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ABSTRACT 
 

Prompt and accurate 
identification of sleep-
related disorders is 
essential for preventing 
progression to serious 
neurodegenerative 
conditions. However, 
current diagnostic 
methods, such as 
biomarkers and cognitive 
screening tests, are 
expensive, time-consuming, or not user-friendly. This study evaluated a Neural Network (NN) and a Deep Neural Network (DNN) for classifying 
five sleep stages using EEG data. To ensure high-quality input, artifact correction, signal decomposition, and overlapping sliding window 
techniques were applied, followed by the extraction of time-domain, frequency-domain, and non-linear features. Model performance was 
assessed using precision, recall, and F1-score metrics. Overall, the DNN outperformed the NN, particularly in distinguishing wake (W) and rapid 
eye movement (R) stages, demonstrating a stronger ability to capture subtle EEG patterns. While the NN showed strength in classifying certain 
stages, it struggled with finer distinctions, such as between N1, N2, and R stages. This comparison highlights the advantage of deeper 
architectures like DNN for complex EEG analysis. However, the increased computational cost of DNNs suggests a need for future optimization to 
balance accuracy and efficiency 
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INTRODUCTION 
The study of sleep has existed for as long as there have been 

people since it is a complex process and a basic human need that 
directly affects a person's health and well-being. Regarding 
conscious activity, sleep is described as an active state of con-
sciousness; sensory activity is considerably reduced; the brain is in 
a somewhat ‘down’ condition; it ‘reacts’ only to internal stimuli. It 
is generally divided into two main phases which include NREM, 
which can be referred to as slow wave sleep and second is REM 
sleep [1]. Every stage is characterized by certain EEG rhythms: 

Thus, non-REM sleep is indispensable for tissue repair, and REM 
sleep is associated with memory consolidation and regulation of 
emotions [2]. 

It also reveals them to be genuinely indispensable, not just for 
sleep, but for the optimization of physical and mental health, 
inclusive of aspects of habilitation being immunization, mental 
steadiness, and stress regulation[3]. Meanwhile, the conse-quences 
of sleep disorders can be very serious and extensive supported by 
research pointers pointing to detrimental effects such as lower 
productivity at work, getting sick easily as well as deadly accidents. 
For instance, based on the research conducted on Moroccan drivers 
it was estimated that drowsiness contributed to between 20–25% of 
the accident [4]; hence there is a need for increased focus on sleep 
issues and efforts. 

Sleep disorders may be elicited by so many factors; it can be due 
to lifestyles, pa-thological conditions or infections. Out of all the 
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diseases transmitted from insects, this paper shall concentrate on 
human African trypanosomiasis, better still known as sleeping 
sickness[5]. The disease that has ravaged more than 36 countries in 
Africa contributing to more than 50 million people and leading to 
the death of 100 people a day, according to the WHO affects 
people's sleep patterns[6]. The examination and analysis of the 
particular stage of sleep are therefore beneficial not only to improve 
the quality of sleep but also to diagnose sleep disorders such as 
apnea and insom-nia[7]. 

For this reason, several therapeutic as well as diagnostic 
techniques have been de-veloped to diagnose and subsequently 
treat sleep disorders particularly when linked to the brain [8]. Of 
these techniques, fMRI has been widely used in investigating the 
changes in the operational parameters of sleep phenotypes. fMRI 
on the other hand offers a good spatial resolution which allows for 
spatial localization of sources of signal. However, there is one more 
technique better suitable for the tasks mentioned above – EEG has 
a good temporal resolution, and real-time brain registration is possi-
ble with less discomfort for the subject [9]. 

EEG functions in a way that it captures the brain’s electrical 
output with electrodes placed on the scalp and such detail is 
recorded on a trace form[10]. When compared to other techniques, 
it is more suitable for sleep detection than for example, electro-
cardiography in which the rate of the heartbeat is measured or 
electromyography, where muscle atonia in periods of REM sleep is 
determined[11]. Also, the extinction of electro-oculography, 
records movements of the eyes during rapid eye-moving sleep [12-
15]. There are other global approaches to monitor sleep and 
breathing that are available but PSG involves several physiological 
signals and although PSG is less invasive it can be rather costly and 
cumbersome and patients may be uncomfortable having so many 
electrodes attached to their bodies.Fig.1 illustrates the behavior of 
the different sleep stages. 

Therefore, up till now, EEG has been looked upon as being the 
most suitable for sleep identification because it is the method that 
occupies the first place based on efficacy and ked invasiveness as 
well as the ability to be applied in home and clinic classifications. 
Nonetheless, the ability of EEG to diagnose sleep highly depends 
on the right way of processing, analyzing, and categorizing the 
signals obtained from the tests. The pattern of studying the neural 
signals can therefore be categorized under temporal analysis, 
frequency analysis, and time-frequency analysis. Historical analy-
sis involves searching for specific phenomena at a time, for 
example, electrical activi-ty in brains, and determining statistical 
characteristics such as the mean, variance, and standard deviation 
[16-17]. Whereas, the frequency analysis in EEG entails the 
separation of the signal into bands: Gamma, Beta, Alpha, Delta, and 
Theta, their power calculation as a function of the frequency and 
Fourier transforms of the fields for the signal have been developed 
[18]. Table 1 presents details of the behavior of the EEG 
waveforms. 

The time-frequency analysis is based on the temporal and 
frequency one and can be used for identification of the dynamics of 
change in frequency with the help of computer techniques such as 
FFT or wavelet transform [19]. But these methods in-volve 
calculations and the formation of which new techniques are needed, 

which give important features in the time and frequency domain 
with faster and simpler calcula-tions. The method of non-linear 
characteristic extraction has been considered as a new approach in 
the analysis of a non-stationary process, especially on the EEG 
signals, which possess the characteristic methods based on 
temporal variability. It can cope with differences in frequency over 
time and thus helps to explain some of the phases of sleep[20]. 

 

 
Figure 1. EEG signal segments under different sleep stages. 
 
Table 1. Waves generated from the brain having dominant frequencies 
belong to the alpha, beta, delta & theta sub band 

Sleep 
stages 

Dominant Wave 

W 𝛽𝛽 (12-30 Hz) and 𝛼𝛼 (8-13 Hz) 
N1 𝜃𝜃 (4-8 Hz) 
N2 K-Complex (1 Hz) and Spindle (12-14 Hz) 
N3 𝛿𝛿 (0.5-2 Hz) 
R Sawtooth wave (2-6 Hz), 𝜃𝜃 (4-8 Hz), 𝛼𝛼 (8-13 Hz), 

and 𝛽𝛽 (12-30 Hz) 
 
Thus, the methods of analyzing signals and classifying EEG 

signals are instrumen-tal in the main process of the reduction of the 
dimensionality of the brain data that are raw and also in the task of 
mapping models of prediction and categorization of sleep stages. 
The future development in the study of sleep shall be the demand 
to advance to more sophisticated approaches of algorithm and 
analysis that shall warrant an enhanced understanding of sleep and 
the related disorders to enhance sleep health and disorders[21-22]. 

This study investigates the detection and classification of sleep 
stages through the analysis and optimization of EEG signals. By 
filtering and decomposing EEG signals into distinct brain 
waveforms (Alpha, Beta, Low Alpha, High Beta, Low Beta, High 
Alpha), we extract linear (Power Spectral Density) [23]. These 
features are then clas-sified into different sleep stages (W, N1, N2, 
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N3, R) using machine learning models like Neural Networks (NN) 
and Deep Neural Networks (DNN)[24]. The study aims to improve 
classification accuracy and computational efficiency, focusing on 
optimal feature extraction and model architecture while minimizing 
patient discomfort by using non-invasive EEG techniques [25]. The 
outcomes contribute to advancing au-tomated sleep disorder 
detection and sleep health monitoring. 

RELATED WORK 
Various methods such as frequency and time distribution, graph 

theory, signal modeling, wavelet transform, and empirical mode 
decomposition are employed for signal processing in the separation 
of sleep stages. For the classification aspect, a range of models is 
applied, including support vector machines (SVM), neural 
networks (NN), and partial least squares. Ronzhina et al. [26] 
proposed a design utilizing the power spectral density of EEG 
signals combined with artificial neural networks, based on a single-
channel EEG. Lajnef et al. [27] used multiple features such as 
entropy, variance, error, kurtosis, skewness, traversal entropy, and 
a multi-layer support vector machine on EOG, EMG, and EEG to 
automatically detect sleep stages. Hassan et al. [28] also employed 
a combination of wavelet transform and Taguchi-based neural 
networks to automatically identify sleep stages from EEG data. 
Berthomier et al. [29] extracted features from six EEG channels, 
three EOG channels, and one EMG channel, analyzing them with 
quadratic principles. Liang et al. [30] focused on entropy-based 
features to identify different sleep stages using EEG, while Liu et 
al. [31] generated a visual graph from a two-head EEG signal and 
applied nine features for classification via support vector machines. 
Kayikcioglu et al. [32] developed a feature extraction technique 
based on AR model technology and the partial least squares 
algorithm for sleep stage classification. Zhou et al. [33] introduced 
the empirical mode decomposition method, which is considered a 
key signal-processing technique in the time-frequency 
domain. Research on sleep stage detection utilizing EEG signals 
has been intensive in the past years, and many strategies have been 
suggested to enhance the accuracy and speed of the algorithms. The 
empirical mode decomposition method breaks signals down into 
several intrinsic mode functions, which are then used to process 
non-linear and non-stationary signals. To address some limitations 
of this method, Flandrin et al. [34] proposed adding white noise. 
Chang et al.[35] introduced the ensemble EEMD technique to solve 
the issue of mode mixing. Liu et al.[29] carried out a time-
frequency analysis for feature extraction and used an accumulated 
auto-encoder algorithm for classification. Previous research has 
shown that most existing algorithms require more than one lead to 
automatically detect sleep stages, making it inconvenient for 
continuous use and limiting the effectiveness of sleep monitoring 
devices at home. Additionally, it was found that these methods 
provided less than 90% accuracy in classifying different sleep 
stages and were computationally intensive and time-consuming. In 
recent years, substantial research has been devoted to leveraging 
one-dimensional raw polysomnogram (PSG) data or PSG-derived 
features for sleep staging using deep learning models. Zhengling 
He et al. [36] introduced an end-to-end deep neural network based 
on single-channel EEG, incorporating a domain-adaptation module 

and a transfer attention mechanism. This network achieved 
accuracies of 83.9% and 78.8% on the Sleep-EDF-2018 dataset. 
Caihong Zhao et al. [37] developed a sleep staging model 
combining CNN and RNN, with average accuracies of 84.8% and 
82.7% on single-channel EEG signals. In comparison to one-
dimensional PSG data, two-dimensional time-frequency images 
offer more distinguishing information regarding sleep stages, 
facilitating richer feature extraction. Converting one-dimensional 
PSG data into two-dimensional time-frequency images allows for 
simultaneous analysis of signal dynamics in both the time and 
frequency domains [21-24]. Yang Dai et al. [38] proposed a 
transformer encoder-based automatic sleep stage classification 
network, tested on multi-channel time-frequency images derived 
from Short-Time Fourier Transform (STFT), achieving a peak 
accuracy of 85.0%. Huy Phan et al. [39] introduced a sequence-to-
sequence sleep staging model that learned joint features from raw 
signals and FFT-based time-frequency images, reaching a 
maximum accuracy of 84.0% when using Fpz-Cz EEG and EOG 
signals. This article will focus on addressing these challenges. 

Our contribution  
This paper makes the following contributions: 
• Data Preparation for Neural Networks: Prepared the dataset by 

splitting the data into features (X) and target (Y) for 
classification of sleep stages (W, N1, N2, N3, R). Further split 
the data into training and testing sets (80% training, 20% 
testing) for model evaluation. 

• Implications: The DNN's deeper architecture allowed for more 
effective feature extraction, leading to improved classification 
accuracy in complex EEG signal patterns. 

• Model Evaluation and Predictions: Predicted sleep stages 
using both NN and DNN models on the testing dataset. 
Compared the models based on accuracy, precision, recall, F1-
score, and confusion matrices. 

• Performance Metrics and Visualization: Calculated critical 
performance metrics such as accuracy, precision, recall, 
specificity, F1-score, and Cohen’s kappa score 

METHODOLOGY 
The method proposed in this section for sleep stage detection 

comprises four major steps. First, the acquisition of the EEG signal, 
then the processing and decomposition of the signal by using filters 
to eliminate noise that may disturb it and to obtain reliable and 
relevant information, employing different approaches to feature 
extraction and optimization. Algorithm 1 presents the details of the 
working procedures of sleep staging. 

The final step is to classify the extracted data into six sleep 
categories (W, N1, N2, N3, R) by applying intelligent learning 
methods under the, which is a powerful open-source platform for 
data analysis and deployment of Deep Neural Network, and Neural 
Network through the creation of a workflow that allows 
visualization, transformations, and prediction operations based on 
feature extraction and statistics. The overall process of the approach 
chosen is depicted in Figure 2, which describes the various stages 
that will be detailed and justified later.   
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Figure 2. Flowchart of the proposed work 
 
Dataset Description 

In 1920, the neurologist Hans Berger discovered that the 
electroencephalogram (EEG) is a non-invasive device [21] based 
on the recording of cerebral electrical activities recorded by 
electrodes that are located on the head. Electrode positions and 
labels in the international 10–20 system, with the letters F, P, T, 
O, and C that represent the Frontal, Parietal, Temporal, Occipital, 
and Central zones respectively. The signals that are used in this 
paper are generated by taking the reference electrodes which are 
often used in sleep monitoring Fpz, Cz, Pz, where Z (Zero) 
represents the median section of the sagittal plane.Fig.3 illustrates 
the distributions of sleep epochs over the individual sleep stages 
used in this research work for experimental work[22]. 
 
 

 
Figure 3. Distribution of epoch for data set utilized in this approach 

 
Different brain waves such as Delta (0-4 Hz), Theta (4-8 Hz), 

Low Alpha (8-10 Hz), High Alpha (10-12 Hz), Low Beta (12-18 
Hz) and High Beta(18-30 Hz) illustrated in Table 3  are produced 
by these electrical signals. The dataset is gathered by recording the 
sleep of two healthy women aged 33, for over two successive 
nights. The EEG recording results are saved in twenty casttes 

SC4101E0, SC4111E0, SC4121E0, SC4131E0, SC4141E0, 
SC4151E0, etc. where SC stands for ‘Sleep Cassette’[23]. The 
sampling rate at which the recording is sampled is 30 Hz without 
overlapping following a well-defined standard procedure and 
recommendations of Rechtschaffen and Kales [24]. The selection 
of distinct and independent EEG signal segments is essential for 
simplifying the analysis of various sleep stages and enabling easier 
interpretation, lower computing complexity, and improving the 
outcomes, on the hand it will be advantageous to train the models 
using non-overlapping data to enhance generalization, prevent data 
loss, and prevent overlearning. 

During this phase of the procedure, the following additional 
parameters were taken into account: 
• Size of window: 30 seconds 
• Rate of window overlapping: without overlapping 
• Duration of recording: 24 hours 
• Sampling rate: 100 Hz 
• Labeling Method: The sleep stages were labeled according to 

the standard sleep staging criteria: Wakefulness (W), Stage 1 
(N1), Stage 2 (N2), Stage 3  (N3), and REM sleep (R). 

• Duration of Each Stage: Each sleep stage has a different 
duration for each recording, but average cycles last roughly 90 
minutes. 

Signal processing and analysis 
The initial stage in processing physiological signals involves 

filtering to eliminate undesirable artifacts that could interfere with 
the accurate interpretation of the data. These artifacts may arise 
from various physiological sources, such as heartbeats, muscle 
movements, or external noise, all of which can distort the signal. In 
this context, Finite Impulse Response (FIR) filters are often 
employed due to their inherent stability and ability to maintain a 
linear phase [25]. 

The second step consists of splitting the signal into Theta, Delta, 
Alpha, Beta, sawtooth, and spindle waves by applying a 
Butterworth bandpass filter. The choice of this type of filter is 
justified by its facility of design and implementation based on the 
specific needs of the signal concerned, its adaptability compared 
with other types of filters such as elliptical and Chebyshev, and its 
ability to preserve the properties of the EEG signal thanks to its flat 
frequency response, which reduces distortion in the passband [26]. 
Table 2 provides a range of frequencies and EEG signal 
descriptions. Fig. 4 and Fig.5 depict raw signal and preprocessed 
signals, respectively.  
• Wakefulness (W): Characterized by beta (12-30 Hz) and alpha 

(8- 13 Hz) waves. The brain is active and responsive to 
external stimuli.  

• Stage 1 (N1): Dominated by theta waves (4-8 Hz). It is a light 
sleep stage where the transition from wakefulness to sleep 
occurs.  

• Stage 2 (N2): Characterized by sleep spindles (12-14 Hz) and 
K Complexes (1 Hz). This stage is deeper than stage 1 and is 
crucial for maintaining sleep.  

• Stage 3 (N3): Known as slow-wave sleep (SWS), dominated 
by delta waves (0.5-2 Hz). These stages are the deepest sleep 
phases, essential for physical and mental restoration.  

• REM Sleep (R): Characterized by sawtooth waves (2-6 Hz), 
theta waves (4-8 Hz), alpha waves (8-13 Hz), and beta waves 
(12- 30 Hz). REM sleep is associated with vivid dreaming and 
brain activity similar to wakefulness [27]. 
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Table 1. EEG frequencies range 
EEG 
Rhythms 

Frequency 
(Hz) 

Psychological State 

Delta 0-4 Deep Sleep, unconscious 
Theta 4-8 Deep Relaxation, meditation 
Low Alpha 8-10 Wakeful relaxation 
High Alpha 10-12 Self-awareness 
Low Beta 12-18 Making decisions and thinking 

critically 
High Beta 18-30 Engagement in mental activity 

 

 

 
Figure 1. Raw EEG signal before preprocessing (Sleep-EDF database 
[22]) 

 
Figure 2.  Filtered EEG signal after preprocessing 

Feature Extraction 
In the analysis of EEG signals at this stage, the emphasis lies on 

extracting and choosing important features from the processed EEG 
signal to decrease the data's dimensionality while retaining crucial 
information necessary for accurate classification or prediction. 
Power Spectral Density (PSD) is employed to derive significant 
attributes from various EEG frequency bands that correlate to 
different psychological and physiological states [27]. In contrast to 
non-linear feature extraction techniques like Hjorth parameters or 
fractal dimension analysis, PSD offers a linear method for 
examining the power distribution of the signal across frequency 
bands [28]. In Table 2, It is the frequency bands are fundamental to 
understanding EEG dynamics, and the Power Spectral Density 
(PSD) analysis quantifies the power in each of these bands.PSD 
quantifies how a signal's power is distributed across different 
frequency components, calculated using the Fourier Transform, 
often via Welch’s method, which involves segmenting the EEG 
signal, applying windowing to each segment, and averaging the 
power spectra across all segments [29]. 

To compute PSD: The estimation of the Power Spectral Density 
(PSD) through built-in techniques, like those available in the SciPy 
library (e.g., scipy.signal.welch()), involves several crucial steps 
that ensure precise and stable assessment of the signal's frequency 
power. PSD is extensively utilized in signal processing to examine 
the power dispersion of a signal across different frequency 
components [30].  
The following are the typical procedures involved in calculating 
PSD: 
Divide the Signal into Segments (Optional): 

The signal is segmented into overlapping or non-overlapping 
sections. This segmentation is performed to decrease noise and 
provide a more reliable PSD estimate by averaging across multiple 
segments. For example, Welch's method divides the signal into 
segments, often with 50% overlap, which enhances the robustness 
of the PSD estimate. When working with the entire signal at once, 
this step can be skipped, but most built-in PSD methods utilize 
segmentation for greater stability [31]. Fig.6 illustrates illustrations 
of the different power spectrum wave forms with the different 
frequency bands. 

 

 
Figure 3.  Illustration of Power spectral density features in different 
frequency bands 
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Application of Window Function: 
A window function such as Hanning or Hamming is utilized on 

each segment. The window smoothens the segment edges and 
decreases spectral leakage, which can happen when the FFT 
assumes the signal to be periodic. Discontinuities at segment 
boundaries can distort the frequency analysis. Windowing aids in 
tapering the signal and reducing the impact of abrupt changes at the 
segment edges. 

𝑋𝑋(𝑓𝑓) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥(𝑡𝑡)) 
where x(t) is the time-domain signal, and X(f) is the Fourier-

transformed signal in the frequency domain. 
Perform Fourier Transform:  
Following windowing, the Fast Fourier Transform (FFT) is applied 
to each segment. FFT converts the time-domain signal into the 
frequency domain, revealing the frequency components of the 
signal. Mathematically, this is represented as: 

𝑃𝑃(𝑓𝑓) = |𝑋𝑋(𝑓𝑓)|2 
where P(f) represents the power at each frequency f. 

Calculate Magnitude Squared:  
The power for each frequency component is then computed by 

squaring the magnitude of the Fourier transform. The squared 
magnitude provides the power at each frequency: 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓) =
𝑁𝑁.∆𝑓𝑓

|𝑋𝑋(𝑓𝑓)|2
 

Normalize the Power: 
The power is normalized to compute the Power Spectral Density 

(PSD). The normalization takes into account the number of data 
points and the frequency resolution. For each segment, the PSD can 
be expressed as: 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓) = lim
𝑇𝑇→∞

(1/𝐹𝐹)((|𝑋𝑋(𝑓𝑓,𝐹𝐹)|)2) 

where f is the frequency, and 𝑋𝑋(𝑓𝑓,𝐹𝐹) is the Fourier transform of 
x(t) 
Average PSD Across Segments: 

If the signal has been divided into multiple segments, the PSD 
for each segment is computed separately. The final PSD is then the 
average of all segment-wise PSDs, which helps reduce variance 
caused by noise: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑓𝑓) =  
∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓𝑁𝑁
𝑓𝑓=1 (𝑓𝑓) 

𝑀𝑀
 

where M is the total number of segments and 𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓(𝑓𝑓) is the PSD 
for the 𝑖𝑖𝑡𝑡ℎ segment. 
Provide the PSD Results: 

Finally, the method yields two outputs: the frequency bins and 
the corresponding PSD values. The frequency bins represent the 
frequencies present in the signal, while the PSD values indicate the 
power at those frequencies. 
Classification Algorithms 

Neural Networks (NNs) consist of an input layer, one or more 
hidden layers, and an output layer. Each neuron applies an 
activation function to its inputs, and the network learns by adjusting 
weights based on the error in predictions. Neural networks are adept 
at capturing nonlinear patterns in data, making them suitable for 
classification tasks with complex relationships [25]. 

Deep Neural Networks (DNNs) are a more advanced form of 
neural networks with multiple hidden layers. DNNs can model 
complex and abstract features from data, providing a deeper 

understanding of intricate patterns. This capability makes them 
especially effective for tasks where manual feature extraction is 
difficult, as they learn features directly from the data [26]. 
 

Algorithm 1: Feature Extraction and Classification Using NN 
and DNN 
Step 1: Non-linear Feature Extraction 
Initialize feature list  
Extract features from each brain wave using Power Spectral 
Density (PSD) 
Compute PSD for different frequency bands  
Features = concatenate (PSD features)  
Append extracted features to Fm 
Step 2: Cross Validation  
Split Features into 58% Training_Data, 13% Validation_Data, 29% 
Testing_Data  
Validation_Results = crossValidate(Training_Data, 
Validation_Data, Testing_Data, k = 10) 
Calculate average performance metrics 
Step 3: Data Preparation for Neural Networks 
Split data into Reduced_Data and Target 
X = Reduced_Data // All columns except target  
Y = Target  // Sleep stages class column (W, N1, N2, N3, R)  
Split data into training and testing sets  
trainingData, testingData = split(X, Y, testSize=0.2) 
Step 4: Classification and Performance Evaluation Using NN and 
DNN 
1. Neural Network (NN) Architecture 
   NN_model = Sequential() // For shallow neural network  
 Add spatial convolutional layer: 
NN_model.add(Conv2d(1, 2, kernel_size=(2, 1), stride=(1, 1))) 
    - NN_model.add(Conv2d(1, 8, kernel_size=(1, 50), 
stride=(1, 1), padding=(0, 25))) 
    - NN_model.add(ReLU()) 
    - NN_model.add(MaxPool2d(kernel_size=(1, 12), 
stride=(1, 12)))  
    - NN_model.add(Conv2d(8, 8, kernel_size=(1, 50), 
stride=(1, 1), padding=(0, 25))) 
    - NN_model.add(ReLU())  
    - NN_model.add(MaxPool2d(kernel_size=(1, 12), 
stride=(1, 12))) 
  - Fully connected layer:  
    - NN_model.add(Dropout(p=0.25))  
    - NN_model.add(Linear(in_features=320, 
out_features=5)) // 5 output classes: W, N1, N2, N3, R 
2. Deep Neural Network(DNN) Architecture 
 DNN_model = Sequential()  
  - Add input layer: DNN_model.add(Dense(128, 
input_dim=number_of_features,activation='relu')) 
  - Add hidden layers:  
    - DNN_model.add(Dense(64, activation='relu')) 
    - DNN_model.add(Dense(32, activation='relu')) 
  - Add output layer: DNN_model.add(Dense(5, 
activation='softmax'))  
3. Model Training 
   - For NN: NN_model.fit(trainingData.Reduced_Data, 
trainingData.Target, epochs=10, batch_size=32, validation_split)  
   - For DNN: DNN_model.fit(trainingData.Reduced_Data, 
trainingData.Target, epochs=10, batch_size=32, validation_split)  
4. Model Evaluation 
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   - NN_predictions = 
NN_model.predict(testingData.Reduced_Data) 
   - DNN_predictions = 
DNN_model.predict(testingData.Reduced_Data)  
6. Performance Metrics Calculation: Confusion matrix, accuracy, 
precision, recall, specificity, F1 score, and Cohen’s kappa score are 
calculated: 
  - cm = confusion_matrix(y_true, y_pred, labels=[0, 1, 2, 
3, 4]) 
  - Metrics like sensitivity , specificity , precision , 
accuracy, F1-score, and others are computed as described in the 
code above.  
   - Visualize metrics like confusion matrix, accuracy, precision, 
recall, specificity, and F1 scores using plots. 
End of Algorithm 

Performance Evaluation 
To evaluate the effectiveness of these classifiers, the following 
steps are performed: 
• Data Preparation: This involves preprocessing the EEG data, 

which includes normalization, feature extraction, and splitting 
the data into training and testing sets. 

• Training and Testing: The classifiers are trained on the training 
data and then assessed using the test data to gauge their 
performance. 

• Performance Evaluation: Various metrics derived from the 
confusion matrix are used to measure classifier performance: 

 
Sensitivity (Sn): Indicates the proportion of true positives among 
all actual positive cases[30]. 

𝑃𝑃𝑆𝑆 =
𝐹𝐹𝑃𝑃

𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑁𝑁
 

Specificity (Sp): Reflects the classifier’s ability to correctly identify 
negative instances[31]. 

𝑃𝑃𝑆𝑆 =
𝐹𝐹𝑁𝑁

𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑃𝑃
 

Precision (Pr): This represents the ratio of true positives to the 
model's positive predictions[32].   

𝑃𝑃𝑃𝑃 =
𝐹𝐹𝑃𝑃

𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑃𝑃
 

Accuracy (Acc): Shows the proportion of correct predictions (true 
positives and true negatives) relative to the total number of 
cases[33]. 

𝐴𝐴𝐴𝐴𝐴𝐴 =
𝐹𝐹𝑃𝑃

𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑁𝑁
 

F-measure (F1): Provides a single metric balancing precision and 
recall[34]. 

𝐹𝐹1 =
2 × (𝑃𝑃𝑃𝑃 × 𝑃𝑃𝑆𝑆)

𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑆𝑆
 

Cohen’s Kappa (k): Compares observed accuracy with the expected 
accuracy, accounting for random chance[35]. 

𝑘𝑘 =
2 × �(𝐹𝐹𝑃𝑃 × 𝐹𝐹𝑁𝑁) − (𝐹𝐹𝑁𝑁 × 𝐹𝐹𝑃𝑃)�

�(𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑁𝑁) × (𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑁𝑁)� + �(𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑃𝑃) × (𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑁𝑁)�
 

Additional metrics include macro averages for precision, recall, and 
specificity, calculated as: 
Macro Precision: 

𝑀𝑀𝑃𝑃𝑃𝑃𝑀𝑀𝐴𝐴𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑆𝑆 =
∑ 𝑃𝑃𝑃𝑃𝑁𝑁
𝑓𝑓=1  
𝑁𝑁

 

Macro Recall: 

𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ 𝑃𝑃𝑆𝑆𝑁𝑁
𝑓𝑓=1  
𝑁𝑁

 

Macro Specificity: 

𝑀𝑀𝑃𝑃𝑆𝑆𝑀𝑀𝐴𝐴𝑖𝑖𝑓𝑓𝑖𝑖𝐴𝐴𝑖𝑖𝑡𝑡𝑀𝑀 =
∑ 𝑃𝑃𝑆𝑆𝑁𝑁
𝑓𝑓=1  
𝑁𝑁

 

RESULT ANALYSIS AND DISCUSSION 
The study involved conducting simulations and tests to produce 

meaningful outcomes for identifying the best model in terms of 
both performance and architectural simplicity. As mentioned 
previously, the experimental results are derived from EEG signal 
data retrieved from the Physionet database [32]. This data was then 
processed and broken down using a series of brainwave filters such 
as FIR filters, in order to extract the key characteristics of each 
wave to classify sleep stages.Fig.7 and 8 presents the training 
samples used to train the obtained NN and DNN models. 
The assessment of the examined models involved three main stages. 
To begin with, EEG signals were gathered as the initial data for the 
analysis. Next, the signals were processed and relevant features 
were extracted using filtering techniques to eliminate noise from 
the EEG signals. Lastly, sophisticated learning techniques such as 
Deep Neural Networks (DNN), Neural Networks (NN), or 
Multilayer Perceptron (MLP) were utilized to categorize the 
processed features into six distinct sleep stages (W, N1, N2, N3, 
R). Table 3 presents the configuration details of the proposed 
models.The proposed classification algorithm was developed using 
VSCode software version 1.89.1, running on a LAPTOP-
UN1TDLNH with a Windows operating system. The system is 
equipped with an Intel(R) Core (TM) i5-10300H CPU @ 2.50 GHz 
processor and 8 GB of RAM (7.84 GB usable). It is a 64-bit 
operating system on an x64-based processor. 

Table 2. Configuration of the proposed models 
Classifiers Configuration (Structure and training 

parameter) 
Training  
Algorithm 

NN Layers: 7 (convolutional, max 
pooling, dropout, fully connected 
(linear) 
Number of convolutional layer: 3 
Number of max pooling layer: 2 
Number of dropout layer: 1 
Number of fully connected layer: 1  
Activation Functions: ReLU 
activation function for all layers. 

 
Backpropag
ation 
  
  
  
  

DNN  Layers: 5 (Input, 3 Hidden, Output) 
Hidden layer neurons: [128, 64, 32] 
Activation function: ReLU 
Output layer activation: Softmax 
Epochs: 10 

 Adam         
optimizer 
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Figure 4.  Training sample distributions over the individual sleep 
stages for training the NN model 
 

 
Figure 5.   Training sample distributions over the individual sleep 
stages for training the DNN model 
 

Figure 9(a-b) represents the confusion matrix for the obtained 
NN and DNN classifiers. The Neural Network (NN) model 
demonstrates robust performance in classifying stage N2, with a 
high number of correctly identified instances, highlighted by the 
deep red color in its confusion matrix, which is 3127. However, it 
exhibits significant misclassifications, especially confusing stage 
W with N1 and R with N2. This suggests a need for improved 
feature refinement or model adjustments. In contrast, the Deep 
Neural Network (DNN) model shows a more balanced performance 
across all sleep stages, with notable success in classifying N1. 
Despite this, it still struggles with misclassifications, particularly 
between stages W and R, and N3 and R, which may indicate areas 
for further optimization. 

Table 3. Performance metrics results obtained from NN and DNN 
model 

NN  DNN 
 Precis

ion 
Reca

ll 
F1 

Score 
 Preci

sion 
Reca

ll 
F1 

Score 
W 0.85 0.8 0.82 W 0.89 0.96 0.93 
N1 0.75 0.7 0.72 N1 0.48 0.49 0.48 
N2 0.9 0.85 0.87 N2 0.89 0.87 0.88 
N3 0.8 0.75 0.77 N3 0.86 0.83 0.85 
R 0.7 0.65 0.68 R 0.82 0.83 0.83 

a) 

(b) 

Figure 6.  Confusion matrix results for classification of each sleep 
stage:(a) using the NN model, (b) using the DNN model  
 

 
Figure 7.   The performance of the different sleep stages about 
precision, Recall, and F1Score using the NN model 

W N1 N2 N3 R
Precision 0.85 0.75 0.9 0.8 0.7
Recall 0.8 0.7 0.85 0.75 0.65
F1Score 0.82 0.72 0.87 0.77 0.68
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Figure 8.   The performance of the different sleep stages about 
precision, Recall, and  F1Score using the DNN model 

 
Figures 11 and 12 reveal that the N2 stage is the best-performing 

stage for both the Neural Network (NN) and Deep Neural Network 
(DNN). In the W stage, the DNN surpasses the NN in all 
performance metrics. Conversely, in the N1 stage, the NN 
outperforms the DNN across all metrics. For the N2 stage, the 
performance of the DNN and NN is comparable, with the DNN 
achieving a slightly higher F1 Score. The DNN consistently 
outperforms the NN in the N3 and R stages across all metrics.Fig.12 
and Fig.13 represent the performance of the macro and weighted 
precision, recall, and F1score. 
   

 
 
Figure 9.  The performance of the different sleep stages about macro 
and weighted precision, Recall, and F1Score using the NN model 

 
Figure 10.  The performance of the different sleep stages about macro 
and weighted precision, Recall, and F1Score using the DNN model 

 (a) 

 (b) 
Figure 11.  Weighted and Macro average accuracy performance of the 
obtained model:(a) using NN, (b) DNN model 
 

Figures 14(a) and (b) show the overall and macro accuracy 
performances for the proposed models. Similarly to better 
understand the behavior of the model, we used the radar graph 
representation. Figures 15 (a) and (b) illustrate represents radar 
graph presentation. Figure 16 (a) and (b) illustrate the hypnogram 
produced manually by a sleep expert and its corresponding 
hypnogram generated by our method for a subject for 
approximately 8 hours of sleep at night. It can be noted from the 
figure that around 85% manually scored a hypnogram and 
automatically scored correctly. The general sleep stage patterns are 
effectively represented by both models, but the DNN model 
exhibits a slightly more accurate match with the actual sleep stages 
than the NN model. The NN model encounters difficulty in 
differentiating between N2 and N3 stages, especially during rapid 
transitions. On the other hand, the DNN model displays enhanced 
precision in recognizing wakefulness (W) and REM sleep (R) 
stages, underscoring its superior performance in these specific 
areas. 
Comparison with Prior Work 

To further demonstrate the performance of the proposed NN and 
DNN model, a comparative analysis was conducted with state-of-
the-art sleep staging techniques using the same publicly available 
dataset, Sleep-EDF Expanded. Many studies on automated sleep 
stage identification have been published in the literature. In this 
work, we proposed a new method for automatically detecting sleep 
disorders using two EEG channels (A1-C4 & C4-F4). We utilized 
both the combination of these channels and their components to 
classify the data [41]. The results showed that combining both EEG 
channels improved the classification accuracy. Our proposed model 
not only distinguished between participants with and without sleep 
disorder behavior but also identified the specific type of 
abnormalities in the sleep pattern. Notably, the N3 sleep stage was 
found to be more accurately classified compared to other 
stages. Table 5 summarizes the experimental results from earlier  

W N1 N2 N3 R
Precision 0.89 0.48 0.89 0.86 0.82
Recall 0.96 0.49 0.87 0.83 0.83
F1Score 0.93 0.48 0.88 0.85 0.83
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(a) 

 
(b) 

Figure 12.    Radar graph comparing classification algorithms based on 
accuracy, precision and Cohen’s Kappa:(a) using the NN model, (b) 
using the DNN model 
 

 
(a) 

  (b) 
Figure 13.  The hypnogram scored by a human expert and the 
hypnogram scored by the proposed model: (a) using the NN model, (b) 
using the DNN model. 

 
studies and the results obtained by applying the approach presented 
in this paper to Sleep-EDF Expanded. The overall performance of 
all sleep staging models was evaluated using two metrics, accuracy, 
and Cohen’s kappa (κ). We successfully attained a maximum 
accuracy of classification of 85 percent by combining two EEG 
channels A1-C4 & C4-F4 using a DNN classifier. 
 
Table 4.  Comparison of our method with previous studies 
implemented on Sleep-EDF Expanded 

Mode
l Channels Input Classifier Accurac

y κ 

Ref 
[38] 

Fpz-Cz 
EEG      Pz-
Oz EEG    
ROC-LOC 
EOG 

STFT 
Multi-
Channel 
CNN 

85.0 0.79 

Ref 
[47]  

Fpz-Cz 
EEG FRFT Bi-LSTM 81.61 0.746

8 

Ref 
[44]  

Fpz-Cz 
EEG 
ROC-LOC 
EOG 

FFT FCNN+RN
N 84.0 0.778 

Ref 
[45]  

Fpz-Cz 
EEG 

raw 
EEG 
and 
CWT 

Double-
branch CNN 

81.0 0.73 

Pz-OZ 
EEG 77.4 0.68 

Ref 
[39]  

Fpz-Cz 
EEG 
Pz-Oz 
EEG 
ROC-LOC 
EOG 

cross-
epoch 
vector 

LSTM 84.3 0.78 

Ref 
[40]  

Fpz-Cz 
EEG 

raw 
EEG 
and the 
spectral 
sequenc
e 

Two-Stream 
Feature 
Extractor 

82.21 0.750
7 

Ref 
[41]  

Fpz-Cz 
EEG 

noise-
assisted 
bivariat
e 
empiric
al mode 
decomp
osition 

1D-CNN+ 
BiLSTM 

82.67 0.76 

Pz-OZ 
EEG 80.16 0.72 

Ref 
[42]  

Fpz-Cz 
EEG raw 

EEG CNN 
83.9 0.78 

Pz-Oz 
EEG 78.8 0.71 

Ref 
[43]  

Fpz-Cz 
EEG 

The lon
g-term 
tempora
l 
context 
between 
consecu
tive 
EEG 

CNN+RNN 82.7 0.76 

Ours Fpz-Cz 
EEG 

Raw 
EEG 
and 
PSD 

NN, DNN 85% 0.84 
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CONCLUSION 
In this research, we conducted an assessment and comparison of 

the efficacy of a Neural Network (NN) and a Deep Neural Network 
(DNN) in categorizing five sleep stages using the Physionet EEG 
dataset. Our analysis aimed to evaluate both architectures in terms 
of precision, recall, and F1-score. The NN achieved an overall 
accuracy of 75.4%, while the DNN demonstrated a notably higher 
accuracy of 85%. The findings reveal that the DNN surpasses the 
NN in most metrics, particularly exhibiting improvement in the 
wake (W) and rapid eye movement (R) sleep stages. The DNN's 
higher precision and recall values for these stages indicate its 
strength in capturing subtle EEG patterns that differentiate various 
sleep stages. Conversely, the NN, while effective to some extent, 
displayed lower classification performance, especially for stages 
N1 and R, signifying limitations in discerning finer sleep stage 
disparities. This comparison underscores the benefit of utilizing 
deeper network architectures, such as DNN, for tasks involving 
intricate signal patterns like EEG data for sleep stage classification. 
The increased depth of the DNN facilitates a more thorough feature 
extraction process, resulting in enhanced overall classification 
accuracy. Nevertheless, employing DNN entails higher 
computational expenses and complexity. Although its superior 
performance mitigates this, future research should focus on 
optimizing the architecture to further balance accuracy and 
efficiency. It is also essential to conduct real-time testing to validate 
the practical applicability of these models in real-world sleep 
monitoring systems. 
Despite the constraints associated with using a single-channel EEG, 
the current results suggest that DNNs offer substantial potential for 
advancing automated sleep stage detection with increased accuracy 
and dependability. 
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