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 This study examines the effectiveness of 
various predictive models for estimating 

the remaining useful life (RUL) of low-alloy steel pressure 
vessels subjected to corrosion-induced metal loss. Using API 
579-1/ASME FFS-1 standards, linear, nonlinear (quadratic, 
exponential decay), and chemical models were applied to 
ultrasonic thickness data collected between 2002 and 2008. The 
linear model (max.) provided conservative estimates, predicting 
faster degradation compared to the linear model (avg.), while the quadratic model indicated an accelerating corrosion rate unsuitable for most 
scenarios. Power and logarithmic models suggested negligible thickness changes over time, potentially underestimating real-world corrosion 
risks. The chemical model balanced simplicity and accuracy with moderate degradation predictions. Exponential decay models (max. and avg.) 
demonstrated decreasing corrosion rates over time, with the maximum variant offering more conservative predictions. Results indicated that 
model selection significantly impacts RUL estimates: linear and chemical models are effective for short-term predictions, while exponential decay 
models are more accurate for long-term assessments. Critical sections such as Nozzles A1 and A2 were identified as high-risk areas requiring 
immediate attention. Finite Element Analysis (FEA) is recommended to assess structural integrity further, incorporating stress analysis to guide 
maintenance and repair strategies. This work provides a comprehensive framework for integrating inspection data, predictive modelling, and 
structural analysis to enhance safety and optimise maintenance in high-risk industries. 
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INTRODUCTION 
The general corrosion rate and the remaining life assessment of 

a pressure vessel are some of the main concerns in relation to 
fitness-for-service. Several methodologies and techniques that offer 
a wide overview of parameters on the structural integrity and safety 
operation of pressure vessels have been developed.1 Fitness-for-
Service (FFS) assessments, as outlined in API 579, are commonly 
used to evaluate the mechanical integrity of pressure vessels and 
piping systems. These assessments involve quantitative 
evaluations, often using nondestructive testing methods such as 
ultrasonic thickness testing, to measure wall thickness and calculate 
corrosion rates.2 The corrosion rate, which can vary over time, 
serves as a benchmark for predicting the remaining life of a 

component, allowing for the establishment of inspection intervals 
and maintenance schedules.3 For instance, in a study involving a 
pressure vessel at the Basra Oil Company, ultrasonic testing was 
used to determine wall thickness at multiple locations, leading to a 
calculated remaining life of over 50 years under current conditions.4 
Similarly, the use of finite element analysis in FFS assessments can 
provide detailed insights into the structural impacts of corrosion, 
allowing for more accurate predictions of remaining life and 
necessary safety measures.5 The integration of probabilistic 
approaches in FFS assessments further enhances decision-making 
by evaluating the reliability of components with metal loss, thus 
supporting rational decisions regarding repair or continued 
operation.6 These methodologies not only improve the accuracy of 
life assessments but also help in optimizing maintenance schedules, 
ultimately leading to cost savings and enhanced safety in 
operations.7 

FITNESS FOR SERVICE (FFS) 
Fitness-for-service (FFS) is recognized as a qualitative 

engineering assessment methodology, which is systematically used 
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to evaluate the ongoing operational viability of pressure vessel 
equipment or, conversely, to ascertain the necessity for its 
retirement from service.8 In the year 2000, the American Petroleum 
Institute (API) took a significant step by publishing the API 579 
document, which subsequently laid the groundwork for the 
endorsement of the fitness-for-service evaluation protocols.9 
However, in a collaborative effort in 2007, the American Society of 
Mechanical Engineers (ASME) joined forces with API to create a 
new standardized document that delineates the FFS method; this 
document is now commonly referred to as API 579-1/ASME FFS-
1. The assessment focused on the structural integrity of pressure 
vessel components that are subjected to local hot spots, and this 
evaluation adopted a variation of plasticity theory to better 
understand the implications of thermal stress.10 Furthermore, to 
facilitate the quantification of the remaining strength of pressure 
vessels, an empirical formula known as the Remaining Strength 
Factor (RSF) was proposed, which utilizes decay shell length as a 
critical parameter for identifying reference volumes necessary for 
this assessment.11 

This work aims to provide an explanation of the procedures 
involved in assessing local metal loss, specifically focusing on the 
methodologies outlined in the API/ASME FFS standard and 
incorporating numerical validation analysis and finite element 
analysis results that are pertinent to the overall assessment of 
fitness-for-service.1213 The API 579/ASME FFS-1 standard is a 
widely used methodology for conducting FFS assessments, 
providing a structured approach to evaluating equipment integrity 
under various damage mechanisms.13 

The primary intent of conducting a fitness-for-service 
assessment is to systematically evaluate the functionality and 
integrity of numerous structural components, including but not 
limited to pressure vessels, storage tanks, and piping systems, to 
ascertain their safety and suitability for continued operational 
use in an industrial setting.13 This process not only involves a 
meticulous examination of the current state of these assets but also 
requires a thorough analysis of their anticipated reliability and 
performance over a predetermined duration, such as the timeframe 
leading up to the next scheduled maintenance shutdown, thus 
ensuring that any potential risks are identified and mitigated 
proactively.1415 Furthermore, such assessments allow stakeholders 
to make well-informed decisions regarding the operational status of 
their equipment, allowing them to determine whether to continue 
operation, initiate repairs, modify the equipment's rating, 
implement alterations, or ultimately decommission the assets, while 
also evaluating the remaining operational lifespan of the equipment 
to strategically plan future inspection intervals and effectively 
manage budgeting for associated capital expenditures, thereby 
minimizing downtime and enhancing the efficiency of any 
necessary remediation efforts, all while obtaining specialized 
recommendations regarding any corrective actions that may be 
warranted.716 

FFS assessments are typically conducted at multiple levels, with 
increasing complexity and data requirements at each level. For 
instance, Level 1 assessments involve basic screening using tables 
and screening curves, while Level 2 and Level 3 assessments 

involve more detailed analyses and advanced engineering 
calculations. These assessments are crucial for maintaining asset 
integrity and optimizing maintenance costs in industries such as oil 
and gas.17 

ASSESSMENT TECHNIQUES 
The assessment of local metal loss is organized into a series of 

systematic steps that include data collection, analysis, and 
evaluation against established acceptance criteria. The following 
techniques are commonly used: 

A. Data Collection 
Accurate measurement of wall thickness is paramount in 

assessing local metal loss. Techniques such as ultrasonic testing 
(UT) and radiographic inspection are frequently utilized to obtain 
precise data on the extent and depth of material loss. These methods 
help in identifying the extent of metal loss, which is crucial for 
further analysis.18 

B. Level 1 Assessment 
Level 1 assessment focuses on whether the local metal loss 

condition exceeds predefined limits based on empirical data and the 
standard code API 579-1. If it passes this preliminary assessment, 
further evaluations may be warranted. Level 1 assessment depend 
on simplified criteria to determine if more detailed assessment is 
needed.8 

C. Evaluation Methodology  
The below flowchart clarifies the methodology for evaluating the 

equipment condition 
 
 

Figure 1. Fitness for service evaluation assessments levels   
 
To connect the gap between the theoretical basis and the practical 

application, this section transitions from the methodology to a 
detailed case study. The methodology outlined gives the basis for 
understanding the predictive models used in assessing the 
remaining useful life (RUL) of pressure vessels, including linear, 
nonlinear, and chemical approaches developed to tackle corrosion-
induced degradation. The following case study includes the 
mentioned models to evaluate the structural integrity of a carbon 
steel pressure vessel under corrosion. This practical example not 
only validates the theoretical concepts but also focuses on the 
challenges of ensuring pressure vessel operation safety in industrial 
environments. 
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CASE STUDY 
A case study of a corroded horizontal pressure vessel 

manufactured from low-alloy steel. Non-destructive Examination 
(NDE) and Ultrasonic Testing (UT) were used to inspect a 
horizontal pressure vessel over a four-year period from 2002 to 
2008, focusing on determining the thickness values at 24 different 
inspection points. The UT technique involved continuous 
measurements of these predefined grid points, ensuring accurate 
and detailed data collection, as illustrated in Figure 2 and 
summarized in Table 1. 

 

Figure 2. Vessel inspection points 
 
 Table 1 Vessel thickness readings 

Inspection 
Points 

Year/ thickness value (mm) 
2002 2004 2006 2008 

1 11.5 11.4 11.2 11.1 
2 11.6 11.5 11.3 11.3 
3 16.2 16 15.9 15.9 
4 16.2 16 15.9 15.9 
5 16.1 15.7 15.6 15.5 
6 16 16 16 15.9 
7 16.2 16.1 16 15.9 
8 16 15.5 15.4 15.3 
9 9.6 9.5 9.4 9.3 
10 8.7 8.6 8.5 8.5 
11 11 11 10.8 10.8 
12 8.3 8.2 7.9 7.9 
13 11.4 11.3 11.3 11.2 
14 9.5 9.5 9.4 9.3 
15 9.7 9.5 8.9 8.6 
16 11.5 11.2 11.2 11.1 
17 11.3 11.2 11.1 10.8 
18 11.9 11.6 11.5 11.4 
19 16.2 16.1 15.9 15.8 
20 15.9 15.6 15.5 15.4 
21 16 15.9 15.7 15.6 
22 60 59.7 59.6 59.5 
23 60 59.5 59.4 59.3 
24 60 59.8 59.7 59.5 

 
Each inspection point was accurately monitored from 2002 to 

2008, with thickness readings recorded annually to track material 
degradation due to corrosion. For instance, Inspection Point 1 
showed a gradual decrease in thickness from 11.5 mm in 2002 to 

11.1 mm in 2008, while other points, such as Points 22, 23, and 24, 
demonstrated more significant variations, starting at 60 mm and 
reducing to approximately 59.3–59.5 mm by 2008. Using the 
collected data, the corrosion rate for different sections of the vessel 
was calculated using the formula Corrosion Rate (mm/yr) =ΔT/t, 
where ΔT represents the change in thickness (mm) and t the time 
period of observation (years). Based on the analysis, the average 
corrosion rate across all inspected areas was determined to be 0.065 
mm/year, while the maximum corrosion rate reached up to 0.15 
mm/year, showing localized areas of accelerated degradation. 

MATHEMATICAL MODELS FOR CORROSION PREDICTION IN 
PRESSURE VESSELS 

The assessment of remaining useful life (RUL) for pressure 
vessels is a critical task to ensure their safe and reliable operation, 
particularly in environments prone to corrosion-induced 
degradation. To address this challenge, mathematical models have 
been developed to predict the rate of material loss over time, 
enabling engineers to make informed decisions regarding 
maintenance, inspection, and replacement schedules.19 Among 
these models, linear and nonlinear approaches are widely used due 
to their ability to capture varying degrees of complexity in 
corrosion behaviour.20 

A. Linear models 
Linear corrosion rate models, assume a constant rate of material 

loss over time, making them simple and suitable for short-term 
predictions or scenarios where corrosion rates remain fairly 
stable.21 These models rely on basic equations like 
Remaining Thickness=T0−CR⋅t, where T0 is the initial thickness, 
CR is the corrosion rate, and t is time. While linear models 
provide quick estimates, they often fail to account for real-world 
complexities, such as variations in environmental conditions or 
non-uniform corrosion patterns.22 

In contrast, nonlinear models are essential for capturing the 
complexities of corrosion behavior, particularly in scenarios where 
corrosion rates vary over time. The quadratic model 
(y=a⋅t^2+b⋅t+c) is used to represent accelerating corrosion, making 
it suitable for situations where degradation increases with time. 
This type of model is particularly relevant in environments where 
the corrosion rate accelerates over time due to factors like increased 
exposure to corrosive substances.23 

B. Power model 
The power model (y=a⋅t^b) describes exponential increases in 

corrosion, reflecting environments where degradation accelerates 
rapidly, which may be critical in high-corrosion environments such 
as chemical plants or marine structures. This model is effective in 
capturing the rapid degradation observed in such environments, 
where the corrosion rate can significantly impact structural 
integrity. Studies have shown that nonlinear models like the power 
model are crucial for predicting corrosion in complex 
environments, where linear models may not accurately capture the 
dynamics of degradation.24 

C. Logarithmic model 
The logarithmic model (y=a⋅ln(t)+b) accounts for slower 

corrosion rates as time progresses, ideal for cases where 
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degradation slows down over extended periods, as seen in certain 
materials that develop protective oxide layers over time. This model 
is beneficial for predicting long-term corrosion behaviour in 
materials that exhibit self-limiting corrosion processes.25 For 
instance, probabilistic models of corrosion have been developed to 
account for the stochastic nature of pitting corrosion, which often 
follows a logarithmic trend.26 

D. Exponential Decay model 
The exponential decay model (y=T0⋅e^(-kt)) reflects decreasing 

corrosion rates, providing accurate predictions for scenarios where 
material loss diminishes over time, offering balanced predictions 
for long-term assessments.27 This model is particularly useful in 
situations where protective coatings or environmental changes lead 
to reduced corrosion rates over time. Nonlinear models, such as 
those proposed for AC-induced corrosion and corrosion fatigue, 
demonstrate the importance of accounting for the complex 
interactions between environmental factors and material 
degradation.28 

Both linear and nonlinear models play essential roles in fitness-
for-service (FFS) evaluations, which are governed by standards 
such as API 579-1/ASME FFS-1 (2016). These standards 
emphasize the importance of selecting appropriate models based on 
the specific conditions and time horizons of interest. Furthermore, 
advancements in computational tools and experimental techniques 
continue to enhance the accuracy and applicability of these models, 
paving the way for improved life assessment methodologies.29 The 
following section was selected as a base for conducting the linear 
and nonlinear models as per Figure 3. 

Figure 3. Pressure Vessel Section 1 
 

Table 2 Pressure vessel section 1 thickness 
Inspection 
Points 

Year/thickness value (mm) 
2002 2004 2006 2008 

1 11.5 11.4 11.2 11.1 
2 11.6 11.5 11.3 11.3 
18 11.9 11.6 11.5 11.4 

 
Mathematical models are applied to predict the thickness of a 

material over time under corrosion. These models include both 
linear and nonlinear approaches for two different corrosion rates: 
CR=0.065 mm/year and CR=0.15 mm/year. The choice of model 
depends on whether the corrosion process is assumed to occur at a 
constant rate (linear) or if it varies with time (nonlinear). Each 
model is derived and presented below, along with its significance. 

 

INSPECTION-BASED MODELS 
A. Linear Model 

The linear mathematical model is a straightforward and widely 
used approach for predicting the remaining life of pressure vessels 
based on uniform corrosion rates.30 In this case, two linear models 
are considered: one for the average corrosion rate of 0.065 mm/year 
and another for the maximum corrosion rate of 0.15 mm/year. The 
general equation for the linear model is expressed as 

 T(t) = T0 − CR. t    [1] 
 
where T0 represents the initial thickness, CR is the corrosion 

rate, and t is the time. This model assumes that the material 
thickness decreases uniformly over time at a constant rate, making 
it particularly suitable for scenarios where corrosion progresses 
consistently without significant variation. 

For this analysis, the initial thickness (T0) is assumed to be 
11.5mm as per table 1. The equations for the linear model are 
derived based on the given corrosion rates: 

 
• For the average corrosion rate of 0.065 mm/year, the 

equation is 
Tavg(t) = 11.5 − 0.065. t   [2] 
• For the maximum corrosion rate of 0.15 mm/year, the 

equation is 
Tmax(t) = 11.5 − 0.15. t   [3] 
 

B. Non-Linear models 
Nonlinear models are essential for capturing the complexities of 

corrosion behavior, particularly in scenarios where corrosion rates 
vary over time. The following models will be used. 

The quadratic model (y=a⋅t^2+b⋅t+c) is used to represent 
accelerating corrosion, making it suitable for situations where 
degradation increases with time.31 The power model (y =a⋅tb) 
describes exponential increases in corrosion, reflecting 
environments where degradation accelerates rapidly, which may be 
critical in high-corrosion environments such as chemical plants or 
marine structures. The logarithmic model (y=a⋅ln(t)+b) accounts 
for slower corrosion rates as time progresses, ideal for cases where 
degradation slows down over extended periods, as seen in certain 
materials that develop protective oxide layers over time.  

The exponential decay model T(t)=T0e−kt, where k is the decay 
constant that controls the rate of thickness loss, the decay constant 
k is related to the corrosion rate (CR) through the following 
relationship: 

CR=ΔT/Δt,  
ΔT=T0−T (∞), 
ΔT is the total thickness lost over the total time Δt 
 
The model reflects decreasing corrosion rates, providing 

accurate predictions for scenarios where material loss diminishes 
over time, offering balanced predictions for long-term 
assessments.32 Together, these nonlinear models offer more precise 
and flexible assessments of remaining life compared to linear 
approaches, especially for long-term predictions or complex 



M. Pascal et. al. 

 

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2025, 13(6), 1136           Pg  5 

environmental conditions, as highlighted in comparative studies of 
pressure vessel life assessment methodologies. 

CHEMICAL CORROSION RATE MODEL 
Corrosion is a complex electrochemical process that leads to the 

degradation of metallic materials when they come into contact with 
their environment. This process involves the transfer of electrons 
from metal atoms to suitable electron acceptors, such as oxygen or 
acids, often facilitated by water acting as a medium for ion 
transport.33 The rate at which corrosion occurs is influenced by a 
variety of factors, including material properties, environmental 
conditions, and external influences such as temperature, pH, ion 
concentrations, flow velocity, and microbial activity.34 

Accurate prediction of corrosion rates is crucial for designing 
durable structures, ensuring safety, and optimizing maintenance 
schedules in industries such as oil and gas, water treatment, and 
infrastructure development.35 Electrochemical techniques, 
including polarization diagrams and impedance measurements, are 
commonly used to analyse and predict corrosion processes. 
Understanding the detailed electrochemical mechanisms and the 
effects of environmental factors on corrosion kinetics is essential 
for developing effective corrosion prevention strategies.36 

To model corrosion rates, empirical equations based on the 
Arrhenius relationship and modified by environmental factors are 
widely used.37 These models incorporate key parameters such as 
activation energy (Ea) for moderate aggressive water, pre-
exponential factor (K), and correction factors for pH, dissolved 
oxygen, chloride concentration, pressure, flow velocity, and 
microbial activity. For instance, the general form of the corrosion 
rate equation can be expressed as: 

 

CR = K. e�
Ea
RT�. f(pH). f(ion concentration) ⋅ f(pressure) ⋅

f(flow) ⋅ f(MIC)    [4] 
 
where CR represents the corrosion rate, R is the universal gas 

constant, T is the absolute temperature, and the various f terms 
account for specific environmental influences. In the context of 
low-alloy steel, commonly used for pipelines and structural 
applications, understanding the impact of water environments is 
particularly important. Water systems often contain dissolved 
oxygen, chlorides, sulfates, and other ions that accelerate corrosion 
processes. Additionally, microbiologically influenced corrosion 
(MIC) caused by sulfate-reducing bacteria (SRB) or iron-oxidizing 
bacteria (IOB) can significantly enhance localized corrosion rates. 
Flow velocity also plays a crucial role by affecting mass transfer 
rates and oxygen availability at the metal surface. A detailed 
comparison has been made comparing the proposed model to other 
models used for corrosion rate prediction based on several factors 
in Table 3. 

The following equations to calculate the corrosion rate of low-
alloy steel 09G2S with an industrial water environment inside the 
vessel, the environmental conditions for the chemical model are 
assumed constant over the study period, based on average field 
measurements, validated against LPR data to ensure accuracy. The 
below table includes the operating parameters and water analysis as 

per the operating conditions and project specifications as per Table 
4.  

 
Table 4 Input Data 

Parameter Symbol Value Unit 
Temperature T 60 °C 
pH pH 5.5 - 
Chloride 
Concentration 

[Cl⁻]  150 mg/L 

Dissolved Oxygen [O₂] 8 mg/L 
Sulfate 
Concentration 

[SO₄²⁻]  50 mg/L 

Pressure P 10 bar 
Flow Velocity v 2.0 m/s 
Activation Energy Ea 6x104 J/mol 
Pre-exponential 
Factor 

K 6x106 mm/year 

Microbial Activity 
Factor 

f(MIC) 3  

 
1.Arrhenius equation37 

CR = K. e�
Ea
RT�     [5] 

 
where E is Eaeffective activation energy, R gas constant, K Pre-

exponential Factor and T the temperature 
 

2.pH-Dependent Factor f(pH): 
 
For mildly acidic (industrial) water with a pH of 5.5: 
f(pH) = 1 + α ⋅ (pH − 7)2   [6] 
 
Where α is the pH coefficient  
 

3.Ion Concentration Factor f (ion concentration): 
 

f(ion concentration) = 1 + β ⋅ [O2] + γ ⋅ [Cl] + ζ ⋅ [SO42] 
    [7] 

Where: β is the Oxygen Coefficient, γ Chloride Coefficient, ζ 
Sulfate Coefficient. 

  
4.Pressure-Dependent Factor f(pressure): 

At a pressure of 10 bar 
f(pressure) = 1 + δ ⋅ (P − 1)   [8] 
 
Where: δ is the Pressure Coefficient 
  

5.Flow Velocity Factor f(flow): 
For a moderate flow velocity of 2 m/s: 
f(flow) = 1 + ϵ ⋅ vf    [9] 
 
Where: ϵ is the Flow Coefficient  
 

6.Microbial Activity Factor f(MIC): 
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Assuming moderate microbial activity 
 

𝐶𝐶𝐶𝐶 = 𝐾𝐾. 𝑒𝑒�
𝐸𝐸𝑎𝑎
𝑅𝑅𝑅𝑅�.𝑓𝑓(𝑝𝑝𝑝𝑝).𝑓𝑓(𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑒𝑒𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖) ⋅ 𝑓𝑓(𝑝𝑝𝑐𝑐𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑒𝑒)

⋅ 𝑓𝑓(𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓) ⋅ 𝑓𝑓(𝑀𝑀𝑀𝑀𝐶𝐶) 
 
CR = 0.074 mm/year 
 
The proposed corrosion rate model values were consistent with 

existing literature, which reports similar corrosion rates for mild 

steel in water environments. To validate the model, the corrosion 
of steel in the permeates was benchmarked against the corrosion of 
steel in industrial water used in daily refinery operations. Using the 
linear polarization resistance (LPR) method, the corrosion rate of 
steel in the permeates was found to range from 0.053 ± 0.006 mm/y 
to 0.123 ± 0.011 mm/y under aerated conditions, demonstrating a 
comparable corrosion behavior to that observed in the refinery's 
industrial water.38 Future studies could incorporate dynamic 
environmental data to enhance model robustness, especially for 
long-term predictions. 

Table 3: Chemical Prediction Models Comparison  
Feature Proposed 

Chemical Model  
Linear 
Regression 
Model 

Empirical Models Arrhenius-
Based Model 

Machine 
Learning 
Models 

Non-Linear 
Exponential 
Decay Model 41 

Polynomial 
Regression 
Model 42 

Mathematical 
Basis 

Combines 
Arrhenius 
equation with 
functional 
dependencies for 
pH, ion 
concentration, 
pressure, flow, 
MIC, etc.  

Assumes a linear 
relationship 
between 
corrosion rate 
and time [first-
order 
approximation] 43 

Derived from 
experimental 
data; uses 
polynomial, 
power-law, or 
exponential 
relationships [env
ironment 
specific] 4445 

Based on the 
Arrhenius 
equation to 
model 
temperature-
dependent 
reaction rates 46 

Uses algorithms 
like ANN, 
decision trees, 
or SVMS [data-
driven 
approach] 4748. 

Based on 
exponential 
decay to model 
corrosion rate as 
a function of pH 
and immersion 
time. 

Uses polynomial 
equations (e.g., 
quadratic) to fit 
non-linear 
experimental 
data. 

Key Equation CR=K.e^((E_a/RT
)). F(pH). F (ion 
concentration) 
⋅f(pressure)⋅f(flow
)⋅f(MIC) 

CR=β0+β1t+ϵ  CR=a⋅tb or CR=a⋅
e−bt. 

CR=A⋅e−rtea, 
where A is the 
pre-exponential 
factor 49 

No fixed 
equation; 
depends on 
training data 
and algorithm 
(e.g., ANN 
weights). 

CR=a⋅e−bt+u, 
where u account
s for random 
error. 

CR=a⋅t2+b⋅t+c 

Independent 
Variables 

Temperature (T), 
pH, Ion 
concentration, 
Pressure, Flow, 
MIC Factors 

Time (t) Time (t) 
Environmental 
factors (e.g., pH, 
chloride 
concentration). 

Temperature 
(T) 

pH, 
temperature, 
pressure, flow 
velocity, 
material 
properties. 

pH of medium  
 Immersion time 
(t). 

 Time (t) 
Operational 
parameters (e.g., 
flow rate, 
pressure). 

Input 
Parameters 

Material properties 
(K ,Ea), 
environmental 
factors (pH, ions, 
MIC), operational 
factors. 

Minimal: initial 
thickness, time, 
and material 
loss 50. 

Experimentally 
derived constants 
(e.g., a, b) for 
specific 
environments. 

Activation 
energy (Ea), 
temperature 
(T), and pre-
exponential 
factor (A). 

Large datasets 
with features 
like pH, 
temperature, 
and material 
properties [high
-dimensional]. 

A,b,u (from 
experimental 
fitting), 
immersion time, 
pH. 

A,b,c (polynomi
al coefficients), 
operational 
parameters (e.g., 
flow rate). 

Accuracy High: Captures 
complex 
environmental 
interactions and 
effects accurately. 

Moderate: 
Suitable for 
stable 
environments but 
fails in dynamic 
conditions. 

Moderate to High: 
Depends on 
experimental data 
quality. 

Moderate: 
Accurate for 
temperature-
driven 
reactions only. 

Very High: 
Captures non-
linear 
relationships 
and variable 
interactions. 

High: Effective 
for systems 
following 
exponential 
decay trends. 

High: Captures 
non-linearities 
but risks 
overfitting 
without 
validation. 

Data 
Requirements 

Extensive: 
Requires detailed 
environmental and 
operational 
parameters as 
inputs. 

Minimal: Time-
series thickness 
measurements. 

Moderate: 
Experimental data 
for specific 
environments/mat
erials. 

Minimal: 
Requires 
temperature 
and activation 
energy. 

High: Diverse 
datasets 
(lab/field) for 
training. 

Moderate: pH 
and immersion 
time data. 

Moderate: 
Operational 
parameters (e.g., 
flow rate, 
pressure). 

Predictive 
Capability 

Excellent for 
dynamic 
environments with 
multiple 
interacting factors 
(e.g., oil & gas 
pipelines). 

Suitable for 
short-term 
predictions in 
stable conditions 
but inaccurate 
over long periods 
or dynamic 
settings. 

Good within the 
range of 
experimental 
conditions but 
poor extrapolation 
outside those 
ranges 

Limited to 
systems where 
temperature is 
the dominant 
factor 
influencing 
corrosion rates. 

Excellent for 
complex 
systems with 
non-linear 
relationships 
but depends 
heavily on 
dataset quality 

Excellent for 
predicting 
corrosion in 
acidic 
environments 
for materials 
like mild steel, 
with limited 
data 

High Predictive 
Capability in 
specific 
environments, 
but can be 
unstable if not 
properly applied 
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MATHEMATICAL MODELS RESULTS  
The results of the inspection-based model and chemical-based 

model are illustrated in Figure 4 

Figure 4. Models output 
 
• The Linear Model (Max.) predicts more rapid degradation 

compared to the Linear Model (Avg.), reflecting a conservative 
estimate. 

• Quadratic Model: Shows accelerating degradation, with the 
remaining thickness decreasing rapidly after 2020. 

• Power Model and Logarithmic Model: Predicts almost no 
change in thickness over time, suggesting minimal corrosion. 
This may not reflect real-world scenarios where corrosion rates 
typically increase or decrease. 

• Chemical Model: Combines aspects of both linear and 
nonlinear models, showing moderate degradation over time. 
Provides a balance between simplicity and accuracy. 

• Exponential Decay Models (Average and Maximum): Show 
decreasing corrosion rates over time, with the remaining 
thickness approaching a stable value. The exponential decay 
(max.) model provides a more conservative estimate, predicting 
lower remaining thickness compared to the average model. 

 
Remaining Life Assessment: Thickness Approach 
The remaining life of a component can be determined based upon 

computation of a minimum required thickness for the intended 
service conditions.8  The results are shown in Figure 5 for corrosion 
rate values and Figure 6 for remaining life for each model. 

 
𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 𝐥𝐥𝐑𝐑𝐥𝐥𝐑𝐑  = 𝐓𝐓𝐑𝐑𝐑𝐑𝐓𝐓𝐑𝐑𝐑𝐑𝐥𝐥 −  𝐓𝐓𝐑𝐑𝐑𝐑𝐑𝐑

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐑𝐑𝐂𝐂𝐑𝐑 𝐑𝐑𝐑𝐑𝐓𝐓𝐑𝐑
   [10] 

 
𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐑𝐑𝐂𝐂𝐑𝐑 𝐑𝐑𝐑𝐑𝐓𝐓𝐑𝐑 = 𝐓𝐓𝐑𝐑𝐑𝐑𝐓𝐓𝐑𝐑𝐑𝐑𝐥𝐥 −  𝐓𝐓𝐑𝐑𝐑𝐑𝐑𝐑

𝐘𝐘𝐑𝐑𝐑𝐑𝐂𝐂𝐂𝐂
    [11] 

Where: 
T initial: Initial thickness measured of the material (mm). 
T min: Minimum allowable thickness (mm) 
CR: Corrosion rate (mm/year). 

Figure 5. Corrosion Rate Comparison (2020 vs 2030) 

Figure 6. Remaining Life Comparison (2020 vs 2030) 
 
The selection of model significantly impacts the estimated 

remaining useful life (RUL). For short-term assessments, linear and 
chemical models are suitable, while for long-term predictions, 
exponential decay and chemical models offer better accuracy. 
Conservative estimates, particularly important for critical systems, 
can be achieved using the linear model (max.) or exponential decay 
(max.). The quadratic model predicts rapid failure, making it 
unsuitable for most scenarios unless accelerating corrosion is 
confirmed. Power and logarithmic models may overestimate 
remaining life in environments with significant corrosion. 

INSPECTION-BASED MODELS 
To further validate the accuracy of the inspection-based models 

(linear model avg., linear model max., exponential decay avg., and 
exponential decay max.), a comparative analysis was conducted 
using thickness measurement data from three pressure vessels over 
the period from 2006 to 2011, as reported in the  pervious study.39 
The validation focused on comparing the predicted thickness values 
from each model against the actual measured thickness data as per 
Figure 7,with the total absolute error used as the metric for accuracy 
as per Figure 8. 

 
Validation Results 

a. Vessel 1: 
The linear model (max.) outperformed all other models, 
achieving the lowest total absolute error of 0.11. This suggests 
that the linear model (max.) is particularly effective for vessels 
exhibiting higher corrosion rates or more aggressive degradation 
patterns. 
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Figure 7. Inspection based models’ validation 

Figure 8. Models Mean absolute error 
 

b. Vessel 2: 
Both the linear model (avg.) and exponential decay model 
(avg.) performed equally well, with the lowest total absolute error 
of 0.24. This indicates that these models are suitable for vessels 
with moderate and consistent corrosion behaviour. 

c. Vessel 3: 
The exponential decay model (max.) provided slightly better 
predictions than the other models, with the lowest total absolute 
error of 0.255. This demonstrates the model’s ability to capture 
more complex corrosion dynamics, particularly in environments 
where corrosion rates vary over time. 
 
Overall Findings: 
• The validation results highlight that the accuracy of the 

models varies depending on the vessel and its specific 
corrosion behaviour. 

• The linear model (max.) and exponential decay model 
(max.) tend to provide more accurate predictions in most 
cases, particularly for vessels with higher or accelerating 
corrosion rates. 

• These findings align with the conclusions drawn from the 
case study, further reinforcing the importance of selecting 
the appropriate model based on the operational conditions 
and corrosion characteristics of the vessel. 

• For short-term assessments or vessels with stable 
corrosion rates, the linear model (avg.) and exponential 
decay model (avg.) are suitable choices due to their 
simplicity and reasonable accuracy. 

• For long-term predictions or vessels with more 
aggressive corrosion behaviour, the linear model 
(max.) and exponential decay model (max.) are 
recommended, as they provide more conservative and 
accurate estimates. 

LEVEL 1 ASSESSMENT FOR THE VESSEL 
In evaluating the corrosion rate across the entire vessel's different 

sections, two distinct models will be applied: the linear model and 
a nonlinear model (excluding quadratic, power, and logarithmic 
models). The analysis will utilize specific corrosion rate values as 
outlined below. For the linear model and nonlinear model, the 
following corrosion rate values will be used: 

• Linear model max. with corrosion rate: 0.15 mm/year 
• Exponential Decay model maximum will be used with the 

corrosion rate (0.15 mm/year) to calculate the decay 
constant in the exponential decay model. 

 
A. Step 1 Determine the minimum required shell wall 

thickness at the circumferential and longitudinal planes. 
 

𝐓𝐓𝐑𝐑𝐑𝐑𝐑𝐑𝐜𝐜 =  𝐏𝐏 𝐑𝐑
(𝐒𝐒𝐒𝐒−𝟎𝟎.𝟔𝟔𝐏𝐏)

    [12] 

 
𝐓𝐓𝐑𝐑𝐑𝐑𝐑𝐑𝐋𝐋 =  𝐏𝐏 𝐑𝐑

(𝟐𝟐𝐒𝐒𝐒𝐒+𝟎𝟎.𝟒𝟒𝐏𝐏)
         [13] 

 
The minimum wall thickness calculations for other vessel 

sections (nozzles, head, etc.) are as per pressure vessel design code 
ASME Section VIII and API 579-1 Annex 2C. 

 
B. Step 2: Remaining Thickness Ratio 

 
Minimum Required Thickness 
 
𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = max (tminc , tminL  )   [14] 
 

C. Step 3: Level 1 Acceptance criteria for Minimum 
Measured Thickness 

 
𝑐𝑐𝑚𝑚𝑚𝑚 − 𝐹𝐹𝐶𝐶𝐹𝐹 ≥ max [0.5𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚, 𝑐𝑐lim]  [15] 
 
𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 =  max (tminc , tminL  )   [16] 
 
𝑐𝑐lim = max  [ 0.2𝑐𝑐𝑚𝑚𝑛𝑛𝑚𝑚 , 2.5 mm]  [17] 
 

Use the formula for future corrosion allowance (FCA), which is 
typically the product of the corrosion rate and the future service 
period.40 

FCA=Corrosion Rate x Future Service Period [18] 
 

D. Step 5 Calculating remaining life  
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Where: 
 

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐  

Minimum Thickness At 
The Circumferential 

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚
𝐿𝐿  

Minimum Thickness 
At The Longitudinal 

P Design pressure 𝑐𝑐𝑚𝑚𝑚𝑚 
Minimum thickness 
reading 

Rc Pressure Vessel Radius FCA 
Future Corrosion 
Allowance 

S 
Material allowable 
stress 

𝑐𝑐lim Limiting thickness 

E Weld efficient factor 
T 
initial 

Thickness reading of 
the material (mm). 

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 
Minimum Required 
Thickness 

CR 
Corrosion Rate 
(mm/year). 

 
E. Final Results 

The results for the linear model and the exponential decay 
model are illustrated in table 5 and table 6 

RESULTS ANALYSIS 
Both models consistently identify Nozzles A1 and Nozzles A2 

as critical sections requiring attention, though the exponential 
decay model predicts slightly longer remaining lives for these 
sections compared to the linear model. 

The exponential decay model provides more realistic predictions 
for sections with non-linear corrosion behaviour, while the Linear 
Model offers simplicity and ease of use for stable corrosion trends. 

The analysis highlights the need for action on Section 5 and 
Nozzles A1 and A2, which are at risk of failure due to corrosion. 
Finite Element Analysis (FEA) is recommended to further evaluate 
the structural integrity of these components and guide mitigation 
efforts. By incorporating corrosion effects and stress analysis, FEA 
will provide a comprehensive understanding of the risks and 
support informed decision-making for maintenance and repair. 

LEVEL 3 ASSESSMENT: FINITE ELEMENT ANALYSIS (FEA) 
Level 3 assessments involve detailed stress analysis techniques 

to assess components with general or local metal loss. These 
advanced methods are crucial for evaluating the integrity of 
pressure vessels, piping, and tanks under various loading 
conditions.11 In the case of the Level 3 analysis, methods for 
numerical stress analysis, such as the finite element analysis (FEA), 
are preferred to ensure accurate evaluation of the remaining 
strength. Using FEA, the limitations associated with Level 1 and 
Level 2 analyses with respect to defect handling and remaining 
strength estimation can be eliminated. Further, the results obtained 
from finite element analysis based on the actual three-dimensional 
(3D) profile of the local thin area should be considerably reliable.41 

 

Table 5: Linear Model max results, FCA = 3 mm 
 

Sections 
Measured 
thickness 
𝑐𝑐𝑚𝑚𝑚𝑚 

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 year 
Minimum 
predicted 

thickness (mm) 

Corrosion 
Rate 

mm/year 

Remaining 
life 𝑐𝑐lim max [0.5𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑐𝑐lim] 

𝑐𝑐𝑚𝑚𝑚𝑚 − 𝐹𝐹𝐶𝐶𝐹𝐹
≥ max [0.5𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑐𝑐lim] 

 
Shell 1 11.5 6.0 

2020 

8.8 

0.15 

37 2.5 3 PASS 
Shell 2,3,4 16.1 8.5 13.4 50 2.8 4,265 PASS 

elliptical head 
5 9.5 4.5 6.8 34 2.5 2.5 NOT PASS 

Nozzles 
N1, N2, N3, 

N4 
11 7.0 8.3 27 1.6 3.5 PASS 

Nozzle A1 8.3 5.0 5.6 22 1.4 2.5 NOT PASS 
Nozzle A2 8.7 5.0 6 25 1.4 2.5 NOT PASS 

 
Table 6: Exponential Decay Model max, FCA = CR * 20 years 
 

Sections 
Measured 
thickness 
𝑐𝑐𝑚𝑚𝑚𝑚 

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 year 

Minimum 
predicted 
thickness 

(mm) 

Corrosion 
Rate 

mm/year 

Remaining 
life 𝑐𝑐lim max [0.5𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑐𝑐lim] 

𝑐𝑐𝑚𝑚𝑚𝑚 − 𝐹𝐹𝐶𝐶𝐹𝐹
≥ max [0.5𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑐𝑐lim] 

 

Shell 1 11.5 6.0 

2020 

9.09 0.13 41 2.5 3 PASS 
Shell 2,3,4 16.1 8.5 13.63 0.14 55 2.8 4,265 PASS 

elliptical head 
5 9.5 4.5 7.15 0.13 39 2.5 2.5 NOT PASS 

Nozzles 
N1, N2, N3, 

N4 
11 7.0 8.61 0.13 30 1.6 3.5 PASS 

Nozzle A1 8.3 5.0 6 0.13 26 1.4 2.5 NOT PASS 
Nozzle A2 8.7 5.0 6.28 0.13 28 1.4 2.5 NOT PASS 
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RESULTS AND DISCUSSION  
The minimum and maximum thicknesses of the vessel walls and 

nozzles are taken according to the values of linear model max, as it 
shows the lowest thickness predictions, and the vessel modelling 
results are shown in Figure 9 and Figure 10. 
 

 
Figure 9. Vessel finite element model 
 

 
Figure 10. Vessel finite element cross section 
 

 
Figure 11. Stresses at the joint of the vessel body Section 1 (shell 1). 

 
Figure 11 shows the maximum stresses were 368 MPa with a 

yield strength of 345 MPa. Localization of maximum stresses at the 
joint of the nozzle and the body with a vessel wall thickness of t ≈ 
5.8 mm, and a pipe thickness of t ≈ 6.5 mm 
 

 
 
Figure 12. Stress in the first section with a nozzle A1 thickness of 6 
mm 
 

 
 
Figure 13. Stresses in the first section with a nozzle A2 thickness t ≈ 

5.6 mm 
 

 
 

Figure 14. Residual plastic deformations 
 

For this structure, the yield point is the critical stress as per 
Figure 13 and Figure 14, necessitating cyclic fatigue calculations 
under cyclical loading. Local defects or stress concentrations lead 
to fatigue-induced crack formation as per Figure 14. Fatigue 
calculations require actual stresses to be significantly lower than the 
yield point, considering corrosion-related thinning. The results 
indicate that the first section is the most critical due to the highest 
stress levels. 

CONCLUSION 
This study assesses the remaining useful life (RUL) of a corroded 

low-alloy steel pressure vessel by using both inspection-based and 
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chemical modelling methods. A detailed analysis of linear, 
nonlinear, and chemical corrosion models to highlight their 
strengths and limitations; for instance, the linear model (maximum) 
showed fast degradation, offering a conservative estimate that is 
suitable for systems with considerable corrosion conditions, while 
the linear model (average) provided more moderate predictions 
under low-to-moderate corrosion conditions; however, the 
quadratic model showed accelerating degradation, making it 
suitable for cases with confirmed high corrosion conditions, but it’s 
less applicable for general cases. The chemical model, which 
includes the main factors in various environmental conditions, 
shows a high accuracy in complex environments. The exponential 
decay models (both average and maximum) showed decreasing 
corrosion rates over time; finally, the exponential decay 
(maximum) model presented more conservative estimates for long-
term evaluations.  

Validation of the inspection-based models was achieved by 
thickness measurement data from three pressure vessels collected 
from 2006 to 2011, further strengthening the reliability of the 
proposed models. Validation of the proposed chemical model 
against the linear polarisation resistance (LPR) method showed that 
the proposed model provides corrosion rate values within 
acceptable limits. 

The pressure vessel integrity for critical sections, mainly at the 
nozzles, was assessed using finite element analysis (FEA). A 
likelihood of failure was identified, especially under cyclic loading 
conditions, with localised stress concentrations at the nozzles with 
corrosion-induced wall thinning. The residual plastic deformations 
highlight the requirement for maintenance and repair techniques to 
reduce fatigue-induced crack formation to prevent catastrophic 
failures. 
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