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Virtual museums are becoming increasingly popular, offering accessibility and engagement with historical artifacts for wider audiences. However, 
creating high-quality 3D models of artifacts can be time-consuming and expensive. Addressing these issues, we propose a comprehensive SFM 
based 2D-to-3D reconstruction method that enhances accessibility and scalability. Our approach integrates efficient camera calibration achieving 
up to 95% accuracy, robust feature detection and matching using algorithms such as SIFT, ORB, and AKAZE, and employs pose estimation, 
triangulation, and bundle adjustment to ensure high accuracy and detail. The method is lightweight, minimizing computational load, and is 
implemented on a user-friendly web-based platform. The solution demonstrated promising results, with reprojection errors as low as 15%, and 
effective 3D reconstructions of artifacts. Applications include virtual museums and the preservation and virtualization of artifacts, providing an 
interactive and immersive experience for users. 
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INTRODUCTION 
Across many disciplines, including medical imaging, industrial 

design, virtual reality, and cultural heritage preservation, three-
dimensional (3D) reconstruction has grown to be an increasingly 
useful tool.1 3D reconstruction fundamentally is the process of 
creating three-dimensional models from two-dimensional (2D) 
data, such as photographs or sensor inputs. Although this sounds 
basic, obtaining good reconstructions is difficult. The work requires 
advanced algorithms to understand depth, geometry, and spatial 
relationships from often lacking or confusing data. Fortunately, 
new advances in sensor technologies, machine learning, and 
computer vision have greatly enhanced the accuracy and efficiency 

of 3D reconstruction, hence increasing the availability of these 
techniques for use in the real world as well as in research. 

One well-known instance is the work of Liritzis et al. (2021), 
who investigated the Sanctuary of Delphi using 3D reconstruction 
to show its capabilities.2 By means of 3D scanning and modeling, 
they produced a digital replica of the location, therefore exposing 
the ability of technology to record precise geometric details and 
offer immersive visuals. In a similar study, Fadzli et al. (2023) 
carefully examined real-time 3D reconstruction methods with an 
eye toward their function in telepresence systems.3 Their studies 
showed how these technologies might enable interactive 
presentations of difficult settings. Another study looked at using 
digital photogrammetry and laser scanning for exact 3D modeling,4 
therefore offering fresh opportunities for recording, analysis, and 
restoration methods particularly helpful when conventional 
preservation approaches are insufficient. 

In 3D reconstruction, handling missing or unclear data remains 
a major difficulty, particularly in cases involving obscured areas of 
images. The creation of 3D-ReConstnet,5 a neural network meant 
to create 3D object point clouds from single-view photos, offers one 
encouraging answer to this problem. This method highlights how 

*Corresponding Author: Dr. Swati Shilaskar,  
Vishwakarma Institute of Technology, Pune, India 
Tel: +91 20 2420 2180; Email: swati.shilaskar@vit.edu 

Cite as: J. Integr. Sci. Technol., 2025, 13(5), 1120. 
URN:NBN:sciencein.jist.2025.v13.1120 
DOI:10.62110/sciencein.jist.2025.v13.1120  

©Authors CC4-NC-ND, ScienceIN   https://pubs.thesciencein.org/jist                             

ABSTRACT ABSTRACT 

https://pubs.thesciencein.org/journal/index.php/jist


Shilaskar et. al. 

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2025, 13(5), 1120           Pg  2 

deep learning may assist generate semantically rich 3D 
reconstructions from minimal data by modeling the uncertainty in 
obstructed areas using a Gaussian probability distribution. It also 
emphasizes how increasingly important machine learning is in 
overcoming constraints of conventional reconstruction methods. 

New technologies include augmented reality, real-time 
processing, and deep learning are offering fascinating opportunities 
to increase 3D model correctness and interaction. Galabov (2015), 
for instance, presented a novel set of techniques based on motion 
parallax, depth cues, and shading effects for turning 2D photos into 
3D models.6 Particularly in situations when thorough 3D data is 
difficult to get, these methods enable the conversion of 2D data into 
3D representations without the necessity of sophisticated motion 
analysis, therefore facilitating the creation of 3D models. 

The possibility to interact with 3D models in real-time expands 
the possible uses of these technologies even more. Using their 
layer-by-layer scanning approach for additive manufacturing,7 
which combines augmented reality to offer real-time monitoring 
and flaw detection, Malik et al. (2019) investigated this capacity. 
This method shows how real-time 3D reconstruction may be used 
for dynamic, interactive applications, such virtual museums or 
instructional platforms, where users may interact with 3D models 
in real-time. 

The following sections of this paper delve into the specifics of 
the proposed methodology, examining the technical foundations 
and practical applications of 3D reconstruction techniques. By 
leveraging advancements in computer vision, machine learning, 
and sensor technologies, this work aims to contribute to the ongoing 
evolution of 3D reconstruction methods, with a focus on their 
application in preserving and presenting cultural heritage. The 
integration of these technologies not only enhances the accuracy 
and efficiency of 3D modeling but also enables new ways of 
engaging with and understanding complex spatial data, paving the 
way for future innovations in the field. 

LITERATURE SURVEY 
In recent years, computer vision-based techniques for three-

dimensional (3D) reconstruction have gained significant attention 
due to their wide-ranging applications8 in various fields. A detailed 
overview of these methodologies, together including the several 
approaches and algorithms applied for 3D reconstruction, is given 
by Ham et al. (2019) based on the data collecting technologies used 
- single-camera setups, multiple-camera configurations, Time-of- 
Flight (ToF), Shredded Light, and Kinect-based systems.9 The 
important processing phases, namely feature extraction, depth 
estimate, and surface reconstruction are also covered by the 
authors. 

Deep learning techniques have revolutionized the field of 
computer vision, offering enhanced capabilities for complex tasks 
such as 3D reconstruction. Liu et al. (2020) presented a novel 
method using deep learning to rebuild 3D structures from image 
sequences. 10  Along with feature fusion, their approach combines 
unsupervised and supervised learning methods to produce accurate 
depth estimate and surface modeling. Using artificial neural 
networks (ANN), Graph Convolutional Networks (GCN), and 
MarrNet, they produced striking 3D scene reconstruction findings.  

Similarly, Sakai et al. (2020) concentrated on deep learning 3D 
shape reconstruction from a single image.11 Their approach utilizes 
Convolutional Neural Networks (CNN) to automatically learn 
valuable image features and reconstruct 3D shapes through two 
methods: normal vector estimation and direct 3D reconstruction. 
Experimental results on human face images demonstrate higher 
accuracy compared to previous methods, highlighting the potential 
of deep learning in 3D reconstruction. 

 Shalma et al. (2023) investigate several techniques applied in 
reconstruction of 3D images of both particular and generic objects 
in another thorough review. 12 The authors address the difficulties 
reconstructing increasingly complicated objects in addition to 
covering a broad spectrum of methods including 3D shape 
representations, depth estimate, and multi-view representations. 
Susheel Kumar et al. (2011) also provide a thorough study of 3D 
reconstruction algorithms, with specific attention on volumetric 
methods including voxel coloring. 13 Their work investigates the 
difficulties of these techniques, including the variation in 
performance when working with various image numbers and 
resolutions, and emphasizes the growing inclination for volumetric 
methods due of their lower complexity and the increasing 
capabilities of modern computing systems. 

These methods also find interesting uses for the preservation of 
cultural legacy.  Bent et al. (2022) explain how historical landmarks 
including Florence and Orsanmichele might be preserved via 3D 
reconstruction. 14 Their method generates very detailed 3D models 
by integrating photogrammetry, laser scanning, and sophisticated 
software processing, therefore helping to save and record these 
significant cultural sites.  Likewise, Zhu et al. (2021) offer a novel 
technique to generate thermal point clouds by combining Thermal 
Infrared (TIR) images with Mobile Laser Scanning (MLS) point 
clouds. 15 Their approach involves key-points extraction using line-
intersection, semi-automatic and automatic correspondence 
determination using restricted RANSAC for 6DOF pose 
estimation, and a non-local mean strategy for data fusion. Keypoint 
extraction and posture estimation combined in this approach 
produces comprehensive geometric and thermal data suitable for 
uses like structural analysis and energy efficiency evaluations. 

Especially in relation to dynamic situations, real-time 3D 
reconstruction has also witnessed notable developments. Mehta et 
al. (2017) presented a single RGB camera based real-time 3D 
skeleton posture capture technique.16 Stable and temporally 
consistent 3D reconstructions are generated by integrating a CNN-
based pose regressor with kinematic skeleton fitting.  Even in 
outdoor environments or with low-quality cameras, this method 
provides possibilities for use in several real-time applications 
including 3D character control and virtual reality.  Figure 1 shows 
a synopsis of these approaches and tools. 

With an eye toward virtual museums especially, the current 
effort aims to advance 3D reconstruction methods.  Even if a lot of 
research has been done on these techniques, some difficulties still 
exist including problems with camera calibration accuracy, limited 
feature identification and matching, and the great computational 
needs of deep learning algorithms. Moreover, there is a clear 
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discrepancy between theoretical models and actual 
implementations; issues about the usefulness and accessibility of 
the produced 3D models abound. This work presents a scalable and 
strong 2D-to-3D reconstruction technique to address these 
difficulties. Along with a mix of feature recognition and matching 
techniques for dependable keypoint identification, it uses an 
effective camera calibration procedure to reach great accuracy.  To 
guarantee great authenticity in the 3D models, also used are 
methods such as triangulation, bundle adjustment, and pose 
estimation. This method is lightweight and efficiency-oriented 
unlike many deep learning-based techniques, which are sometimes 
computationally costly. Moreover, the system is meant to be 
reachable via a web-based platform, which enables the 
development of virtual museums helping to preserve cultural legacy 
and educate about it. 

METHODOLOGY 
High-quality 3D models are becoming more and more important 

as virtual museums grow more well-liked due to their accessibility 
and ability to interact with artefacts. However, the process of 
making these models may be costly and time-consuming, and it 
frequently fails to adequately capture textures and small details.  

This research proposes a straightforward yet effective method to 
improve 2D images of artefacts into 2D-to-3D reconstruction 
techniques for the development of a virtual museum. This 
improvement will lead to a more robust digital preservation of 
cultural and historical legacy by improving the visual appeal and 
immersiveness of virtual museum exhibits. The basic idea in 3D 
image reconstruction is that given a set of images with a different 
viewpoint, the goal is to use these images to reconstruct a three-
dimensional representation of the object. More specifically, the 
motion of the cameras is found with respect to a world coordinate 
frame 𝐹𝐹. In simpler terms, the camera's movement in the 3D world 
needs to be tracked and translated to the 2D image it captures. This 
translation is done through what's known as camera projection 
matrices, representing the motion of the cameras, denoted as 𝑊𝑊. 
Using this set of camera projections, different algorithms are used 
to recover the 3D structures of the scene. This will provide a light-
weight architecture which is integrated to a website to make it 
accessible to users. The various steps of the architecture used for 
2d-3d modeling in this setup are shown in Figure 2.   

 
Figure 2. Overview of the steps followed for 3d reconstruction. 

Figure 3 shows the block diagram of the proposed solution and 
includes the following steps: i) Camera preparation, ii) Data 
Acquisition & Preprocessing, iii) 2d-3d reconstruction algorithm, 
iv) Optimization techniques and v) platform building. 

 
Figure 3. Flowchart for the proposed solution 

The subsequent sections delve into the specifics of each of these 
blocks, beginning with the preparation of the camera for capturing 
the artifact images. 
Camera Preparation 

  Camera calibration plays a pivotal role in ensuring accurate and 
reliable results.17 Calibration serves to rectify distortions inherent 
in camera lenses and to establish the intrinsic parameters necessary 
for accurate geometric reconstruction. In this project, the 
checkerboard method was employed for camera calibration. This 
method involves capturing multiple images of a checkerboard 
pattern with known dimensions from different viewpoints. The 
geometric structure of the checkerboard allows for the extraction of 
corresponding image points, which are then used to estimate the 
camera's intrinsic parameters, such as focal length and lens 

 
Figure 1. A comparison of various steps used by various researches 
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distortion coefficients, through a calibration process. To facilitate 
the calibration process, a series of images capturing the 
checkerboard from various orientations and distances were 
acquired as shown in Figure 4. 

 

     
Figure 4. Images for Camera Calibration      

The known parameters included the size of each box taken as 
15mm x 15mm and the number of corners present in the 
checkerboard image (width, height) as (9,13). These values are  
used for calculating the parameters needed to estimate the camera 
matrix, as given in Equation (1): 

 
𝑥𝑥 =  𝐾𝐾[𝑅𝑅|𝑡𝑡]𝑋𝑋                      (1) 

 
where, respectively, x and X stand for the coordinates in the 

image plane and the three-dimensional world space. The camera 
matrix with the intrinsic parameters is denoted by K. The camera 
matrix with the extrinsic parameters translation and rotation is 
denoted as [R|t]. This formula illustrates how to use the camera 
matrix K and a rigid-body transformation [R|t] to project 3D points 
X to the 2D picture plane x. Finding the ideal K and [R|t] to 
minimise the re-projection error—that is, the discrepancy between 
the projected and observed picture points—is the process of camera 
calibration. This is usually achieved via a least-squares 
optimization routine. The calibration results, comprising the 
camera matrix, distortion parameters, rotation vectors, and 
translation vectors were stored, facilitating the undistortion of 
images captured by the calibrated cameras for further processing. 
Data Acquisition & Preprocessing 

A number of systematic procedures are involved in the 3D 
reconstruction process from 2D pictures, especially for statues and 
monuments. For further geometric computations, the intrinsic 
parameters—which comprise elements like focal length, primary 
points, and lens distortion coefficients—are essential. The camera 
was attached to a sturdy stand after calibration. The first step of this 
procedure calls for meticulous setup and calibration of the camera 
gear, which includes a suitable camera that can capture 4000x3000 
pixel images and a solid position for the Digitek® DTR 550 LW 
67-inch Foldable Tripod Stand. It is essential that the camera 
settings stay the same for every shot; manual exposure, white 
balance, and focus adjustments. The choice of the object itself is 
crucial to achieving the best 3D reconstruction; sculptures with 
more texture and no obstacles produce better results. The camera 
setup for this project is seen in Figure 5. 

 
Figure 5. Camera setup for data acquisition 

An pivotal factor in taking pictures is the actual distance between 
the statue and the camera.  A constant distance was kept while 
taking pictures of the monument from various perspectives in order 
to ensure the most realistic 3D reconstruction.  The angles were 
chosen so that there was at least 60% overlap between each image 
and its predecessor.  During the 3D reconstruction phase, this 
overlap makes image alignment easier.  

 The images are arranged chronologically, creating a logical flow 
for further examination, to facilitate methodical processing.  A 
custom function preprocesses these images with Gaussian blurring, 
normalisation, and histogram equalisation are included in this 
function.  Image noise and detail can be decreased with the aid of 
Gaussian blurring.  Through the normalisation process, the 
intensity of the image is scaled to fall within a predetermined range, 
often 0 to 255.  By applying histogram equalisation to the luma (Y), 
or brightness, blue projection (U), and red projection (V) colour 
spaces, the image's contrast is improved, making details easier to 
see.  Downsampling is then utilised to lower each image's 
resolution while maintaining important visual details.  The goal of 
this meticulous downsampling procedure is to balance image 
quality and computational effectiveness. This balance is critical for 
ensuring optimal performance during subsequent processing stages. 

The Structure from Motion (SfM) algorithm18 was applied for 
the reconstruction step after the image capture process was finished. 
Key-point detection, key-point matching, bundle modification, and 
dense point cloud production are some of the phases involved in 
this process. 
2D-3D Reconstruction Algorithm 

A two-step procedure starts as soon as the images are prepared. 
Initially, 2D photos are transformed into 3D models using SfM. 
Because of its scalable and user-friendly design, it is ideal for online 
platforms such as virtual museums. In the second section, known 
as data association, pictures are compared to determine how similar 
they are. This aids in producing a precise 3D model that may be 
improved upon. 
Feature Detection and Matching 

Finding and matching features across several images is the initial 
step in the SfM process, which is accomplished by employing 
feature descriptor methods.  These consist of  Scale-Invariant 
Feature Transform (SIFT),19  Oriented FAST and Rotated BRIEF 
(ORB),20 and Accelerated-KAZE (AKAZE).21 These algorithms 
identify distinct points in the pictures, which are subsequently 
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compared to produce three-dimensional points.  SIFT identifies 
local characteristics in pictures. It is based on the object's 
appearance and is unaffected by small changes in viewpoint, noise, 
illumination, rotation, or image scale. SIFT identifies possible key 
spots in an image, applies different filters to it, determines their 
stability, assigns an orientation, and then computes a descriptor for 
these key points.  Conversely, ORB is a feature detector that is both 
quick and robust.  

It performs well in real time and is accurate and efficient.  ORB 
makes rotation invariant by identifying important points using a 
pyramid structure and determining their orientation.  A modified 
version of the BRIEF descriptor is then used to further process these 
important points.  The feature matching algorithm AKAZE is 
precise, consistent, and effective. It employs the Additive Operator 
Splitting (AOS) scheme, a novel technique.  Instead of smoothing 
images, it diffuses them using a nonlinear scale space.  In this scale 
space, the approach finds important spots and calculates their 
descriptors.  The end product is a collection of unique and robust 
key points that work well with a variety of noise and 
transformations. 

Each of these approaches has advantages and disadvantages of 
its own.  Despite being resilient to changes in scale and rotation, 
SIFT can be computationally demanding.  Conversely, ORB is a 
quicker approach that is resistant to rotational but not scale changes.  
An algorithm called AKAZE offers a decent balance between 
accuracy, robustness, and efficiency.  A FlannBased Matcher is 
developed to match the critical spots when the SIFT detector is 
utilised.  A collection of algorithms designed for quick nearest 
neighbour searches in big datasets and for high dimensional 
features may be found in the Fast Library for Approximate Nearest 
Neighbours (FLANN) library.  It performs better than conventional 
algorithms, offering a quicker and more efficient way to look for 
patterns in data. Here, the two nearest neighbours (k=2) for each 
descriptor are found using the knn Match technique and the 
FlannBased Matcher, as indicated in Equation (2).  

Let D1 and D2 be descriptors from the first and second images, 
respectively. For each descriptor d1  D1, FLANN finds the two 
nearest neighbors d2_1 and d2_2 in D2 : 

 
𝑀𝑀𝑀𝑀𝑡𝑡𝑀𝑀ℎ 𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑1,𝑑𝑑21)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑2,𝑑𝑑22)
< 𝑟𝑟𝑀𝑀𝑡𝑡𝑖𝑖𝑔𝑔 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑖𝑖ℎ𝑔𝑔𝑜𝑜𝑔𝑔               (2) 

 
When the ORB or AKAZE detectors are used, Brute-Force 

Matcher (BFMatcher) is created to match key points. As shown in 
Equation (2), the BFMatcher matches each descriptor in the first 
image with the descriptor in the second image that it is most like, 
according to the specified distance measurement method. Here, 
Hamming distance is used as the norm type when 'ORB' is used, 
and Hamming2 is used for AKAZE. Regardless of the type of 
matcher used, the Lowe's ratio test is then applied to filter out good 
matches. When ORB or AKAZE is used, all matches are considered 
good matches as they are already cross-checked. 
Pose Estimation and Triangulation 

Post establishment of correspondences between images, the 
geometric constraints and the Perspective-n-Point (PnP) method are 
used to estimate the relative position and orientation of pairs of 

images. The PnP method is used to determine the camera's position 
and orientation, or 'pose', in 3D space. This is done by using a set 
of known points in 3D space and their corresponding 2D 
projections in the image. Accurate 3D models require an 
understanding of the camera's pose at the time of each shot. The 
method is implemented by reducing the reprojection error given in 
Equation (3): 

 
𝑚𝑚𝑑𝑑𝑑𝑑
𝑅𝑅,𝑑𝑑

 ∑ ||𝑚𝑚𝑑𝑑 −  𝜋𝜋(𝑅𝑅𝑀𝑀𝑑𝑑 + 𝑡𝑡)||2𝑑𝑑                         (3) 
 
where � is the projection function, R is the rotation matrix, t is 

the translation vector, and Mi, mi are the 3D and corresponding 2D 
points. The RANdom SAmple Consensus (RANSAC) technique is 
utilised to address outliers in the point correspondences and 
strengthen the pose estimate. 

Following the establishment of the camera's pose for each 
images, the 3D coordinates of the scene's points are estimated using 
the triangulation technique. This entails determining a point's 
location in three dimensions by comparing its positions in two or 
more images.  The triangulation technique serves as the basis for 
creating an extensive 3D model by reconstructing the scene's spatial 
arrangement using fundamental geometric concepts.  Equation (4) 
illustrates the triangulation process. In order to determine the 3D 
point X, two projection matrices P1 and P2 and the associated 
points x1 and x2 in the images are required. 

Triangulation is used to estimate the 3D coordinates of points in 
the scene once the camera's posture has been determined for each 
picture. This involves determining the location of a specific point 
in 3D space based on its position in two or more images. By using 
basic geometric principles, the triangulation process reconstructs 
the spatial layout of the scene, forming the foundation for 
generating a comprehensive 3D model.  

The triangulation process can be described as shown in Equation 
(4). Given two projection matrices P1 and P2 and the corresponding 
points x1 and x2 in the images, the 3D point X can be found. 

 
𝐴𝐴𝑋𝑋 = 0                                                (4) 

 
Where 𝐴𝐴 is constructed as: 

𝐴𝐴 = �

𝑥𝑥1𝑃𝑃13 − 𝑃𝑃11
𝑦𝑦1𝑃𝑃13 − 𝑃𝑃12
𝑥𝑥2𝑃𝑃23 − 𝑃𝑃21
𝑦𝑦2𝑃𝑃23 − 𝑃𝑃22

� 

 
Here, 𝑃𝑃1𝑑𝑑 and 𝑃𝑃2𝑑𝑑 denote the 𝑖𝑖𝑑𝑑ℎ row of the projection matrices 

𝑃𝑃1 and 𝑃𝑃2, and (𝑥𝑥1,𝑦𝑦1) and (𝑥𝑥2,𝑦𝑦2) are the coordinates of the 
points in the images. The entire process followed for model 
building is represented through Figure 6. 

The triangulation process takes as input matched points from two 
images and the respective projection matrices of the cameras that 
captured these images. Figure 7 shows the triangulation method. 
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The point in 3D space where these lines best intersect is calculated 
using linear algebra technique like the Direct Linear Transform 
(DLT). This intersection point in 3D space is the estimated real-
world position of the matched point. A collection of 3D points that 
constitute a sparse reconstruction of the scene is produced by 
repeating this process for each matching point.  

 
Figure 7. Illustration of the Triangulation Method22 

Optimization & Model building 
The triangulation approach yields a dense cloud of points for 3D 

reconstruction. The bundle adjustment algorithm is used to fine-
tune these 3D points and camera pose estimates obtained from the 
PnP approach. This step helps align the images accurately and 
prepares them for reconstructing the scene's shape. Bundle 
Adjustment (BA), a computer vision optimisation technique, 
maximises the accuracy of the 3D structure and camera settings. 
Using the initially calculated 3D points and camera poses, it 
minimises the discrepancy between the observed and predicted 
positions of points. The nonlinear least squares method is used in 
the optimisation process. Using the initial estimations, the error is 
calculated, the parameters are changed to minimise the error, and 
the process is repeated until either the maximum number of 
iterations is achieved or the error can no longer be considerably 
decreased. The reconstructed scene's shape is then represented by a 
PLY file for visualisation and analysis, which is created from the 
reconstructed 3D points and their colours for simple rendering and 
manipulation in 3D modelling tools. 

All of the procedures needed to perform Structure from Motion 
(SfM) and produce a 3D reconstruction from 2D images are 
described in Algorithm 1.  

Algorithm 1: 2d to 3d reconstruction method 

Input: 2d images 
Output: 3d model file for visualization 
Initialization 
1: IL ← Image_loader 
2: FF ← FindFeatures 
3: EM ← ComputeEssentialMatrix 
4: BA ← BundleAdjust 
5: for img in IL(dir, scale) do: 
6:   pts1, pts2 ← FF(img_0, img_1) 
7: matches ← MatchFeatures(pts1, pts2) 
8:  P1, P2, E ← EM(matches) 
9: R, T ← RecoverPose(E) 
10: p_cloud ← TriangN(pts1, pts2, P1, P2) 
11:  opt_params ← BA(K, R, T, p_cloud, re) 
12:  pts, colors ← FormatColors(p_cloud) 
13: verts ← PointsColors(pts_out, colors) 
14:  ply file ←GeneratePLY(len(verts), verts) 
15:   return 3D model file 
End 

 
The process of turning 2D photos into a 3D model is represented 

by the algorithm. Images are loaded, their features are recognised 
and matched, and their projection matrices are calculated. When 
triangulating points to create a 3D point cloud, this information is 
used to calculate the necessary matrix and retrieve posture data. The 
point cloud is normalized and optimized to reduce reprojection 
error. After this optimization, the data is formatted, post processed, 
and combined with color information. Finally, the output is written 
into a .ply file, which represents the 3D reconstruction of the 
original 2D images. This file can be visualized on different 
platforms. Here, cloudcompare, an open-source software is used to 
visualize the 3d model. 
Platform building 

The generated 3D models are integrated on a website. This 
website serves as a platform for virtual meuseum and showcasing 
historical artifacts. This makes it possible for users to view 
exhibitions from any device with internet access. To ensure the best 
possible viewing and interaction on various screen sizes, the 
responsive design complements the user-friendly interface. A 
comprehensive service area for generating 3D models from 2D 

 
Figure 6. Complete steps of the 2d to 3d pipeline followed for 3D model building 
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pictures, navigational tools, and a carousel showcase are among the 
interactive elements. The website incorporates technologies such as 
Google Web Fonts and Icon Libraries, Animate.css, WOW.js, Owl 
Carousel, and Lightbox to improve user experience and picture 
presentation. It has fast loading speeds, accessible design, and 
cross-browser compatibility to optimise usage.   

The primary function of the website is the 3D model viewer, 
which enables in-depth engagement with rebuilt artefacts. WebGL 
technology is used in the viewer's implementation to provide 
responsive and fluid model manipulation. By rotating, zooming, 
and panning the models, users may view the artefacts from all 
directions. The complexities and historical relevance of each 
artefact can be better understood by users thanks to this access.   

Figure 6 details the entire process for the suggested 2D to 3D 
reconstruction model, including all preprocessing and 
postprocessing steps.  

RESULTS AND DISCUSSION 
The implementation of the proposed 2D-to-3D reconstruction 

method yielded significant and promising results. The suggested 
2D-to-3D reconstruction method's use produced noteworthy and 
encouraging outcomes. The results from several steps of the 
procedure are shown in this part, including camera calibration, data 
collection and preprocessing, feature matching and detection, pose 
estimation and triangulation, and the finished 3D reconstruction. 
Performance Evaluation of the 2d to 3d reconstruction 

Using the chequerboard method, the camera calibration 
procedure was successfully finished. A number of pictures were 
taken of the chequerboard from various angles and distances. 
Accurate estimations were made of the intrinsic camera parameters, 
such as the distortion coefficients and camera matrix. The camera 
was calibrated up to 95%, according to the calibration results, 
which included the camera matrix, distortion parameters, rotation 
vectors, and translation vectors. Additionally, an inaccuracy of 
roughly 0.07% was demonstrated when a distorted image was 
undistorted using the camera settings.This calibration made sure 
that later photos were distortion-free and recorded the scene's 
geometric characteristics. 

The images were preprocessed using methods such histogram 
equalisation, normalisation, and Gaussian blurring to improve there 
quality. In order to balance image quality and computing efficiency, 
down sampling was also used. The images were consistently 
prepared thanks to the preprocessing stages, which made 2D-to-3D 
reconstruction precise and effective. Figure 8 displays the various 
preprocessing methods used on one image.  

 

     
     (a)                      (b) 

(c)   (d) 
Figure 8. Preprocessing techniques applied on the images (a) Original 
Image (b) Gaussian Blur (c) Down Sampling  (d) Histogram 
Equalization  

 
The SIFT, ORB, and AKAZE algorithms were used in the 

feature detection and matching procedure. Every technique found 
distinctive keypoints in the images, which were compared to create 
correlations. While ORB and AKAZE gave computational 
efficiency, SIFT offered robust feature recognition and matching. 
A comparison of keypoints captured in various approaches, which 
served as the basis for the 3D reconstruction, namely, SIFT, ORB, 
and AKAZE, respectively are depicted in Figure 9.  

 

   
             (a)                   (b)           (c) 

Figure 9. Feature matching from different applied algorithms  
(a) SIFT (b) ORB (c) Akaze 

 
SIFT yields 6821 key points and 128-dimensional descriptors, 

providing a rich structure for 3D modeling, despite being 
computationally intensive. ORB, on the other hand, is a faster and 
more efficient alternative to SIFT, designed for real-time 
applications. However, it detects fewer features (500 key points 
with 32-dimensional descriptors) which are not evenly distributed. 
The A-KAZE algorithm identifies the greatest number of features 
(6985 key points with 61-dimensional descriptors) fairly evenly 
distributed across the image. Depending on the specific use case, 
while A-KAZE was valuable for computational efficiency and 
dense feature matching, SIFT excelled in providing a better 
structure for the 3D model due to its robustness and distinctive 
descriptors. 

 The table (1) below summarizes the performance of SIFT, ORB, 
and AKAZE algorithms in terms of the number of key points 
detected, the dimensions of their descriptors, and their key features. 
The values were observed over a set of images, and the average 
number of keypoints detected by each algorithm is presented. 
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Table 1. Comparison of Algorithms & their performances 
Algorithm
  

No. of 
Key 
points 
detected 

Descriptor 
Dimensions
  

Key Features 

SIFT 6821 128 Robust feature 
detection, 
computationally 
intensive 

ORB 500 32 Fast, efficient, 
fewer and 
unevenly 
distributed 
features 

AKAZE 6985 61 High number of 
features, evenly 
distributed, 
efficient 

 
Upon acquiring the features and their descriptions, they were 

feature matched. The application of Lowe's ratio test23 filtered out 
good matches, ensuring the reliability of the correspondences. The 
feature matching image is shown in Figure 10. 

 

 
Figure 10. Feature matching on the keypoint detected algorithm 

 
Post completion of feature matching and pose estimation using 

the Perspective-n-Point (PnP) algorithm, triangulation was then 
used to estimate the 3D coordinates of scene points based on their 
2D image correspondences and camera projection matrices. The 
initial 3D point cloud, obtained from triangulation, was refined 
using an optimization technique known as bundle adjustment. This 
technique minimizes the reprojection error by iteratively fine-
tuning the camera parameters and the positions of the 3D points. 
The result of this fine-tuning is a coherent and consistent 3D 
reconstruction. An optimized 3D model exhibits reduced 
reprojection error, which is indicative of a high-fidelity 
reconstruction of the scene.  

The term reprojection error refers to the alignment degree 
between a 3D point, estimated via triangulation, and its 
corresponding 2D projection in the image. Ideally, for accurate 3D 
reconstruction, this error should be minimized. This error is 
measured by projecting the 3D points back onto the camera image 
plane and comparing the projected points with the original 2D 
image points. The distance between these projected and original 

points is then computed, typically in pixels. To illustrate the 
variation of the reprojection error across the iterations, Matplotlib 
was used to create a scatter plot. This plot is shown in Figure 11(a), 
maps the reprojection error against its corresponding image, and 
serves as an important tool for visually tracking the behavior of the 
error as more images are processed. It indicates the worst-case error 
scenario obtained from the various models reconstructed. As 
observed, except for a few spikes reaching 15%, reprojection error 
either reduces or at least maintains stability as the process 
progresses. This indicates an improvement in the accuracy of the 
3D reconstruction. A significant increase in the error for the 15th 
image is due to less features in it affecting  feature 
matching,  complications with the essential matrix and pose 
recovery. With the error plotted on the website, users can visually 
follow its trend, making it easier to identify and resolve potential 
problems by updating their images. Figure 11(b) shows the plot for 
the reconstruction error obtained from the algorithms (SIFT, 
AKAZE and ORB) for the artifact taken in study for the 
demonstration of all the processes earlier. As observed, the 
reconstruction error is typically much less than 15% for SIFT and 
35% for AKAZE, which are the worst-case values obtained during 
the reconstruction of various models during our study. 
 

 
Figure 11 (a). Plotting the reprojection error matrix against images 
using SIFT for the worst-case reprojection 
 

Finally, the 3D points, along with their associated colors, were 
converted into a PLY file format. This file was used for 
visualization and analysis, providing a detailed and accurate 
representation of the reconstructed artifact. The reconstructed 3D 
models were then integrated into a virtual museum platform, 
accessible via a dedicated website. There are various ways of 
modeling and visualizing these models.24 The 3D model viewer, 
powered by WebGL technology, was used due to its lightweight 
faster integration with the website and its effective representation 
of point clouds. This enabled users to rotate, zoom, and pan the 
models, allowing them to examine the artifacts from various angles. 
Figure 12 showcases the user interface for the website. 
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(a) 
 

(b) 
Figure 12. Website Interface for 3d reconstruction (a) About Page 
and (b) Services Page 

 
Functional/Usability evaluation 

The evaluation of the developed model was based on its 
application in virtual museums, with focus placed on two primary 
cases: small figurines and other statues or heritage sites. The 
Structure from Motion (SfM) technique, utilized by the model, is 
used for low-cost 3D reconstruction that creates a sparse 
representation of the scene, resulting in sparse point clouds.25 

Despite the sparsity, substantial detail was retained, and an accurate 
representation of the original form was provided by the generated 
3D models. An example of point clouds for such small artifacts is 
illustrated in Figure 13, using the same artifact referenced in the 
preprocessing and feature matching results. 
 

     

 
Figure 13. Sparse Representation of Point Clouds for smaller artifacts 

 
Another example of a reconstructed artifact is shown in Figure 

14. In the case of other artifacts and heritage sites, the reprojection 
error was found to be higher, averaging around 30%. This increased 
error could be attributed to the larger scale and complexity of these 
structures. However, valuable insights into their 3D structure and 
spatial characteristics were still provided by the reconstructed 
models of these sites. 

 
Figure 11 (b). Plotting the reprojection error matrix against images using all algorithms for the reconstructed artifact. 
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        (a)    (b) 

Figure 14. (a) Original Image (b) Sparse Representation of Point 
Cloud 

 
Apart from objects, reconstructions were also carried out for 

historical monuments. Figure 15 showcases the reconstruction 
derived from smaller representations of historical sites, as traveling 
to these sites to capture images was not feasible. The details of the 
original artifact were preserved in the virtual representations (15 
(b), 15 (d)), allowing for a more comprehensive visualization. The 
observed results demonstrated the model's potential for reproducing 
similar results in a more realistic setting. 

  
(a)                                   (b) 

  
(c)                                   (d) 

Figure 15. Historical structures visualization (a) Original image of 
Petra (b) Point cloud visualization of Petra and (c) Original Image of 
Taj Mahal (d) Point cloud visualization of Taj Mahal 

 
A thorough understanding of the parameters influencing 3D 

reconstruction was found to be essential as they directly impacted 
the success and accuracy of the reconstruction process. These 
parameters, including depth information, number of images, 
changes in baseline, camera calibration, image resolution, and 
feature matching techniques, among others, played significant roles 
in the 3D reconstruction pipeline. The level of detail and 

completeness of the reconstruction primarily differed when 
reconstructing a 3D model using 40 images compared to 60. A 
denser and more complete reconstruction was generally yielded by 
more images, but this also increased the computational complexity 
and time required for processing. Instances of overfitting with many 
random points in the 3D model were also observed, obscuring the 
determination of shape and structure. Therefore, the optimal 
number of images were dependent on the specific features and size 
of the artifact, balancing between reconstruction quality and 
computational efficiency. The baseline in 3D reconstruction refers 
to the distance between two camera positions and was found to be 
crucial in determining the accuracy and depth resolution of the 3D 
reconstruction. The distance between the camera setup and the 
monument or artifact played a crucial role in the quality of the 
reconstruction. This was because a smaller distance will lead to 
better image resolution and hence, better depth information. 
However, this also increases the error margin as in small distances, 
little fluctuations can cause huge changes in the information 
obtained. This error margin can be reduced by increasing the 
distance. However, if the distance increases too much, the depth 
information might be lost. Therefore, it is crucial to keep a balance 
between the two.  

CONCLUSION 
Rebuilding 3D models from 2D images was the main focus of 

this project, which has applications in digital preservation and 
artefact visualisation in a virtual museum context. In order to 
guarantee precise image acquisition, the procedure started with 
camera calibration. Data collection and high-resolution image 
preprocessing came next. Using feature detection and matching 
methods like SIFT, ORB, and AKAZE, the 3D reconstruction's 
accuracy was attained.  The FLANN algorithm was then used to 
match them. After estimating the pose using the Perspective-n-
Point technique, 3D coordinates were determined using 
triangulation. Bundle adjustment was used to optimise the original 
3D point cloud, resulting in a precise and comprehensive 3D model. 
This model was then added to a website, providing viewers with an 
immersive experience. By transforming 2D images into 3D models, 
the platform helps in visualizing the virtual museum. 

The virtual meuseum and visualization of historical artifacts 
are not the only use for three-dimensional reconstruction. 
Reconstructed 3D meshes are widely used in gaming and virtual 
reality (VR) to produce realistic and immersive environments. 
26 Moreover, 3D reconstruction is crucial in the industrial and 
medical fields.26 By enhancing the completeness and quality of 
3D models, sophisticated reconstruction techniques can get 
around the limitations of traditional approaches. This is 
important for applications like endoscopic inspection and non-
destructive testing in industrial settings.27 

Looking further, more development and improvement are yet 
possible. The process of turning 2D images into 3D models can 
be refined even further. The virtual museum platform could also 
be expanded to include more artifacts and interactive features. 
Deep learning, an advanced technology, can be used to improve 
the process even more.28 
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The project achieved its goal of providing a simple yet 
efficient approach to enhance 2D images of artifacts with depth 
information, contributing to the digitalization of meuseums. The 
outcomes highlight the potential for further development and 
application of these techniques in various fields, including 
education, research, and tourism. 
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