merge 
the efficiency of Link-Net and FPN with the high performance of 
PSP-Net to balance accuracy and computational demands. 
Enhancing the training dataset with diverse samples and applying 
advanced optimization techniques can further boost model 
performance. Additionally, exploring real-time segmentation, 
transfer learning, and fine-tuning pretrained models could 
significantly enhance their practical utility in time-sensitive 
medical scenarios. 

Integrating segmentation models into clinical workflows and 
gathering feedback from medical professionals will help refine 
these models for real-world use. Cross-validation and robustness 
testing across different data subsets will ensure generalizability and 
prevent overfitting. Expanding the evaluation to include metrics 
like IoU, Precision, and Recall, and exploring various imaging 
modalities, will provide a comprehensive assessment of model 
performance and applicability across different medical imaging 
contexts. 
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