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This paper introduces a 2D deep 

convolutional neural network (DCNN) method for automatic 
fault detection and classification in modular multilevel 
converters (MMCs). Unlike traditional data-driven approaches 
that rely on manual signal processing and ignore time 
dependencies, this method transforms raw sensor data into 2D 
representations and uses DCNNs to learn fault patterns 
automatically. This allows for better modeling of temporal 
relationships between signals and removes the need for hand-
crafted ensemble techniques. The model is trained in data 
covering a range of MMC operating conditions. Simulation and real-time tests in MATLAB Simulink show the approach achieves 100% fault 
detection accuracy and over 85% classification accuracy. The results demonstrate its effectiveness and potential for improving MMC reliability. 
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INTRODUCTION 
Electric and electronic circuits are integral to diverse 

applications, spanning power systems, communication networks, 
automotive electronics, and consumer devices. Serving as the 
backbone of modern infrastructure, these circuits facilitate efficient 
energy generation, transmission, and utilization.1,2 However, their 
reliable operation is susceptible to various faults, posing risks to 
performance, safety, and longevity. Robust fault detection 
techniques are crucial to mitigate these risks, ensuring 
uninterrupted operation and safeguarding both equipment and lives. 
In power systems, where circuits manage energy generation and 
distribution, faults like short circuits or equipment failures can lead 
to widespread outages and economic losses.3,4 Implementing 
reliable fault detection is vital to promptly identify and isolate 
faults, minimize disruptions, stabilize the grid, and enhance overall 
power system reliability.5–8 

Fault detection in Modular Multilevel Converters (MMCs) is 
crucial for ensuring the reliability and performance of these power 
electronic systems, especially in applications like high-voltage 
direct current (HVDC) transmission and renewable energy 
systems.9,10 The complexity of MMCs, with their modular and 
multilevel structure, poses challenges in identifying faults 
promptly. Key components, including semiconductor switches, 
capacitors, and control circuits, are susceptible to various types of 
faults that can impact the converter's operation.11,12 

Traditional fault detection methods for MMCs predominantly 
rely on monitoring various parameters to identify anomalies 
indicative of faults. These methods, known for their simplicity and 
effectiveness, employ voltage and current sensors to scrutinize the 
waveforms of each submodule in the MMC. Anomalies in voltage 
or current levels are key indicators of potential faults. Additionally, 
circulating current analysis, which examines currents circulating 
within the MMC that don't contribute to the output, is a method to 
identify abnormal current patterns.13 Harmonic analysis is another 
widely used technique, involving the scrutiny of harmonic content 
in voltage and current waveforms. Deviations in harmonic levels 
can signal faults.14 Another effective method is model-based fault 
detection, which compares the actual behavior of the MMC to a 
predefined model of normal behavior. Discrepancies between 
actual and predicted behavior serve as indicators of faults.15 Despite 
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their effectiveness, traditional methods have certain limitations. 
They might not detect all types of faults, could be sensitive to noise 
and harmonics, and often require a substantial amount of data for 
comprehensive analysis. These limitations motivate the exploration 
of advanced fault detection techniques that can overcome these 
challenges and enhance the reliability of MMCs in various 
applications.16 

In the quest for more advanced fault detection techniques for 
MMCs, the application of Deep Learning, specifically CNNs, has 
emerged as a promising avenue. Deep learning methods, including 
CNNs, leverage complex neural networks to automatically learn 
intricate patterns and representations from data, eliminating the 
need for explicitly defined rules or models. In the context of 
MMCs, CNNs can be trained on vast datasets encompassing normal 
and faulty operation scenarios, allowing them to discern subtle 
patterns indicative of faults.17 

The advantage of CNNs lies in their ability to handle complex, 
high-dimensional data such as voltage and current waveforms. By 
processing these waveforms through layers of convolutional 
operations, CNNs can capture hierarchical features and 
relationships, making them adept at identifying nuanced fault 
patterns that might escape traditional methods.18 Moreover, CNNs 
excel in generalization, meaning they can apply learned patterns to 
new, unseen data, enhancing their adaptability to diverse fault 
scenarios in MMCs.17 The integration of CNNs into fault detection 
for MMCs represents a paradigm shift towards more automated, 
data-driven approaches. This methodology has the potential to 
overcome the limitations of traditional methods by offering 
improved accuracy, reduced sensitivity to noise, and the capability 
to detect a broader spectrum of faults. As the field of Deep Learning 
continues to evolve, the application of CNNs in MMC fault 
detection holds promise for enhancing the reliability and 
performance of these critical power electronic systems. 

In a report by M. Houchati et.al.19, researchers explored machine 
learning techniques for spotting faults in MMCs. They specifically 
tackled open circuit faults in power switches using Principal 
Component Analysis (PCA), a data-driven method. Despite MMCs 
being popular for high-power tasks, their complexity raises the risk 
of failures, especially in vulnerable parts like power switches. The 
authors W. Jio et.al.20 present a fault diagnosis method for open sub-
module failures in MMCs using a Firefly Algorithm-optimized 
Support Vector Machine (FA-SVM). The method incorporates Fast 
Fourier Transform for fault signal preprocessing and Principal 
Component Analysis (PCA) for dimension reduction and fault 
characteristic extraction. While demonstrating efficacy in fault 
identification and reduced diagnosis time, it's essential to 
acknowledge potential limitations. In a report by W. Xiang et.al.21, 
the authors propose an artificial intelligence (AI)-based protection 
scheme using an artificial neural network (ANN) for fault detection 
in MMC-based DC grids. The existing fault detection methods 
encounter challenges in setting protective thresholds, incomplete 
function, in-sensitivity to high-resistance faults, and vulnerability 
to noise. The AI-based approach employs the transient 
characteristics of DC voltages during faults, utilizing discrete 
wavelet transform for feature extraction and ANN for fault 
identification. C. Wang et. al.22 proposed a fault-diagnosis 

technique for Modular Multilevel Converter with series and parallel 
connectivity that utilizes wavelet transform and support vector 
machines (SVM) for identifying shorted switches. This method is 
particularly designed for the modular multilevel series/parallel 
converter (MMSPC), which introduces increased complexity with 
its series and parallel connectivity, potentially doubling the chances 
of switch failures. By employing wavelet transform for feature 
extraction and SVM for classification, the method demonstrates 
high classification accuracy and robustness. H. Liu et. al.23 
proposed a fault diagnosis technique for short circuit faults in a sub-
module of the MMC that employs wavelet transform and Adaptive 
Neuro Fuzzy Inference System (ANFIS). In the context of MMC, 
which is widely used in medium- or high-power applications, the 
large number of sub-modules increases the probability of failures, 
emphasizing the significance of fault detection and diagnosis. The 
method utilizes wavelet transform to extract fault features from the 
output phase voltage and employs ANFIS for fault identification. 
Notably, this approach does not require additional sensors or 
capacitor voltages for fault diagnosis. It demonstrates high 
accuracy, good generalization, and time-saving characteristics, as 
evidenced by a comparison with the neural network method. 
However, it's essential to acknowledge that ANFIS, like other 
intelligent model-based methods, may have some disadvantages. 
These could include the need for a sufficiently large and diverse 
dataset for effective training, potential challenges in handling 
highly complex or nonlinear fault patterns, and the interpretability 
of the model's decision-making process.  

Indeed, most existing data-driven methods rely on complicated 
signal processing techniques (e.g., signal segmentation) applied to 
the data collected from MMCs, which degrade the performance of 
fault detection methods due to the ignorance of the time 
dependencies among the measured signals. These existing methods 
also require designing effective ensemble techniques to obtain an 
adequate fault detection model.   

To address the research gap in the literature, this paper proposes 
a new 2D DCNN approach for automatically detecting faults in 
modular power converters. Unlike existing data-driven approaches, 
the proposed method includes a preprocessing stage that converts 
the measured signals into a 2D signal, like a 2D image. 
Subsequently, it employs a developed 2DCNN model for automatic 
fault detection and classification in MMCs. This unique feature 
enables automated learning of failure patterns from sensor data and 
detailed modeling of temporal correlations among measured 
signals. It is important to note that the developed DCNN model is 
trained on a dataset containing diverse MMC operating conditions. 
Simulation results on the dataset, as well as real-time evaluation in 
MATLAB Simulink, validate the efficacy of the proposed 
approach. 

OPERATION AND CONTROL OF MMC CONVERTERS 
The mathematical model of the MMC is essential for designing 

control algorithms and understanding the system dynamics. The 
mathematical model should model the relationships between the 
converter's variables and allow for the prediction of its behavior 
under different operating conditions. In this study, we employ a 
single-phase MMC topology that includes 4 cells as shown in 
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Figure 1. The configuration of the MMC is composed of two 
identical arms namely upper " 𝓊𝓊 " and lower " 𝑙𝑙 ". Each arm is 
comprised of " 𝑛𝑛 " identical series submodules which is a half-
bridge converter. Each submodule contains two switches of (IGBT) 
and a capacitor (𝐶𝐶) parallel. Moreover, it has an inductor 𝐿𝐿 and a 
resistance 𝑅𝑅𝑓𝑓  which represents the power losses in each arm. It 
should be noted that the output voltage of each cell has two states: 
0 or capacitor voltage value, depending on the state of the capacitor. 
The state space model for the MMC can be expressed by Eq. (1) 24–

26, in which 𝐸𝐸1 − 𝐸𝐸4 are the voltages across the 4 corresponding 
capacitors. 𝑉𝑉𝑑𝑑𝑑𝑑 is the DC Voltage of the source. 𝐶𝐶 is the capacitor 
of each cell. 𝑅𝑅 and 𝐿𝐿 are resistance and inductor of each arm. 𝐼𝐼𝑑𝑑 is 
the circulating current, and 𝐼𝐼𝑙𝑙 is the load current. 𝐿𝐿𝐿𝐿 and 𝑅𝑅𝐿𝐿 are the 
inductor and resistor of the load. 𝑀𝑀1 −  𝑀𝑀4 are the switching states 
that have a value of either 0 (i.e., off state) or 1 (i.e., on state). It is 
worth mentioning that further details about this studied MMC 
system and its control method have been reported by L. Ben-
Brahim et. al.25 

 

Figure 1: Structure of the modular multilevel converter 

PROPOSED FAULT DETECTION METHOD FOR MMCS 
The field of fault detection in MMCs has undergone a significant 

paradigm shift, embracing deep learning techniques in recent times. 
Crucial for high-power applications such as HVDC transmission 
and renewable energy systems, MMCs necessitate advanced fault 
detection mechanisms.  

Figure 2 presents the proposed fault detection method based 2D 
CNN. The main components of the proposed fault detection are 
data acquisition, data processing, and developing the 2D CNN fault 
detection model. The proposed method demonstrates the ability to 
discern intricate spatial patterns within MMC systems and can 
enhance their adaptability to dynamic operational conditions. 
3.1   The Architecture of the 2D-DCNN Fault Detection 
Model 

The 2D CNN architecture used in this study consists of 
convolutional layer followed by max-pooling layers, with batch 
normalization and ReLU activation used after convolutional layer 
(See Figure 3). The input to the network is a 2D matrix of shape 
(samples, 5, 5000, 1), where "samples" represents the number of 
data samples, "5" represents the number of channels, "5000" 
represents the number of time steps, and "1" represents the number 
of features. 

The first layer of the network is a convolutional layer with 64 
filters of size 2x2 and a stride of 2. This is followed by a max-
pooling layer with a pool size of 1x1. The final layer of the network 
is a fully connected layer with a SoftMax activation function, which 
outputs a probability distribution over the different fault classes.  

 

 

Figure 2: Overview of the proposed fault detection method 

3.2   Data Acquisition of the studied MMC system 
Five channels of measurement were used to collect data for 

standard (no-fault) and 8 various fault conditions (faults). The data 
was recorded for 0.5 seconds afterward the circuit reached a steady-
state situation, which was achieved after five seconds of operation. 
The data were sampled at a frequency of 10 kHz, resulting in a total 
of 5000 samples for each channel. The data was organized into a 
5000x5 matrix, in which each column represents the data for a 
specific channel. The channels of data that were collected include: 

1. Capacitor voltage of Cell1 
2. Capacitor voltage of Cell2 
3. Capacitor voltage of Cell3 
4. Capacitor voltage of Cell4 
5. Differential or circulation current 
The focus of this research is on detecting and identifying faults 

in a 4-cell MMC topology with 8 switches. Note that every cell can 
simulate 2 switch failures, resulting in a number of 8 unique fault 
cases that can be modeled. Because of this, the classifier is faced 
with a nine-class classification issue, in which it must identify and 
detect any defect as soon as it categorizes the raw data as one of the 
fault scenarios. 

The MMC's input voltage frequency was set to 50 Hz, resulting 
in a 20 ms natural period. The incidence time of each fault instance 
during a single input voltage cycle might vary. Hence, the data was 
acquired for 5 separate instant biases (every 5ms from 0 to 20ms) 
considering the normal as well as 8 fault conditions: 𝛥𝛥1=0ms,  
𝛥𝛥2=5ms, …, 𝛥𝛥5=20ms. This means that the normal and every fault 
type were repeated 5 times starting at (5s + 𝛥𝛥i) where i = [1:5]. 

Additionally, the data was collected for different load currents, 
to ensure that the classifier could detect and identify any fault 
occurrence independently of the load current and the time bias. The 
data acquisition was repeated for 10 different load currents: 𝛪𝛪𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑= 
[1:10]A. The main challenge of this research is to detect and 
identify faults in the MMC, independent of the load current and the 
time bias. The parameters of the tested MMC prototype system are 
provided in Table 1. 
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3.3   Fault Classifications and Classes 
In the proposed fault detection and identification (FDI) method, 

the objective is to accurately classify and identify various faults that 
can occur in the 4-cell Modular Multilevel Converter (MMC) 
topology with 8 switches. This problem poses a challenging 
classification task, as there are 8 different fault cases that can be 
simulated, resulting in a total of 9 fault classes. 

Each cell in the MMC topology has the capability to simulate 2 
switch failures, leading to a range of fault cases that can occur. The 
8 fault cases encompass different combinations of switch failures, 
representing various fault scenarios that can potentially impact the 
performance and reliability of the system. These fault cases include: 

1. No Fault: This class represents the normal operation of the 
MMC without any switch failures. It serves as the baseline 
for comparison with the fault cases. 

2. Switch 1 Failure: This class corresponds to a fault case 
where switch 1 in the MMC topology has failed. 

3. Switch 2 Failure: This class represents a fault case where 
switch 2 in the MMC topology has failed. 

4. Switch 3 Failure: This class corresponds to a fault case 
where switch 3 in the MMC topology has failed. 

5. Switch 4 Failure: This class represents a fault case where 
switch 4 in the MMC topology has failed. 

6. Switch 5 Failure: This class corresponds to a fault case 
where switch 5 in the MMC topology has failed. 

7. Switch 6 Failure: This class represents a fault case where 
switch 6 in the MMC topology has failed. 

8. Switch 7 Failure: This class corresponds to a fault case 
where switch 7 in the MMC topology has failed. 

9. Switch 8 Failure: This class represents a fault case where 
switch 8 in the MMC topology has failed. 

As an example, Figure 4 shows the Cell 1 Capacitor Voltage 
plots of the fault classes 1 and 8 for I = 1A, where we can notice 
significant waveform variations. The accurate detection and 
identification of these fault classes are of utmost importance in 
ensuring the reliable operation and performance of the MMC 
system. Detecting faults at an early stage allows for timely 
intervention and preventive measures to mitigate the potential 
consequences of faults, such as equipment damage, system 
malfunctions, safety hazards, and financial losses. 

By accurately classifying and identifying the specific fault cases, 
the FDI method can provide valuable information for maintenance 
and troubleshooting. It enables maintenance personnel to identify 
the exact location and type of fault, facilitating targeted repairs and 
minimizing downtime. Additionally, accurate fault identification  

 

Figure 3:  CNN Model Architecture 

 

 

Figure 4: The Cell Capacitor Voltage plots of the fault classes 1 and 
8 for I = 1A 

aids in enhancing system resilience and fault-tolerant operation, as 
appropriate actions can be taken to isolate faulty components or 
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activate backup systems. Furthermore, reliable fault detection and 
identification contribute to the overall system optimization and 
performance improvement. By proactively addressing faults, the 
FDI method enables the system to operate at its full capacity, 
minimizing energy losses and optimizing system efficiency. This 
has significant implications for various applications of the MMC 
topology, including renewable energy systems, electric vehicle 
charging stations, and high-power electrical grids. 

In summary, the classification and identification of the 8 
different fault cases in the MMC topology represent a critical aspect 
of the proposed FDI method. Accurate fault detection and 
identification enable timely interventions, improve system 
reliability, and contribute to the efficient and optimal operation of 
the MMC system.  

 

Table 1: Parameters of the studied MMC system 

Parameters Values 

Inductor load 𝐋𝐋𝐥𝐥 50mH 

Resistor load 𝐑𝐑𝐥𝐥 19Ω 

Inductor arm 𝐋𝐋 1mH 

Resistor arm R 0 Ω 

Capacitor 𝐂𝐂 1000 µF 

Fundamental frequency 𝐟𝐟 50 Hz 

Sampling frequency 𝐅𝐅𝐬𝐬 10 KHz 

Input Voltage 𝐕𝐕𝐝𝐝𝐝𝐝 150 V 

Reference Current 𝐈𝐈𝐋𝐋𝐋𝐋𝐋𝐋𝐝𝐝𝐋𝐋𝐋𝐋𝐟𝐟 (𝐩𝐩𝐋𝐋𝐋𝐋𝐩𝐩) 3A 

Number of cells per arm 2 

 
3.4   Data Preparation 

In this study, the data preparation process began with 
normalizing the dataset, which consisted of time series 
measurements of 5 channels. These channels include the capacitor 
voltage of each of the four cells in the MMC and the differential 
current. The time series data had 5000 samples in ms. 
Normalization was performed to ensure that all input features were 
on the same scale, which helped to improve the performance and 
convergence of the model. In this study, Min-Max Scaling was 
chosen as the normalization technique. 

Min-Max scaling is a simple and widely used normalization 
method that scales the values of the input features between a range 
of 0 and 1. This is done by subtracting the minimum value of the 
feature from each data point and then dividing it by the range of the 
feature. Mathematically, it can be represented as : 

𝛧𝛧 =
(𝒳𝒳 −𝒳𝒳𝑚𝑚𝑚𝑚𝑚𝑚)

(𝒳𝒳𝑚𝑚𝑙𝑙𝑚𝑚 − 𝒳𝒳𝑚𝑚𝑚𝑚𝑚𝑚) (2) 

Where 𝛧𝛧 is the normalized value, 𝒳𝒳 is the original value, 𝒳𝒳𝑚𝑚𝑚𝑚𝑚𝑚is 
the minimum value and 𝒳𝒳maxis the maximum value of the feature. 

This method is particularly useful when the data is distributed 
unevenly and has extreme values, such as outliers. 

SIMULATION AND EXPERIMENTAL RESULTS 
4.1   Results of the Fault Detection Model 

In this subsection, we provide the results of the proposed fault 
detection model trained of the training dataset mentioned in the 
previous section.  To assess the model's ability to generalize and 
detect faults accurately in practical scenarios, we employ a diverse 
set of data samples from the validation dataset. These samples have 
been carefully withheld during the training and validation phases, 
allowing us to test the model's performance on unseen data. The 
validation data encompasses a wide range of fault cases, offering a 
comprehensive evaluation of the model's real-world applicability. 

Experiments were conducted with varying testing data 
proportions, ranging from 0.1 to 0.9. The testing data proportion 
denotes the ratio of test samples to the total number. Table 2 
provides an overview of the detection accuracy of the proposed 
model. The network's output for fault detection is categorized into 
two types: normal and abnormal (i.e., one of the 8 faults occurs). 
As one can see in Table 2, the detection accuracy of the proposed 
method is 100% at each testing data portion. 

 

Table 2: Faulty detection accuracy 

Testing Data portion Fault detection (%) 
0.1 100 
0.2 100 
0.3 100 
0.4 100 
0.5 100 
0.6 100 
0.7 100 
0.8 100 
0.9 100 
1 100 
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  0 1 2 3 4 5 6 7 8 

0 1.00 0 0 0 0 0 0 0 0 

1 0 0.84 0 0.16 0 0 0 0 0 

2 0 0 1.00 0 0 0 0 0 0 

3 0 0.02 0 0.98 0 0 0 0 0 

4 0 0 0 0 1.00 0 0 0 0 

5 0 0 0 0 0 0.87 0 0.13 0 

6 0 0 0 0 0 0 1.00 0 0 

7 0 0 0 0 0 0.09 0 0.91 0 

8 0 0 0 0 0 0 0 0 1.00 

 

Figure 5: Confusion matrix of the proposed fault detection model 
with 10% of testing data.  The classification accuracy of the model on 
the unseen data is 95.56%. 



A.A. Saleh et. al. 

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2025, 13(6), 1137           Pg  6 

Prediction 
Ac

tu
al

 C
la

ss
 

  0 1 2 3 4 5 6 7 8 

0 1 0 0 0 0 0 0 0 0 

1 0 0.64 0 0.36 0 0 0 0 0 

2 0 0 0.95 0 0.01 0 0.04 0 0 

3 0 0.28 0 0.71 0.01 0 0 0 0 

4 0 0 0 0 0.99 0 0.01 0 0 

5 0 0 0 0 0 0.55 0 0.45 0 

6 0 0 0 0 0 0 0.96 0 0.04 

7 0 0 0 0 0 0.16 0 0.84 0 

8 0 0 0 0 0 0 0 0.01 0.99 

Figure 6: Confusion matrix of the proposed fault detection model 
with 50% of testing data.  The classification accuracy of the model on 
the unseen data is 84.60%. 

Figure 5 presents the confusion matrix that shows the 
classification results of the proposed fault detection model with the 
nine fault classes of the MMC system explained in Section 4. Each 
row in the confusion matrix represents the actual fault class, while 
each column represents the predicted fault class. The values in the 
cells represent the percentage of cases that were classified as a 
particular fault class. Overall, the confusion matrix indicates that 
the model performs well in detecting and identifying faults in the 
MMC system. Specifically, it achieves high accuracy for most of 
the fault classes, with some classes having a slightly lower 
accuracy. For instance, the classification accuracy rates of class 0 
(no fault), 2, 4, and 8 are 100%, while the classification accuracy 
of class 5 (fault in capacitor voltage measurement) is 87%. The 
confusion matrix also shows some misclassifications, where some 
fault classes were incorrectly classified as another class. For 
instance, some cases of class 1 were misclassified as class 3 
(misclassification rate of 16%), and some cases of class 3 were 
misclassified as class 1 (misclassification rate of 2%), a similar 
observations are noted with class 5 and class 7. These 
misclassifications suggest that there may be some similarities or 
overlap between these fault classes, and further investigation is 
needed to improve the model's performance in distinguishing 
between them. Overall, the classification accuracy of the model on 
the unseen data is 95.56%. 
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  0 1 2 3 4 5 6 7 8 

0 1 0 0 0 0 0 0 0 0 

1 0 0.71 0 0.29 0 0 0 0 0 

2 0 0.01 0.95 0 0.01 0 0.03 0 0 

3 0 0.27 0 0.72 0.01 0 0 0 0 

4 0 0 0 0 0.99 0 0 0 0 

5 0 0 0 0 0 0.59 0 0.41 0 

6 0 0 0 0 0 0 0.94 0 0.05 

7 0 0 0 0 0 0.13 0 0.87 0 

8 0 0 0 0 0 0 0 0.02 0.98 

Figure 7: Confusion matrix of the proposed fault detection model 
with 100% of testing data.  The classification accuracy of the model 
on the unseen data is 85.91%. 

 
Figure 8: The fault detection results of the proposed model at 
different testing data ratios. 

Figure 8 shows the performance metrics of the proposed fault 
detection model across varying testing data ratios (0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 0.9 and 1). The open circuit fault detection 
accuracy ranges from 0.846 to 0.955. This provides valuable 
information about the model's ability to correctly identify open 
circuit faults at different testing data ratios. The loss values indicate 
a potential challenge in the model's ability to generalize to unseen 
data, as the loss increases with higher testing data ratios. The 
highest accuracy at a testing data ratio of 0.1 indicates that the 
model performs exceptionally well when a smaller portion of the 
data is used for testing. However, as the testing data ratio increases, 
the accuracy shows a gradual decline, reaching 0.846 at a testing 
data ratio of 0.8. This decline in accuracy may stem from challenges 
in generalization, where the model faces difficulty in adapting to 
new fault patterns not encountered during training. 
4.2   Analyzing the effect of different configurations of the 
proposed model 

This study aims to identify the optimal parameters that result in 
the best fault detection accuracy. By analyzing the results with the 
training and validation datasets, we can draw conclusions about the 
impact of pooling operations on the model's performance and make 
informed decisions regarding the final architecture of the 2D-
DCNN FDI model. 

First, we present the results of the ablation study conducted on 
the 2D-DCNN FDI model by varying the filter size, kernel size, and 
stride. The purpose of this study is to identify the optimal 
configuration of these architectural parameters to achieve the 
highest fault detection accuracy. We performed experiments with 
different combinations of filter size (f), kernel size (k), and stride 
(s) and evaluated their impact on the model's performance using 
both training and validation datasets. To analyze the performance 
of each configuration, we trained the 2D-DCNN FDI model with 
the corresponding parameters and recorded the accuracy and loss 
values for both the training and validation datasets during the 
training process. Figure 9 shows the results of the different 
parameter combinations with training and validation dataset. As 
shown in Figure 9(a) the best accuracy (90%) is achieved with a 
filter size of 64, kernel size of (2, 2), and stride of (1, 1). The highest 
loss (worst combination) is obtained with a filter size of 128, kernel 
size of (2, 2), and stride of (1, 1). Table 3 presents the results of 
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each combination with the validation dataset. As shown, the best 
accuracy (78.89%) is achieved with a filter size of 32, kernel size 
of (3, 3), and stride of (1, 1). 
 

(a) 

(b) 
Figure 9: Results of different combinations of filter size, kernel size, 
and stride with the training and validation dataset (a) Accuracy, and 
(b) Loss. 

Second, we study the impact of different pooling methods on the 
performance the proposed model. Table 4 shows that the proposed 
model achieves the highest accuracies with the “Average” pooling 
method with both training and validation datasets. The 
corresponding training and validation accuracies are 92.44 and 
78.44%, respectively, which are much higher than those of Max, 
GlobalMax, and GlobalAverage pooling methods. 

 
 

Table 3: Analyzing the effect of different combinations of filter size, 
kernel size, and stride on the performance of the proposed model with 
the training and validation datasets 

Filter size, Kernel, Stride 
Training 
Accuracy 

(%) 

Validation 
Accuracy 

(%) 
f:32, k:(2, 2), s:(1, 1) 81.55 76.89 
f:32, k:(2, 2), s:(2, 2) 82.67 76.23 
f:32, k:(3, 3), s:(1, 1) 85.78 78.89 
f:32, k:(3, 3), s:(2, 2) 82.22 51.33 
f:64, k:(2, 2), s:(1, 1) 57.56 75.33 
f:64, k:(2, 2), s:(2, 2) 77.56 76.44 
f:64, k:(3, 3), s:(1, 1) 90.00 76.00 

f:128, k:(3, 3), s:(2, 2) 80.89 69.11 
f:128, k:(2, 2), s:(1, 1) 76.00 55.77 
f:128, k:(2, 2), s:(2, 2) 60.67 25.56 
f:128, k:(3, 3), s:(1, 1) 27.11 74.67 
f:128, k:(3, 3), s:(2, 2) 80.44 72.89 

 

Table 4: Effect of different pooling methods on the performance of 
the proposed model. 

Pooling 
Strategies Max Average GlobalMax GlobalAverage 

Training 
Accuracy 

(%) 
88.22 92.44 18.44 44.22 

Validation 
Accuracy 

(%) 
77.78 78.44 16.22 40.00 

 
Third, we analyze the performance of the 2D-DCNN FDI model 

when varying the activation function type. We experimented with 
five different activation functions: rectified linear unit (ReLU), 
Sigmoid, Tanh, SoftMax, and exponential linear unit (ELU). The 
model's performance was evaluated using both training and 
validation datasets. Table 5 demonstrates that SoftMax and ELU 
obtain the highest accuracy rates of 89.56% with the training 
dataset, while Tanh yields the best accuracy (79.56%) with 
validation dataset. In turn, Sigmoid activation function obtains the 
lowest accuracies with both training and validation datasets, and 
thus it is not recommended for the 2D-DCNN FDI model. 

Fourth, we study the effect of the selection of the optimization 
technique of the performance of the 2D-DCNN FDI. Specifically, 
we experimented with five different optimizers: Adam, SGD 
(Stochastic Gradient Descent), RMSprop, Adagrad, and Adadelta. 
It is found that Adagrad leads to the best performance with the 
training and validation datasets with corresponding accuracies of 
79.11 and 75.33%, respectively. We also experimented with four 
different batch sizes: 2, 4, 8, 16, 32, 64, 128, and 256.  It is found 
that the best performance of the proposed model is attained by a 
batch size of 16, which leads to accuracies of 93.11 and 82.67% 
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with the training and validation datasets, respectively.  
Additionally, we experimented with three different learning rates: 
0.001, 0.01, and 0.1, finding that the best one is 0.01. We 
experimented with five different numbers of epochs: 20, 50, 100, 
150, concluding that training the model up to 100 epochs leads to 
the highest accuracy when compared to the other epoch numbers.    

 

Table 5: Impact of different activation functions on the performance 
of the proposed model. 

Activation 
Functions ReLU Sigmoid Tanh Softmax ELU 

Training 
Accuracy 

(%) 
69.78 55.33 88.00 89.56 89.56 

Validation 
Accuracy 

(%) 
66.67 48.00 79.56 78.22 76.44 

 
Fifth, we present the results of the ablation study conducted on 

the 2D-DCNN FDI model by varying the depth of the CNN model. 
It should be noted that the depth of CNN layers refers to the number 
of layers used in the model architecture, and in this study, we 
experimented with four different configurations: 1, 2, 3, and 4 CNN 
layers. To evaluate the impact of each depth configuration on the 
model's performance, we trained the 2D-DCNN FDI model with 
each setting and recorded the accuracy and loss values for both the 
training and validation datasets during the training process. As 
shown in Table 6, the highest accuracy of the CNN model is 
achieved with 2 layers in the case training dataset, while 3 layers 
leads to the best accuracy with the validation dataset. 

 

Table 6: Impact of different activation functions on the performance 
of the proposed model. 

No. of Layers 1 layer 2 layers 3 layers 4 layers 
Training Accuracy (%) 92.89 95.78 94.89 93.78 

Validation Accuracy (%) 80.22 80.44 81.33 79.11 
 
It was observed that when the model was trained with only 1 

CNN layer, it demonstrated promising performance during the 
training phase. The accuracy and loss values for the training dataset 
indicated that the model was learning well and achieving high 
accuracy on the training data. However, a noticeable difference was 
observed during the validation phase. The model's performance on 
the validation dataset, as reflected by the accuracy and loss values, 
did not match the results seen during training. This discrepancy 
suggests that the model may have overfit the training data when 
using only one layer. Overfitting occurs when a model becomes too 
specialized in learning the training data, leading to poor 
generalization on unseen data. 

In turn, when the model's depth was increased to four CNN 
layers, a distinct improvement was observed in the validation 
performance. The accuracy and loss values for the validation 

dataset showed significant enhancements compared to the one-
layer model. This indicates that the model with four CNN layers 
was better at generalizing and capturing relevant patterns from the 
validation data, resulting in improved fault detection accuracy. The 
discrepancy in performance between the one-layer and four-layer 
models highlights the importance of model complexity and 
capacity. A deeper model with more layers can capture more 
complex patterns and features in the data, making it more adaptable 
to a variety of fault scenarios. However, it is essential to strike a 
balance between model complexity and overfitting. A model with 
too many layers or parameters may become overly complex and 
risk overfitting the training data, which can negatively impact its 
performance on unseen data. 
 
Table 7: Data augmentation options 
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4.3   Analyzing the impact of data augmentation of the 
performance of the proposed model 

Data augmentation is a common approach used to artificially 
increase the size of the training dataset by applying various 
transformations to the original data. Table 7 presents the five 
options of the data augmentation with Gaussian noise used in this 
study. 

Here, we present the results of the ablation study conducted on 
the 2D-DCNN FDI model by applying different data augmentation 
techniques during the training phase. The ablation study results 
show that data augmentation has a positive impact on the model's 
performance, but the improvement is relatively modest. The highest 
accuracy achieved with data augmentation (option 4) was 
approximately 94%, compared to around 93% without data 
augmentation (See Table 8). While data augmentation helps the 
model generalize better to unseen data, it does not lead to a 
significant increase in accuracy. The reason for this observation 
might be that the original dataset was already sufficiently diverse 
to capture the variations in the fault patterns. It is essential to 
carefully select data augmentation techniques based on the specific 
dataset and problem at hand. In this case, Gaussian noise 
augmentation with option 4 provided the best balance between 
improving generalization and preventing overfitting. However, it is 
crucial to consider the potential trade-off between augmentation 
complexity and computational cost, as extensive augmentation may 
increase training time and resource requirements. 
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Table 8: Impact of data augmentation option on the performance of 
the proposed model 

Data 
Aug. 

option 1 option 2 option 3 option 4 option 5 

Training 
Accuracy (%) 

96.22 91.55 92.67 94.00 95.33 

Validation 
Accuracy (%) 

79.55 85.33 81.56 80.67 78.22 

 
4.4   Comparisons 

Table 9 presents a comparison between the proposed fault 
classification model and a 1D-CNN-based model presented in 17. 
The 1D-CNN-based fault detection model is designed to 
incorporate both 1D-CNN architecture and a data segmentation 
process. Following 17, we implemented the 1D-CNN model with a 
segment length of 1000 and overlap of 500. Additionally, majority 
voting is applied to combine the predictions of all data segments to 
obtain a final prediction. As one can see in Table 9, the proposed 
2D-CNN model achieves detection and classification accuracies 6 
and 4% higher than the 1D-CNN model.  Figure 10 shows the 
classification rates of the proposed method and the 1D-CNN 
method with the normal class (1) and the eight fault types (2-9). As 
shown, the proposed method achieves the highest classification 
rates with the normal class (no fault) and with most of fault classes. 

Table 9: Comparison between the proposed and the 1D-CNN 
methods. 

Method Detection Accuracy (%) Classification Accuracy (%) 
Proposed 100 85.91 
1D-CNN 17 94 82.44 

 
Figure 10: Classification rate of the proposed method and the 1D-
CNN method with the normal class (1) and the eight fault types (2-9). 

DISCUSSION 
The proposed method detected every fault (100 % detection) and 

classified most faults correctly (> 85 %), clearly outperforming the 
baseline approach. Converting raw converter signals into compact 
2-D maps allowed the network to capture fault patterns without 
extra signal processing. 

Next, we will deploy the model on a real-time controller (FPGA 
or microcontroller) and test it on a laboratory MMC. We also plan 
to extend the dataset to include ageing-related faults and other 

converter topologies, and to add confidence scores to each 
prediction to aid maintenance scheduling. 

CONCLUSION 
This paper designed a novel fault detection and classification 

method for modular power converters by employing a 2D deep 
CNN approach. Traditional methods relied on complex signal 
processing, such as signal segmentation, which degraded the 
accuracy of the classification model due to the ignorance of 
temporal dependencies among various signals. Additionally, these 
approaches required fine-tuning for a sufficient ensemble 
technique. In turn, the CNN-based approach handles these defects 
by providing a data-driven solution. This unique feature enables the 
automatic learning of fault patterns from sensor data and precise 
modeling of the temporal dependencies among the measured 
signals. Furthermore, a specialized CNN-based fault detection 
system for MMCs was presented by utilizing a dataset containing 
diverse MMC operating conditions. Simulation results on the 
dataset and real-time evaluation in MATLAB Simulink 
demonstrated the efficiency of the proposed approach in 
distinguishing normal and faulty operations. The findings 
emphasized the potential of the proposed approach as a valuable 
tool for enhancing the reliability and performance of MMCs. 
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