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Cancer is the second most 
common cause of death worldwide after heart 
disease. If a tumor and its types are identified 
correctly in the initial phase, it can be treated 
immediately, and the person's life can be saved. 
Keeping this in mind, designing and implementing 
advanced, optimized deep learning models for 
accurate detection and classification of brain tumors 
ensures high precision and reliability in diagnostic 
outcomes and accurate identification of three classes 
of brain tumors. A transfer learning mechanism based on human brain MR sample datasets for the severe and efficacious classification of human 
brain tumors is developed here. The dataset contains samples of four classes of brain MR contrast-enhanced T1-weighted images- glioma tumors, 
meningioma tumors, pituitary tumors, and no tumors. We enhance the quality and diversity of the brain tumor image dataset through advanced 
data augmentation techniques and preprocessing methods, ensuring robustness to noise and variability in the input data. After various image 
preprocessing techniques are applied to enhance the quality and contrast, data augmentation is also used to increase the quantity. We used 
leverage transfer learning-based feature extraction methods for capturing high-level and relevant features from brain tumor images, enabling 
efficient representation and improved learning. The model is well trained on 4569 MR images, and its performance is tested on various 
performance parameters. The proposed model achieved 99.93% accuracy, 99.93% F1–score, 99.93% recall, 99.93% sensitivity, 99.93% average 
sensitivity, and 99.93% average specificity during training for 100 epochs. It achieved 98.1% accuracy, 98.9% F1 score, 98.3% recall, 98.05% 
precision, 98.9% sensitivity (average), and 99.4% specificity (average) during testing. 
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INTRODUCTION 
Any unwanted growth of tissues or cells inside the brain is 

termed a brain tumor. When a tumor becomes cancerous, it is called 
brain cancer. The tumor originating from the brain itself is termed 
primary, whereas metastatic (secondary) tumors originate from 
other body parts, such as the kidney, skin, lungs, breast, and colon.1 
Primary tumors are further divided into benign and malignant types. 
Although it is not easy to detect a brain tumor in the early stages, 
it has no unique symptoms. Some common symptoms of brain 
tumors are severe headache, dizziness, personality changes, a 

lack of sensation, eye diseases, explanation, or decision-
making.2 In particular, there is no common cause known for 
brain tumors.3 However, some causes may include aging, other 
diseases, various types of tumors, genetics, other dangerous 
syndromes, or the environment.4-10 Whether brain tumors are 
dangerous or not can be significantly differentiated by their 
grading. The WHO has classified brain tumors into four grades: 
1, 2, 3, and 4. A grade of 1 or 2 indicates that the tumor is not 
dangerous or noncancerous; grades 3 and 4 indicate that the 
tumor is dangerous and cancerous. Earlier detection of brain 
tumors can be performed properly because of the initial stage of 
diagnosis. Some important scientific techniques used to 
diagnose tumors are basic neurological tests, CT scans, MRI, 
MRS, positron emission tomography (PET), and spinal 
analyses.2,9  The advancement of artificial intelligence in terms 

*Corresponding Author: Neelam Khemariya, Mangalayatan University, India. 
Email: Neelam.khemariya@gmail.com 

Cite as: J. Integr. Sci. Technol., 2025, 13(6), 1142. 
URN:NBN:sciencein.jist.2025.v13.1142 
DOI:10.62110/sciencein.jist.2025.v13.1142  

©Authors CC4-NC-ND, ScienceIN   https://pubs.thesciencein.org/jist                             

ABSTRACT 

https://pubs.thesciencein.org/journal/index.php/jist


Neelam Khemariya et. al. 

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2025, 13(6), 1142           Pg  2 

of its two most prominent derivatives, machine learning and 
deep learning, helps it reach every field, including home 
appliances, medical diagnosis, personal assistance, personal 
care, the education sector, hospitality, entertainment, chatbots, 
learning, and many other areas.11,12 In a traditional learning 
model, we start from the basics and build a model according to 
the particular task. This approach takes much time, as we must 
start from scratch. Transfer learning enables one to perform 
different tasks via a deep training model, and the performance 
can be improved for this new task. It allows us to reuse the 
pretrained previous model and apply it to solve new and 
different tasks.1 In the case of a fully connected network, many 
neurons are needed, as these neurons are associated with every 
other neuron, which later makes this process tedious and time-
consuming. In the case of images, simple neural networks are 
ineffective, as they achieve the worst performance due to the 
number of neurons required and several connections needed. 
The time and cost complexity increased in managing them. 
Convolutional neural networks have been developed to solve 
these problems, especially in the case of image datasets. Owing 
to their accurate predictions, fast analysis, and precise results, 
deep transfer learning and other artificial intelligence 
derivatives are used in various medical diagnosis applications 
such as heart disease prediction,2 segmentation of type 1 and 
type 2 diabetes disease,3 corn leaf disease detection,4 COVID-
19 classification,5 blood vessel detection 6 and various cancer 
categories such as lung cancer, breast cancer, stomach disease 
analysis, and mouth cancer.7 

This paper discusses a transfer learning mechanism based on the 
fine-tuning of the DenseNet201 architecture applied to a human 
brain MR image dataset. Initially, we used datasets containing brain 
MR images from Kaggle and divided them into 3 categories: 
training, validation, and testing. We then applied preprocessing 
techniques to these datasets. We then fine-tune DenseNet201 as per 
our requirements via various modifications and train this transfer 
learning model on the given datasets as per our requirements. Our 
final classification model is used for classification purposes. The 
model will evaluate the input and generate the performance metrics. 

PREVIOUS STUDY AND REVIEW OF LITERATURE 
A specific type of contusion or lesion in a particular damaged 

tissue area is known as a brain lesion. In general, all kinds of tumors 
are lesions, but not all lesions need to be tumors. These brain lesions 
can occur for various reasons, such as injury, a particular type of 
stroke, or other factors.30 Noncancerous brain tumors are called 
benign tumors, and all cancerous tumors are generally known as 
malignant.31 The first case of a brain tumor was detected in 1904, 
and the great scientist Dr. Alexander Huges Bennet made the first 
diagnosis. When a tumor originates from some brain tissues, it is 
treated as primary, whereas a tumor that originates from any other 
body part and later migrates to the brain is treated as metastatic.33 
Some common symptoms of brain tumors are severe headache in 
the morning and evening, discomposure or spasm, not comfortable 

in thinking, talking, or advertising, change in personality or 
behavior, frailty or lack of sensation in a particular body part, 
giddiness or fighting, alteration in appearance or shift in vision, 
deafness or hearing disorder, facial dullness or emptiness, decision 
or bafflement, and loss of memory or seafood. Although the actual 
causes are unknown, some of them may be considered as follows: 
people aged 65+ have a greater chance of having brain tumors than 
others do, such as corpulence or Fleshy, the surrounding 
environment, or the genes of the person. Genetic conditions may 
also be responsible for the disease, which can be spread through 
other Syndromes, can be spread from other body parts, and the 
person has no history of varicella. Brain tumor staging is performed 
for secondary tumors and is generally not performed for primary 
tumors because of the size of the tumor. The tumor grade reflects 
the severity level of the tumor. A lower grade (1 or 2) indicates that 
the tumor is not dangerous or noncancerous. A higher grade 
indicates that the tumor is dangerous and cancerous.34 Techniques 
for the diagnosis of brain tumors include neurological 
examinations, computed tomography scans, magnetic resonance 
imaging, magnetic resonance spectroscopy, positron emission 
tomography, biopsy, and Spinal Tap. 

Tseng, C.-J..21 proposed a model emanating from particle swarm 
optimization and extreme gradient boosting transfer learning to 
diagnose brain tumors properly. As the images are not of good 
quality, the quality of the images was magnified via the contrast-
limited adaptive histogram equalization technique, which is well 
known for its standard. Image segmentation is achieved via the K-
means approach, naïve Bayes approach, and ID3 approach. In 
previous approaches, PSO ID3 has 86% accuracy, 91% specificity, 
90% precision, and 98% recall. The proposed PSOXGBoost model 
has 97% accuracy, 98% specificity, 97% precision, and 98% recall.  

Amran, G.A. et. al.;22 proposed an efficient brain tumor 
severance technique based on modern ML algorithms known as 
transfer learning algorithms. This hybrid model adds 14 new layers 
to the basic GoogleNet model and eliminates the basic 5 layers to 
enhance the model in such a way that it can be used for automatic 
feature extraction. It is based on a popular Kaggle dataset known as 
Br35H. The proposed model has 99% accuracy performance, 99% 
specificity, 98% precision, 99% F1 score, and 99% recall. The 
ReLU was modified as the REAF, and the total number of layers 
reached 33 instead of 22. The proposed model has greater accuracy 
in differentiating between cancerous and noncancerous images. 
Samee, N.A. et al.,23 discussed an automated segmentation method 
based on hybrid rather than traditional machine learning techniques 
for detecting tumors early, involving manual feature extraction. The 
model outperforms existing techniques in terms of accuracy and 
sensitivity, achieving an accuracy of 99.51% and a sensitivity of 
98.90%.  

Irmak, E.24 provided a CNN-based hybrid architecture that can 
distinguish different types of brain tumors based on MR images of 
the human brain. Fine-tuning is employed to modify the transfer 
learning architecture initially, and the model utilizes the provided 
weights through a weight optimization technique based on grid 
search and genetic algorithms. Model testing and validation are 
subsequently conducted, and it surpasses the GAWO, Xception, 
and GSWO algorithms in terms of accuracy (99%). The model also 
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achieved 98% accuracy for ResNet152V2 and 50V2. Islam, Md. M. 
et. al.25, the authors suggested an architecture based on transfer 
learning to diagnose brain tumors effectively. The model was 
applied to four popular CNNs: DenseNet121, VGG19, 
InceptionV3, and MobileNet. The datasets considered here are 
brain MR-based images along with three popular and standard 
datasets - SARTAJ, FIGSHARE, and BR35H - which contain four 
types of images: Pituitary, Glioma, Meningioma, and No Brain 
Tumor samples. The model achieves an accuracy of 96% with 
VGG19, 96% with DenseNet121, 96% with MobileNet, and the 
best with InceptionV3, which is 98%. The duration of each epoch 
across all the CNNs was also recorded: 2:44:44 with MobileNet, 
3:48:15 with VGG19, 2:50:08 with DenseNet121, and 3:25:08 with 
InceptionV3. 

Dhakshnamurthy, V.K. et. al.; 26, developed a CNN-based hybrid 
architecture that can distinguish divergent types of brain tumors 
deployed on brain MR images. The model combines the popular 
pretrained GoogleNet CNN with a support vector machine for FE 
and pattern segmentation. The model subsequently integrates this 
GoogleNet with the SoftMax classifier. Mathivanan, S.K.27, 
proposed a DL model based on images captured through brain MR 
images with a GWO with crisp set theory. An unfamiliar 
dimensionality reduction algorithm with the zestful architecture of 
multilevel layer modeling in the MLL-CNN) approach. Rasa, S.M 
et. al.; 28, developed a model composed of a CNN, classifiers, and 
DL algorithms. The proposed CNN achieved 96.34% accuracy. 

MATERIALS AND METHODS 
The objectives for the research are outlined below: 
Data Enhancement: This enhances the quality and diversity of 

brain tumor image datasets through advanced data augmentation 
techniques and preprocessing methods, ensuring robustness to 
noise and variability in the input data. 

Feature Extraction via Transfer Learning: Leverage transfer 
learning-based feature extraction methods for capturing high-level 
and relevant features from brain tumor images, enabling efficient 
representation and improved learning. 

Deep Learning for Tumor Detection: To design and 
implement advanced, optimized deep learning models for accurate 
detection and classification of brain tumors, ensuring high precision 
and reliability in diagnostic outcomes. 

The proposed work presents an approach for classifying multiple 
classes of brain tumors using an MRI brain dataset through transfer 
learning. Initially, we utilized datasets containing brain MR images 
from Kaggle. The dataset is divided into two categories: training 
and testing. We then applied preprocessing techniques: converting 
to Grayscale Image, resizing the image to 250x250, standardizing 
the pixel values, applying CLAHE39, enhancing image quality, 
normalizing (0--1), and stacking to 3 values. After this, we split the 
training data into training and validation subsets, at 80% and 20% 
ratios, respectively. We used a popular CNN, DenseNet201, and 
fine-tuned it according to our requirements through various 
modifications. The model was trained on the datasets as per our 
needs. Training was accomplished by initializing the model, 
training with real-time augmented data, and validating the model. 
After loading the model, this trained version is saved and kept in 

memory. The final model is used for classification by evaluating 
the input and generating performance metrics. 

The brain tumor dataset considered here is based on human brain 
magnetic resonance imaging samples, which are free and publicly 
available. This dataset is the fusion of three datasets - Br35H, 
Figshare, and SARTAJ. The dataset contains 7023 samples of 
human brain magnetic resonance images. This dataset contains 4 
classes of brain tumor samples: no tumor, glioma tumor, pituitary 
tumor, and meningioma tumor. Generally, glioma tumors are 
malignant, but they can also be benign tumors (very few cases). 
Meningioma tumors are generally benign, but they can also be 
malignant (very few cases). Pituitary tumors are benign tumors, and 
the complete taxonomy of the considered dataset is shown in Table 
1 below: 
 
Table 1. Complete Taxonomy of the Datasets Containing Human Brain 
MR Imaging Samples 

Samples Glioma No 
Tumor 

Meningioma Pituitary 

Training (4569) 1033 1286 1092 1158 
Validation (1143) 268 319 291 265 
Testing (1311) 300 405 306 300 

 
This dataset can be obtained from 
https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-
mri-dataset/data 
 

Image preprocessing techniques are required on the dataset to 
prepare it for the work requirements. Initially, we converted 
colorful images into grayscale images because it is a general 
convention that medical images should be in grayscale for better 
resolution and dispersion. We standardized the image pixel values 
so that they have a 0 mean value and a unit standard deviation.  

As the quality of the images is not the standard required for our 
purpose, we have applied a popular contrast enhancement 
technique called contrast-limited adaptive histogram equalization 
40. After increasing the contrast at a certain level, we normalize 
these images by setting the range of these images between 0 and 1 
by dividing every image by 255 because the grayscale images lie in 
the range of 0-255 42. Additionally, we removed the noise from the 
images to increase the quality. We converted these images into 
three-channel form because DenseNet201 accepts only three-
channel images, and we increased one more parameter. Thus, if the 
dimension is (225,225), then it will be written as (225,225,1) in 
three-channel form. As the images are gathered from different 
places, they are of nonidentical sizes; hence, we need to resize them 
and store them in the array.  

The basic idea behind transfer learning is that the early layer of 
the deep learning network learns low-level features such as textures 
or edges and can also be used for other tasks. Therefore, we do not 
need to train a model again for these basic features, even though we 
can use transfer learning if the pretrained model has limited datasets 
and features 8. Feature extraction can be achieved via a fixed feature 
extractor via a pretrained model. It allows less data due to 
reusability.9. Finally, it is modified in such a way that it maps the 
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learned features for that specific task. This process is called 
repurposing.10 Thus, transfer learning helps generate models with 
minimal training data, as it can work well without a large amount 
of data. It also improves the quality by removing overfitting or 
underfitting on the pretrained model.11 In CNNs, a neuron is not 
connected with every other neuron, rather, it connects with only a 
few neurons. This partially connected network arrangement helps 
reduce the number of parameters and thus speeds up training. The 
three layers achieve the complete process. The convolutional layer 
applies a filter on the input provided to it to create a feature map, 
also called the stack of filter images.13 The number of filtered 
images depends on the filter value set, i.e., if the filter value is set 
to 10, we obtain 10 filtered images.14 The feature map is the 
multiplication of the input image and the feature detector. Here, 
ReLU removes the values of negative magnitude from the filtered 
images and replaces them with 0. The image size reduction is 
achieved by the pooling layer, which is the second layer. The 
reduction is achieved by choosing a window size and a stride, 
passing the window across the filter images, and picking the 
maximum value from each window. In the case of many images, 
these two layers are applied several times, one by one.15 The last 
layer is responsible for image discrimination. Therefore, we can say 
that it is used for classification.16 The fully connected layer converts 
these images into a one-dimensional array for classification. 

We considered DenseNet201 as the base model, and the weights 
were taken from ImageNet. DenseNet201 is an image classification 
model for handling the vanishing gradient problem. It is used in 
various medical diagnosis applications, such as COVID-19 
prediction 17 and pneumonia classification.18 Thus, the information 
vanishes before it reaches the output layer, as it needs to travel a 
very long path. DenseNet overcomes the vanishing gradient 
problem by connecting each layer with every other layer. 
DenseNet201 is an important variant of DenseNet, and it is called 
so because it has 201 layers.19 The input is directly connected to the 
7*7 filter-sized convolutional layer. There are 4 dense blocks: 
blocks 1, 2, 3, and 4. After every dense block, there is a transition 
layer. Inside Dense Block 1, we have 6 convolutional layers; inside 
Dense Block 2, we have 12 convolutional layers; inside Dense 
Block 3, we have 24 convolutional layers; and in the last Dense 
Block 4, we have 16 convolutional layers. The down-sampling will 
be performed only with the transition layer. The convolutional layer 
inside every dense block has a filter size of 3 by 3 and consists of 
batch normalization, ReLU, a convolutional layer of 3 by 3, and 
dropout. DenseNet has several advantages over other existing 
CNNs. In DenseNet, classifiers use features of all complexities, as 
they contain the features of all the layers inside a dense block, 
making them more accurate and efficient. DenseNet also improves 
the gradient flow during training, as the error signals can be easily 
shared with the earlier layers of the network, and the information is 
propagated more efficiently, thus, it solves the problem of gradient 
descent. In DenseNet, the next layer can easily access the features 
directly learned by the previous layer inside a dense block, 
increasing the strength of the propagation of features [20]. The next 
layer does not need to relearn those features that were already 
learned by the previous layer, as it can access them directly due to 
concatenation and saving time.  

DenseNet201 has a total of 201 layers. In our proposed model, 
we keep the initial 151 layers of DenseNet201 unchanged or 
modified as they are in DenseNet201 and apply fine-tuning to the 
remaining 50 layers, i.e., layers 152--201. The medical image-
specific attention mechanism is achieved by applying the sigmoid 
activation function on the convolutional 2D layer and then 
multiplying this attention value onto the inputs of the base model. 
The sigmoid function [48] is a popular activation function, which 
looks like S, whose domain is (-∞, +∞) and range is (0, +1), and it 
is expressed as S(x): 
S(x) = 1/(1+e-x)     (1) 

We then applied global average pooling to this. After that, we 
optimized the dense layer for our task to apply the number of 
operations on it. Initially, we apply batch normalization, which is 
used to normalize the images so that they can be in the range of [0-
1], and then apply the RELU 49, expressed as: 
f(x) = max (0, x)     (2) 

Afterwards, the dropout layer is applied so that our model resists 
overfitting. We then reach the fully connected output layer, where 
we apply the SoftMax activation function. 

Now, we have shaped this model as our modified model. A total 
of 20824005 parameters (79.44 MB memory occupied) are taken 
here, of which the trainable parameters are 4389957 (16.75 MB 
memory occupied) and the nontrainable parameters are 16434048 
(62.69 MB memory occupied). 

The number of samples increased when augmentation techniques 
were applied to the dataset. Augmentation is achieved by applying 
various techniques, such as limited rotation of 15 degrees, a slide 
shift of 15%, zooming by 15%, and taking the background as black. 
Table 2 summarizes the different data augmentation parameters and 
their values. 
 
Table 2.  Description of the Data Augmentation Parameters 

Parameters Value Remark 
RotationRange 15 Limited Rotation 
WidthShiftRange 0.15 Slight Shift in Width 
HeightShiftRange 0.15 Slight Shift in Height 
FillMode Constant Black Background 
ZoomRange 0.15 Slight Zoom 
HorizontalFlip True MRIs can be flipped  
cVal 0 Fill value 

 
The model was then compiled via a popular optimizer known as 

Adam (learning rate of 1e-4), and categorical cross-entropy was 
used to calculate the loss. Table 3 summarizes the different training 
parameters and their values. 

 
Table 3.  Summarized view of parameters considered for Training 

Parameter Value  
Loss Categorical_Crossentropy  
Optimizer Adam  
Learning rate 1e-4  
Metrics accuracy  
Batch size 10  
Epochs 100  
Normalization Yes  
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EXPERIMENTAL SETUP AND RESULTS 
To perform our experiments, we used Google Colab Pro+, which 

processes very fast due to its background processing capability and 
can yield results very quickly. For this purpose, we used NVIDIA's 
Tesla T4 GPU, which is commonly known as the T4 GPU. The use 
of 25 GB of RAM helped us complete this experiment even faster. 
The total time to maintain the model was 6318.80 seconds, while 
the initial and final system memory usage statuses were 28784.277 
MB and 35360.9765 MB, respectively. 

The proposed model is trained using a batch size of 10 and an 
epoch size = 100. We also captured traces of the values of loss, 
validation loss, accuracy, and validation accuracy after every 10 
epochs during model training. The total training time taken by the 
model is 6318.80002 seconds, the initial system memory usage is 
28784.277 MB, and the final system memory usage is 35360.9665 
MB. The validation of the training of the model is achieved by 
using numerous parameters of performance with the help of the 
confusion matrix. It is used to find values by comparing the values 
between predicted and expected (true) values [50]. These 
comparisons provide the values of true negative (TN), true positive 
(TP), false positive (FP), and false negative (FN). 

We computed several performance parameters to evaluate the 
performance of the model. 
These parameters are formalized below: 
 
Accuracy = (TN+TP)/(TN+TP+FN+FP)  (3) 
Recall = TP/(TP+FN)    (4) 
Precision = TP/(TP+FP)    (5) 
Specificity = TN/(TN+FP)    (6) 
F0.5 Score = (P*R)/(P+R)    (7) 
Error Rate = (FN+FP)/(TN+TP+FN+FP)  (8) 
Null Error Rate = (FP+TN)/(TN+TP+FN+FP)  (9) 
Negative Predicted Value = TN/(TN+FN)  (10) 
Balance Accuracy = (TPR+TNR)/2   (11) 
Positive False Rate = 1 – Specificity   (12) 
Negative False Rate = 1 – Sensitivity   (13) 
False Discovery Rate = 1 – Precision   (14) 
False Omission Rate = FN/(TN+FN)   (15) 
Prevalence = (FN+TP)/(TN+TP+FN+FP)  (16) 
Positive Likelihood Ratio = Sensitivity/FPR  (17) 
Negative Likelihood Ratio = FNR/Specificity  (18) 
Diagnostic Ratio = Pos LR/Neg LR   (19) 
(FM Index)2 = Precision * Sensitivity   (20) 
Critical success Index = TP/(TP+FN+FP)  (21) 
 

The confusion matrix for the training data is represented in 
Figure 1. The confusion matrix was generated with the support of 
1057 glioma tumor samples, 1068 meningioma tumor samples, 
1165 pituitary tumor samples, and 1276 nontumor samples. 

The classification report is based on the confusion matrix shown 
in Tables 4 and 5. Our training classification report shows that the 
proposed model has approximately 100% precision, 100% recall, 
100% F1-score, and 100% accuracy for all labeled (glioma, 
meningioma, pituitary, and no tumor) samples. The figure also 

shows a 100% macro average and 100% weighted average for 4569 
support samples. 

 

 

Figure 1. Confusion Matrix for Model Training. 

Table 4. Classification Report for Training data with various 
performance parameters 

Tumor Classes Precision Recall F1- Score Accuracy 
Glioma  0.997 1.000 1.000 0.999 
Meningioma  1.000 1.000 0.997 0.999 
Pituitary  1.000 1.000 1.000 1.000 
No Tumor 1.000 0.997 1.000 1.000 
 

Table 5. Classification Report for Training data with various 
performance parameters (Averaging) 

Type Precision Recall F1- Score Support 
Macro Average 1.0000 1.0000 1.0000 4569 
Weighted Average 1.0000 1.0000 1.0000 4569 
  

 
Figure 2. Multiclass ROC curve framed between the TPR and the 
FPR. 

The AUC‒ROC curve represents the area under the curve 
(AUC)-receiver operating characteristic (ROC) curve, which is 
used to measure the performance of a model on the basis of its TPR 
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and FPR. The value of the AUC-ROC curve lies between 0 and 1, 
and the closer it is to 1, the higher the classification performance of 
the model. If its value is 1, it means that the model can perform 
100% accurate classification, but if its value is 50%, then we cannot 
trust the model at all because, in this case, it is classified randomly. 
Our AUC-ROC curve shows that its value is almost equal to 1, 
which means that our model can be used to assess accurately. The 
multiclass ROC curve is framed between the TPR and the FPR 
positive rate in Figure 2. 

The performance parameters and their predicted values are 
shown in Table 6. The training performance matrix shows that the 
proposed model has 99.93% accuracy, 99.93% precision, 99.93% 
recall, 99.93% F1-score, 99.93% average sensitivity, and 99.97% 
average specificity. 

 
Table 6.  Performance Measurement for Training Data on Various 
Performance Parameters 

Metric Value Achieved During Training 
Accuracy 0.999 
Precision 0.999 
Recall (Sensitivity) 0.999 
F-1 Score 0.999 
Average Sensitivity 0.999 
Average Specificity 0.999 
 
The relationship between training accuracy and validation 

accuracy is shown in Figure 3. The training accuracy graph 
moves toward 1, and the validation accuracy graph lies between 
0.95 and 1, indicating that the validation accuracy is greater than 
0.95. 

 
Figure 3. Representation of the graph between Training and 
Validation Accuracy. 

After training, we evaluated the training data via the AUC‒ROC 
curve for each class and then calculated the performance of our 
model on the basis of popular performance parameters—accuracy, 
precision, recall, F1 score, average sensitivity, and average 
specificity and stored these values in the CSV form and then loaded 
this trained model into our drive. Our model is now ready for testing 
and evaluation, so testing is performed on 20% of the total images 
included in our dataset. 

The confusion matrix for the test data is represented in Figure 4. 
The confusion matrix is generated by considering the support of 
300 glioma tumor samples, 306 meningioma tumor samples, 300 
pituitary tumor samples, and 405 nontumor samples. 

 
Figure 4. Confusion Matrix for Model Testing. 

The classification report is based on the confusion matrix shown 
in Tables 7 and 8. Our testing classification report shows that the 
proposed model has approximately 98% precision, 98% recall, 98% 
F1-score, and 99% accuracy for 300 support samples of glioma 
tumors. It has approximately 99% precision, 100% recall, 99% F1-
score, and 99% accuracy for 405 support samples of no tumors. It 
has approximately 96% precision, 95% recall, 96% F1-score, and 
98% accuracy for 306 support samples of meningioma tumors. It 
has approximately 99% precision, 99% recall, 99% F1-score, and 
99.6% accuracy for 300 support samples of tumors (Table 7). It has 
a 98% macro average and weighted average for precision, recall, 
and F1-score on 1311 support samples (Table 8). 

 
Table 7. Classification Report for Testing data with various 
performance parameters 

Tumor Classes Precision Recall F1- Score Accuracy 
Glioma  0.983 0.977 0.979 0.991 
Meningioma  0.964 0.954 0.959 0.981 
Pituitary  0.990 0.993 0.992 0.996 
No Tumor 0.985 0.995 0.989 0.994 
 

Table 8. Classification Report for Testing data with various 
performance parameters (Averaging) 
Type Precision Recall F1- Score Support 
Macro Average 0.98 0.98 0.98 1311 
Weighted Average 0.98 0.98 0.98 1311 

 
The performance parameters and their predicted values are 

shown in Table 9. The testing performance matrix shows that the 
proposed model has 98.1% accuracy, 98.5% precision, 98.3% 
recall, 98.2% F1-score, 98.9% average sensitivity, and 99.4% 
average specificity. 

 
Table 9.  Performance Measurement for Testing Data on Various 
Performance Parameters 

Metric Value Achieved During Training 
Accuracy 0.981 
Precision 0.985 
Recall (Sensitivity) 0.983 
F-1 Score 0.982 
Average Sensitivity 0.989 
Average Specificity 0.994 
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PERFORMANCE MEASUREMENT AND COMPARATIVE 
ANALYSIS 

On the basis of the confusion matrix generated from testing the 
model, we computed the values of the abovementioned 
performance parameters for glioma tumors, meningioma tumors, 
pituitary tumors, and no tumors, using the values of true negatives 
(TN), true positives (TP), false negatives (FN), and false positives 
(FP). The values of true negative, true positive, false negative, and 
false positive for all four classes are shown in Table 10. 

 
Table 10.  Measured values of TP, FP, TN, and FN for the testing 
classification matrix 

Tumor 
Classes 

TP TN FP FN 

Glioma  293 1006 5 7 
Meningioma  292 994 6 2 
Pituitary  298 1008 3 2 
No Tumor 403 900 6 2 

 
On the basis of the values of TP, FP, TN, and FN, we computed 

the values of the performance parameters, which are shown in 
Table 11.  

 
Table 11.  Measured Values of Various Performance Parameters 

Performance 
Parameter 

Glioma 
Tumor 

No 
Tumor 

Mening
ioma 
Tumor 

Pituitar
y 
Tumor 

Error Rate 0.0091 0.0061 0.0190 0.0038 
Specificity 0.9950 0.9933 0.9890 0.9970 
Null Error Rate 0.7711 0.6910 0.7665 0.7711 
Prevalence 0.2288 0.3089 0.2334 0.2288 
False Positive Ratio 0.005 0.0067 0.011 0.003 
False Negative Ratio 0.0234 0.0050 0.0458 0.0067 
False Discovery Rate 0.0168 0.0.0147 0.364 0.01 
Negative Predicted 
Value 

0.9930 0.9977 0.9861 0.9980 

False Omission Rate 0.0069 0.0022 0.0138 0.0019 
Positive Likelihood 
Ratio 

195.32 148.507 86.74 331.1 

Negative Likelihood 
Ratio 

0.0235 0.0050 0.0463 0.0067 

Critical Success Index 0.9606 0.9805 0.9211 0.9834 
Balanced Accuracy 0.9858 0.9941 0.9716 0.9951 
FM Index 0.9798 0.9901 0.9588 0.9916 
BM 0.9716 0.9833 0.9432 0.9903 
MK 0.9762 0.9830 0.9497 0.988 

 
A quantified analysis of the suggested model with underlying 

approaches established on various performance parameters is 
shown in Tables 12–15. We performed a comparative analysis of 
our proposed model with existing models for all four classes, i.e., 
glioma tumors, meningioma tumors, pituitary tumors, and no 
tumors. We also performed a comparative analysis of the overall 
performance of the proposed model in terms of accuracy, recall, 
precision, and F1 score parameters with that of existing models and 

Table 12. Multiclass Comparison of Testing results (Glioma tumor) of 
the proposed model regarding various performance benchmarks with 
Existing Models  

# Year  Precision Recal
l  

F1- Score Accuracy 

[24] 2021 0.934 0.944 - 0.979 
[28] 2024 0.990 0.960 0.970 0.982 
[38] 2024 0.990 0.940 0.960 0.980 
Propo
sed 

 0. 983 0.977 0.979 0.9908 

 
Table 13. Multiclass Comparison of Testing results (Meningioma 
tumor) of the proposed model regarding various performance 
benchmarks with Existing Models  

# Year Precision Recall  F1- Score Accuracy 
[24] 2021 0.923 0.924 - 0.976 
[28] 2024 0.965 0.950 0.960 0.981 
[38] 2024 0.940 0.986 0.950 0.980 
Proposed  0.964 0.954 0.960 0.981 

 
Table 14. Multiclass Comparison of Testing results (Pituitary tumor) 
of the proposed model regarding various performance benchmarks with 
Existing Models  

# Year Precision Recal
l  

F1- Score Accuracy 

[24] 2021 0.909 0.880 - 0.969 
[28] 2024 0.960 0.990 0.970 0.982 
[38] 2024 0.970 0.990 0.980 0.980 

Proposed  0.990 0.993 0.992 0.996 
 
 
Table 15. Multiclass Comparison of Testing Results (No tumor) of the 
Proposed Model Regarding Various Performance Benchmarks with 
Existing Models  

# Year Precision Recall  F1- 
Score 

Accuracy 

[24] 2021 0.880 0.921 - 0.954 
[28] 2024 0.970 0.990 0.980 0.982 
[38] 2024 1.000 1.000 1.000 0.980 
Proposed  0.985 0.996 0.989 0.994 
 

find that our proposed model outperforms other models in terms of 
several parameters. Table 16 shows the comparison between the 
proposed model and the existing model on the basis of the accuracy 
parameter. Table 17 shows the comparison between the proposed 
model and the existing model on the basis of the recall parameter. 
Table 18 shows the comparison between the proposed model and 
the existing model on the basis of the specificity parameter. Table 
19 shows the comparison between the proposed model and the 
existing model on the basis of the F1 score. Table 20 shows the 
comparison between the proposed model and the existing model on 
the basis of the precision parameter. 
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Table 16. Comparison of the Accuracy parameters between the 
suggested and underlying models 

Approach Year Accuracy (%) 
[21] 2023 97 
[28] 2024 96.34 
[38] 2024 98 
[41] 2024 85.99 
[46] 2023 87.9 
[47] 2022 96 
[52] 2023 93.44 
[53] 2023 92.45 
[54] 2023 97.95 
Proposed  98.09 

 
Table 17. Comparison of the Recall parameters between the suggested 
and underlying models 

Approach Year Recall (%) 
[21] 2023 98 
[22] 2024 98.6 
[32] 2024 97.08 
[35] 2024 97.11 
[46] 2023 92.3 
[47] 2022 96 
[52] 2023 95.75 
[53] 2023 96.3 
Proposed  98.09 

Table 18. Comparison of the Specificity parameters between the 
suggested and underlying models 

Approach Year Specificity (%) 
[21] 2023 98 
[24] 2022 98 
[46] 2023 73.65 
[53] 2023 98.76 
Proposed  99.37 

 
Table 19. Comparison of the F1 Score parameters between the 
suggested and underlying models 

Approach Year F1- Score (%) 
[21] 2023 98 
[35] 2024 97.08 
[47] 2022 95.7 
[52] 2023 95 
[53] 2023 96.3 
Proposed  98.08 

 
Table 20. Comparison of the precision parameters between the 
suggested and underlying models 

Approach Year Precision (%) 
[21] 2023 97 
[22] 2024 98.9 
[23] 2022 99 
[35] 2024 98.05 
[47] 2022 96 
[50] 2022 97.7 
[51] 2023 98 

[52] 2023 94.75 
[53] 2023 96.3 
Proposed  98.08 

 
We measured the performance of our proposed model on the 

basis of various parameters for all four classes: glioma tumor, 
meningioma tumor, pituitary tumor, and no tumor. Our model 
achieves the highest performance for almost all the parameters, and 
the performance of the proposed model is better than that of the 
existing models for almost all the performance parameters 
considered. Comparative analysis reveals that our model has good 
accuracy, recall, F1 score, and specificity compared with the 
existing models. However, the possibility of enhancing these 
parameters, specifically the precision parameter, is possible. 

CONCLUSION 
In this paper, we suggest a transfer learning approach using fine-

tuned DenseNet201 Convolutional Neural Networks based on 
Hunan Brain Magnetic Resonance Imaging Datasets for the 
effective and efficient severity and classification of brain tumors. 
The dataset is composed of 4 types of samples - No tumor, glioma, 
pituitary, and meningioma—and is divided into three parts -
training, validation, and testing—and contains 4569, 1142, and 
1311 image samples for training, validation, and testing, 
respectively. Various image preprocessing approaches, such as 
grayscale and three-channel conversion, are used to amplify the 
status and contrast of the images and resize them. Data 
augmentation techniques are used to expand the dataset samples. 
Fine-tuning was applied to DenseNet201’s last 50 layers while 
taking the weights from ImageNet. The model is well trained via 
optimizers with accuracy metrics, and its performance is validated 
and tested on various performance parameters. The model achieved 
99.93% accuracy, 99.93% precision, 99.93% recall, 99.93% F1 
score, 99.93% average sensitivity, and 99.93% average specificity 
during training for 100 epochs. During testing, our model achieved 
an overall 98.1% accuracy, 98.5% precision, 98.3% recall, 98.9% 
F1 score, 98.9% average sensitivity, and 99.4% average specificity. 
We also compared the performance of our proposed model for all 
four classes separately with that of the existing models, which 
showed better performance in terms of the number of parameters. 

In the future, we will also attempt hybrid approaches to enhance 
the dataset by combining more publicly available datasets and 
applying transfer learning more efficiently and accurately to the 
fusion of two or more convolutional neural networks. We will also 
integrate explainable AI techniques, such as SHAP or LIME, to 
provide interpretable results, highlight critical regions of interest, 
and offer insights into model decision-making processes. 
Additionally, we will incorporate mechanisms for assessing the 
severity of detected brain tumors, facilitating better clinical 
decision-making and treatment planning. We will also attempt to 
implement a secure cloud-based infrastructure for storing processed 
data, model outputs, and results, ensuring seamless accessibility 
and scalability for future applications. 
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