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The early detection and diagnosis of plant diseases are 
essential for improving agricultural productivity and 
ensuring global food security. In recent years, deep 
learning techniques have demonstrated significant 
potential in enhancing the accuracy of plant disease 
identification. This study presents a modified ResNet50 
architecture specifically designed for plant disease 
detection. The proposed model incorporates advanced 
features, including attention mechanisms, adaptive 
pooling layers, and feature recalibration techniques, to 
enhance its ability to identify diseased plant leaves from 
images. These modifications significantly improve the model’s capacity to recognize intricate patterns and subtle disease variations. Additionally, 
adaptive learning strategies utilizing large-scale datasets such as ImageNet have been employed to fine-tune the model for improved 
performance. The effectiveness of the modified ResNet50 architecture has been evaluated through extensive experimentation on multiple 
datasets, including PlantVillage and custom datasets. Comparative analysis with existing state-of-the-art approaches confirms that the proposed 
model achieves higher accuracy, robustness, and efficiency in detecting various plant diseases across different species and environmental 
conditions. Furthermore, this research examines the interpretability of model predictions and highlights potential directions for future 
advancements and real-world applications in smart agriculture. 

Keywords: Plant Disease Detection, Facility Diagnosis, Deep Learning, ResNet50, Modified ResNet50, CNN, Image-based Classification.

INTRODUCTION 
The early and accurate detection of plant diseases is crucial for 

achieving sustainable agriculture and ensuring global food security. 
With the increasing challenges posed by pests and pathogens, 
leveraging technological advancements is essential to protect crop 
yields and maintain food supply chains. In recent years, deep 
learning has revolutionized plant disease diagnosis by enhancing 
accuracy and automating the detection process.  

Among various deep learning architectures, ResNet50 has 
gained prominence for its effectiveness in complex image 
classification tasks. However, plant disease identification requires 
customized solutions that enhance the capabilities of existing 
models. This research introduces a modified ResNet50 architecture 
specifically designed to improve plant disease detection. The 
proposed framework incorporates advanced techniques such as 
attention mechanisms, adaptive pooling layers, and feature 
recalibration strategies to improve the model’s ability to recognize 
subtle disease characteristics. Additionally, transfer learning and 
fine-tuning with large datasets like ImageNet enhance the model’s 
adaptability and performance in real-world agricultural 
applications. 

Extensive experiments on diverse plant disease datasets, 
including PlantVillage and custom datasets, validate the 
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effectiveness and generalization ability of the modified ResNet50 
architecture. Comparative analysis with existing approaches 
demonstrates that the proposed model achieves higher accuracy, 
efficiency, and robustness across various plant species and 
environmental conditions. 

Furthermore, this study explores the interpretability of model 
predictions, offering insights into the decision-making process 
behind disease classification. The findings contribute to the 
development of intelligent agricultural solutions that provide 
farmers and agronomists with reliable tools for early disease 
detection and management. 

In conclusion, the modified ResNet50 architecture represents a 
significant advancement in plant disease detection, promoting 
proactive disease management strategies and supporting 
sustainable agriculture. This research paves the way for future 
innovations in smart farming technologies, ensuring healthier crops 
and improved global food security. 

LITERATURE REVIEW 
Plant diseases pose a significant threat to global food security 

and the development of sustainable agriculture, necessitating the 
exploration of innovative disease detection and management 
strategies. Over the years, the integration of computer vision and 
machine learning algorithms has revolutionized plant pathology, 
enabling fast and accurate disease identification through image 
analysis. A key aspect of modern plant disease detection techniques 
is the use of deep learning architectures, which have demonstrated 
exceptional performance in processing complex image datasets. 
Among these, Convolutional Neural Networks (CNNs) have 
emerged as a powerful approach due to their ability to extract 
hierarchical representations from raw data. 

ResNet50, a variant of the Residual Network (ResNet) 
architecture, has gained recognition for its superior performance in 
image classification tasks. One of its primary advantages lies in its 
deep structure, which employs residual connections to address the 
issue of vanishing gradients, allowing deeper networks to be trained 
effectively. The application of ResNet50 in plant disease detection 
has been extensively studied. Despite significant advancements in 
deep learning-based plant disease detection, several challenges 
persist. These include limited availability of annotated datasets, the 
domain shift between controlled laboratory images and real-world 
agricultural conditions, and the interpretability of model 
predictions. Addressing these challenges remains a crucial area for 
further research. 

The literature underscores the transformative potential of deep 
learning, particularly ResNet50, in advancing plant disease 
detection. By leveraging machine learning algorithms and domain-
specific knowledge, researchers aim to develop highly efficient and 
scalable solutions to mitigate the impact of plant diseases on 
agriculture. 

S. Zhang et al introduced MU-Net, a variant of the U-Net 
architecture, specifically designed for segmenting diseased plant 
leaves.1 Given the complexity of plant disease images—
characterized by irregular shapes, varying sizes, and diverse color 
patterns—MU-Net integrates ResBlock and Respath mechanisms 

to enhance segmentation accuracy. Experimental results 
demonstrated that MU-Net outperformed conventional methods, 
improving both efficiency and accuracy in plant disease 
identification. The study highlights the importance of deep learning 
in agricultural research and underscores the potential of MU-Net in 
digital agriculture applications. 

A. Pandian et al addressed the early diagnosis of plant diseases, 
emphasizing the need for accurate identification to improve 
agricultural productivity.2 Their study introduced ResNet197, an 
advanced deep residual CNN, trained and tested on a dataset 
comprising 154,500 images from 103 plant classes across 22 
species. Through techniques such as image augmentation 
(cropping, flipping, rotation, and saturation adjustments), and 
hyperparameter tuning using an evolutionary search approach, the 
model achieved a classification accuracy of 99.58%, outperforming 
standard transfer learning models and ResNet architectures. The 
findings demonstrate the effectiveness of deep learning in plant 
disease classification, showcasing the potential of ResNet197 for 
practical deployment in agricultural disease management. 
Similarly, V. Suryawanshi et al investigated the role of 
regularization techniques, including dropout, batch normalization, 
and data augmentation, in improving model generalization and 
minimizing overfitting in deep neural networks for plant disease 
detection.3 The study evaluated VGG16, VGG19, and ResNet50 
using the PlantVillage dataset (54,000 images from 14 plant 
species). The results revealed that oscillatory training improved 
performance, with ResNet50 outperforming other regularization 
techniques. However, the study also found that combining dropout, 
batch normalization, and traditional augmentation methods did not 
always yield the best results. These findings underscore the 
importance of selecting appropriate regularization strategies to 
optimize deep learning models for agricultural applications. 

A. Stephen et al explored the use of deep learning and pre-trained 
CNN architectures for detecting rice diseases in India, which 
significantly impact crop yields.4 They evaluated ResNet34, 
ResNet50, and Inception models, incorporating self-attention 
mechanisms to enhance feature extraction. The proposed ResNet34 
model with self-attention achieved a classification accuracy of 
98.54%, outperforming competing models. The study highlights 
the importance of monitoring rice crops to prevent disease 
outbreaks and stresses the need for automated classification 
methods to assist farmers in early disease diagnosis. Additionally, 
U. A. Ruby et al proposed a deep learning-based model for rice leaf 
disease identification, emphasizing the importance of real-time 
disease prevention and treatment.5 The study employed ResNet50, 
InceptionV3, and DenseNet architectures, demonstrating that 
ResNet50 achieved the highest classification accuracy (98.44%). 
The research underscores the role of advanced technologies, 
particularly deep learning, in improving disease detection in 
agriculture, ultimately contributing to food security and sustainable 
farming practices. 

In the paper of M. Ahmed et al the urgent need for early detection 
and classification of foliar plant diseases was highlighted.6 The 
study examined challenges such as noise reduction and feature 
extraction limitations in traditional classification systems. The 
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authors proposed three novel deep learning architectures: ResNet, 
Modified ResNet (MResNet), and Inception-ResNet (IncResNet), 
trained on a dataset of 2,631 color images. Their findings revealed 
that the proposed models outperformed existing approaches, 
achieving classification accuracies of 99.62% and 100% on 
standard and augmented datasets, respectively. The study calls for 
continued advancements in deep learning models to address 
existing gaps in plant disease detection and classification. Many 
researchers have effectively utilized basic image enhancement 
techniques to detect plant diseases.7–12 Generative Adversarial 
Networks (GANs) were employed to generate synthetic, database-
driven semantic data for plant disease classification.13 

PLANT DISEASE DETECTION 
This section highlights the significance of researching plant 

diseases in agriculture and the transition towards automated 
detection methods using deep learning. 

J. Chen et al introduced LeafNet, a CNN model designed for tea 
tree classification, which demonstrated superior performance 
compared to Support Vector Machine (SVM) and Multilayer 
Perceptron (MLP) classifiers.14 K. Kc et al analyzed the 
performance of MobileNet and found that it achieved lower 
accuracy than VGG. However, an improved and lightweight 
version of MobileNet was proposed, significantly reducing training 
time.15 

Additionally, M. Arsenovic et al., proposed an advanced deep 
learning framework called Plant Disease Network, which is 
specifically designed for complex agricultural environments.16 In 
the paper of P. Jiang et al the VGG baseline model was effectively 
used to detect five apple viruses.17 The study employed various 
deep learning architectures, including AlexNet, GoogLeNet, 
multiple versions of ResNet, and VGG, highlighting the 
effectiveness of CNNs in plant disease classification and 
visualization. 

Several deep learning models are widely used for plant disease 
detection, including GoogLeNet, VGG-16, and ResNet-50. 
Researchers have also explored enhanced and cascaded versions of 
these architectures, such as CIFAR-10, VGG-Inception, Cascaded 
AlexNet with GoogLeNet, Modified MobileNet, Modified LeNet, 
and Modified GoogLeNet. 

Residual Networks (ResNet) belong to the CNN family and can 
be expanded up to 152 layers. Instead of learning direct mappings, 
ResNet learns residual functions, which simplifies optimization.18 
The architecture also reduces or eliminates unnecessary 
connections, allowing subsequent layers to learn independently 
while preserving essential features from earlier layers. 

Li et al. conducted a comprehensive review of current trends and 
challenges in plant disease detection, emphasizing the superior 
performance of CNNs over traditional classifiers such as Support 
Vector Machines (SVMs) and Artificial Neural Networks 
(ANNs).19 Their findings reinforce the effectiveness of deep 
learning models in accurately identifying plant diseases. 

Wang et al. introduced an advanced deep block attention 
mechanism integrated with convolutional kernels to enhance the 
detection of disease-related features.20 Their study demonstrated 

that incorporating attention mechanisms significantly improves the 
precision of plant disease classification. 

Delnevo et al. developed a permaculture system that combines 
deep learning with IoT technology to analyze and classify plant 
diseases.21 Their research involved evaluating multiple CNN 
architectures, assessing their effectiveness in real-world 
agricultural applications. 

Saleem et al. explored the role of deep learning models in 
horticultural plant disease detection, highlighting the impact of data 
augmentation techniques in enhancing classification accuracy.22 
Their experiments confirmed that training CNNs with augmented 
datasets improves their ability to generalize across diverse plant 
species. 

The EfficientNetV2 architecture and its derivatives were 
employed for detecting diseases in cardamom plants, with the 
EfficientNetV2-L model demonstrating superior performance in 
classification tasks.23 Additionally, a data augmentation technique 
based on Deep Convolutional Generative Adversarial Networks 
(DCGANs) was implemented alongside InceptionV3, resulting in a 
significant improvement in detecting citrus disease severity.24 

A machine learning-based approach was utilized for the early 
prediction of leaf blight in tea plants.25 The study explored how 
disease lifecycle patterns and environmental factors influence 
prediction accuracy. To address data scarcity, Generative 
Adversarial Networks (GANs) were applied, with DoubleGAN 
generating clearer and more realistic synthetic images to 
supplement training datasets. Moreover, an optimized EfficientNet-
based deep learning framework utilizing mutational learning 
techniques successfully identified various mutant and diseased leaf 
genes, further advancing plant disease diagnostics. 

Plant disease detection is a crucial aspect of modern agriculture, 
ensuring early diagnosis and effective management to prevent crop 
losses. Deep learning techniques, particularly Convolutional 
Neural Networks (CNNs), have revolutionized this process by 
automatically extracting features from leaf images to classify them 
as healthy or diseased. The detection pipeline involves image 
preprocessing, feature extraction using convolution and pooling 
layers, and final classification through fully connected layers. By 
leveraging large datasets and advanced neural architectures like 
ResNet, plant disease detection systems achieve high accuracy, 
enabling farmers to take timely action. This technology enhances 
agricultural productivity, reduces dependency on chemical 
treatments, and promotes sustainable farming practices. 

The Figure 1 illustrates a deep learning-based approach for plant 
disease detection using a Convolutional Neural Network (CNN). 
The process begins with extracting pixel values from a leaf image, 
which are then passed through multiple convolutional layers with 
ReLU activation and pooling operations to extract essential 
features. These processed features are flattened and fed into a fully 
connected neural network, which classifies the leaf as either healthy 
or diseased. This automated method enhances accuracy and 
efficiency in plant disease diagnosis, allowing for early detection 
and effective management to improve agricultural productivity and 
reduce crop losses. 
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Figure 1. Plant Disease Detection Process 
 
General Architecture of CNN 
Convolutional Neural Networks (CNNs) are inspired by the 

visual cortex of the human brain and are widely utilized in 
computer vision applications. The fundamental structure of a CNN 
consists of convolutional layers and fully connected layers. A 
convolutional block typically comprises convolutional layers 
followed by pooling layers, which reduce the spatial dimensions of 
images while preserving important features. 

VGGNet Architecture 
VGGNet, developed by Simonyan and Zisserman, is a deep 

CNN architecture with variants containing 11 to 19 layers. It uses a 
3×3 convolutional filter uniformly across the network with a stride 
of 1 pixel. By stacking multiple 3×3 convolutional layers, VGGNet 
achieves a larger receptive field while maintaining computational 
efficiency. The VGG16 architecture consists of 13 convolutional 
layers, 5 max-pooling layers, and 3 fully connected layers, while 
VGG19 has 16 convolutional layers with similar structural 
characteristics. 

ResNet-50 Architecture 
Residual Networks (ResNet) were developed to address the 

vanishing and exploding gradient issues encountered in deep neural 
networks. ResNet introduces skip connections, which allow layers 
to learn residual mappings, preventing gradient degradation and 
improving network depth efficiency. ResNet-50, a widely used 
variant, consists of multiple residual blocks with skip connections, 
ensuring stable gradient flow and efficient deep feature extraction. 

PLANT DISEASE IDENTIFICATION SYSTEM 
The process of plant disease identification involves multiple 

stages, from image preprocessing to final classification. 
1. Image Preprocessing 
Objective: Enhance image quality by reducing distortions and 
improving key visual attributes. 
Methods: Geometric transformations such as rotation, scaling, and 
contrast adjustments are applied. 
2. Image Segmentation 
Objective: Divide an image into meaningful segments to identify 
relevant regions. 
Techniques: Methods such as edge detection, thresholding, and K-
means clustering are commonly used. 

Tools: Canny edge detection and K-means clustering help extract 
disease-specific features. 
3. Feature Extraction 
Objective: Identify key features (e.g., shape, texture, and color) that 
contribute to disease classification. 
Common Techniques: Texture analysis is frequently used to 
distinguish diseased leaves from healthy ones. 
4. Disease Classification 
Objective: Determine whether a plant is healthy or affected by early 
or late blight. 
Methods: Machine learning classifiers analyze extracted features to 
categorize images into disease classes. 

Data Augmentation 
The study by Kosaku Fujita et al. focused on reducing overfitting 

and improving data quality for CNNs through data augmentation 
techniques.26 Their approach involved generating additional 
training samples by introducing controlled noise into existing data. 
These transformations enhanced model generalization by reducing 
spatial sparsity and providing more diverse input for training. 

Their findings demonstrated that ResNet50 consistently 
outperformed other models in terms of precision, accuracy, recall, 
and F1-score, proving its reliability in leaf disease classification. 
The study also employed data imputation techniques to handle 
missing values, ensuring dataset integrity. Point imputation was 
used to replace missing values with the average of corresponding 
attributes, preserving dataset consistency. 

Data augmentation techniques such as random rotation, 
translation, scaling, and brightness adjustments were applied to 
improve model adaptability. These techniques significantly 
enhanced the model’s ability to handle real-world variations in 
agricultural environments, ultimately improving the accuracy of 
plant disease classification. 

METHODOLOGY 
Plant leaves are categorized into three distinct groups: 
1. Healthy Leaves – No visible spots, appearing fresh and 

disease-free. 
2. Early Blight Leaves – Black spots begin to appear, indicating 

disease onset. 
3. Late Blight Leaves – Extensive damage is visible, with the 

plant severely affected. 
 
Data Collection and Preprocessing 
Data collection is the foundation of supervised machine learning. 

For this study, images of both healthy and diseased potato leaves 
were gathered from the PlantVillage dataset, which is publicly 
available on Kaggle. 
Data Preparation and Cleaning 

Frameworks Used: TensorFlow Datasets (TFDS) and Data 
Augmentation techniques. 

Data Splitting: The dataset was divided into training, validation, 
and test sets to evaluate model performance. 

Augmentation Methods: To increase dataset diversity, 
techniques such as image rotation, flipping, and contrast 
enhancement were applied. 
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CNN-Based Modeling 
CNNs are widely utilized for image classification tasks due to 

their superior feature extraction capabilities.27,28 In this study, 
CNNs were implemented to develop the plant disease classification 
model. 
Model Training 
1. The preprocessed dataset was used to train CNN models, 

optimizing them for disease detection. 
2. Trained models were exported as TensorFlow (TF) models for 

further deployment. 
Model Deployment and API Integration 
1. The trained CNN model was integrated into a server-based 

system using TF-Serving with ML-Ops. 
2. A REST API was developed to interact with the trained model 

and classify images. 
Web Application Development 
1. React.js was used to create an interactive web interface for 

disease detection. 
2. Users could upload plant images, and the system would 

classify them as healthy, early blight, or late blight. 
Model Optimization for Edge Devices 
To facilitate deployment on mobile and edge devices, model 

quantization was applied. 
1. Quantization 
Objective: Reduce model size for efficient deployment on low-
power devices. 
Method: Convert floating-point models into TF-Lite models to 
decrease storage and improve inference speed. 
2. Cloud Deployment 
Exported TF-Lite models were deployed on Google Cloud and 
integrated with AWS Lambda-like Google Cloud Functions for 
efficient processing. 
 

Figure 2. Flowchart of Proposed Methodology 
 

The model was built using TensorFlow and trained on the 
PlantVillage dataset, which was obtained from Kaggle. As an 
alternative approach, data can also be collected manually from 
farmers in the form of annotated images of diseased crops. 

However, manual data collection is costly due to the computational 
resources required for processing raw images. 

For model training, TensorFlow datasets (tf.data.dataset) and 
data augmentation techniques were utilized to improve model 
generalization. Data augmentation operations such as rotation, 
transformation, and contrast adjustments were applied to generate 
additional training samples. 

Images in the dataset were categorized based on their color space 
representations, including RGB (Red, Green, Blue), grayscale 
(black and white), and background segmentation. The dataset 
contained images of potato, pepper, and tomato leaves, classified 
into three categories: 
o Healthy Leaves – Disease-free and visually intact. 
o Early Blight Leaves – Presence of black spots indicating early 

disease symptoms. 
o Late Blight Leaves – Extensive damage with visible bacterial 

infections. 
Figure 3 presents an image of healthy potato leaves, which are 

clean and free from disease. 
 

Figure 3. Healthy Potato Leaves 
 
Figure 4 illustrates potato leaves affected by Early Blight 

Disease, characterized by bacterial patches. 
 

Figure 4. Potato Early Blight 

 
Figure 5 shows Late Blight Disease, where the plant is severely 

damaged. 
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Figure 5. Potato Late Blight 
 

Figure 6 displays healthy pepper leaves, which are free from any 
infections. 

 

 
Figure 6. Pepper Healthy 

 
Figure 7 represents pepper leaves affected by bacterial spots, 

with visible bacterial strains. 
 

 
Figure 7.  Pepper Bacterial Spot 

 
Deep learning models require large-scale datasets to improve 

accuracy and mitigate overfitting issues. However, data collection 
is a time-consuming and resource-intensive process. Additionally, 
preprocessing and redistributing collected data demand substantial 

computational effort. To address these challenges, advanced data 
augmentation and synthetic data generation techniques can be 
employed to expand dataset size and diversity. 

In this study, two advanced strategies were implemented to 
enhance the dataset: 
1. Traditional Data Augmentation Techniques: Common 

dilation-based transformations such as rotation, blurring, 
resizing, and shear adjustments were applied. These 
transformations introduce controlled distortions, ensuring that 
the model generalizes well across real-world variations. 

2. Generative Adversarial Networks (GANs) for Synthetic Data 
Generation: Generative Adversarial Networks (GANs) were 
employed to generate synthetic, database-driven semantic data 
for plant disease classification. GANs consist of two neural 
networks—a generator and a discriminator—that work 
together to create highly realistic synthetic images. The 
generator is responsible for producing artificial images, while 
the discriminator determines whether the generated images are 
authentic or synthetic. GAN-based data generation has been 
widely adopted across various machine learning applications 
and is often preferred over Restricted Boltzmann Machines 
(RBMs) and Variational Autoencoders (VAEs) for synthetic 
data synthesis. This approach significantly enhances model 
robustness by supplementing training datasets with realistic 
plant disease images. 

Feature Extraction 
A Convolutional Neural Network (CNN) was employed for 

feature extraction, as CNNs are highly effective for image 
classification tasks. The Modified ResNet50 model was used as a 
pre-trained feature extractor to enhance accuracy. 

Resnet50 architecture 
Before discussing the Modified ResNet50, it is essential to 

understand the ResNet50 architecture. 
ResNet-50, as the name implies, is a deep neural network with 

50 layers. It processes 100×100 pixel images with three channels 
(RGB), indicating that it handles colored images. The architecture 
consists of multiple components, including convolutional layers, 
activation functions (ReLU), pooling layers, and fully connected 
layers. Additionally, it incorporates residual connections, which 
help maintain gradient flow and improve training efficiency. A 
general breakdown of ResNet-50 layers includes: 
 Convolutional Layers – Extract key features from input 

images. 
 Residual Blocks – Enable deeper network training by 

preventing gradient vanishing. 
 Pooling Layers – Reduce spatial dimensions while preserving 

critical features. 
 Fully Connected Layers – Perform final classification based on 

extracted features. 
 
ResNet50 Network Components 
1. Initial Convolutional Layer 
• 7×7 convolutional layer with 64 filters and a stride of 2 

(reduces spatial dimensions). 
• Followed by batch normalization and ReLU activation. 



Alok Singh Chauhan et. al. 

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2025, 13(5), 1117     Pg 7 

 

Figure 8. ResNet50 Architecture 
 

2. Max Pooling Layer 
3×3 max-pooling layer with a stride of 2. 

3. Residual Blocks (x4) 
• Four groups of residual blocks, each containing multiple 

convolutional layers. 
• Uses 1×1, 3×3, and 1×1 convolution layers with batch 

normalization and ReLU activation. 
• Skip connections allow gradient flow across deep layers. 

4. Global Average Pooling Layer 
Reduces feature map size to 1×1, improving classification 
efficiency. 

5. Fully Connected Layer 
Maps feature vectors to output classes. 
 

MODIFIED RESNET50 ARCHITECTURE 
To improve the performance of ResNet50 for plant disease 

detection, several modifications were introduced to enhance its 
feature extraction capability, computational efficiency, and 
classification accuracy. The modifications aim to optimize the 
model for detecting subtle disease symptoms while maintaining a 
lightweight and scalable architecture suitable for real-world 
agricultural applications.  
Key Modifications Implemented in ResNet50: 
1. Enhanced Data Augmentation Techniques 

Applied advanced augmentation strategies such as random 
rotation, flipping, contrast adjustments, and brightness 
normalization to increase dataset diversity and improve 
generalization. 
2. Optimized Training and Hyperparameter Tuning 
• Implemented the ADAM optimization algorithm with a 

learning rate of 0.001 to achieve faster convergence and 
better weight adjustments. 

• Used pre-trained ImageNet weights to initialize the model, 
leveraging transfer learning for improved accuracy. 

• Utilized categorical cross-entropy as the loss function to 
handle multi-class classification effectively. 

3. Architectural Refinements 
• Removed redundant intermediate layers to improve 

computational efficiency. 
• Adjusted the final bottleneck block to maintain a stride of 1, 

ensuring that spatial resolution is preserved for fine-grained 
feature extraction. 

• Modified the initial convolutional layer by setting the stride 
to 1, enabling the use of pre-trained weights more effectively. 

• Introduced dilated convolutions with a dilation rate of 2, 
allowing the model to capture broader contextual 

information. 
4. Custom Convolutional Layers for Feature Enhancement 
• Incorporated a 1×1 convolutional layer with two custom 

feature maps, dynamically adjusting the number of feature 
maps based on disease classification complexity. 

• This modification enhances the model’s ability to 
differentiate between similar plant disease patterns. 

5. Incorporation of Lp Norm Normalization 
• Added an Lp norm normalization layer to refine feature 

aggregation and improve classification accuracy. 
• The normalization method varies based on task requirements:  
• L1 pooling is used for average feature extraction. 
• L∞ pooling is applied for maximum feature selection, 

improving sensitivity to disease symptoms. 
 

 
Figure 9. Modified ResNet50 Architecture 

 
Modified ResNet50 Algorithm  

The Modified ResNet50 Algorithm is structured to enhance plant 
disease classification by incorporating attention mechanisms, 
adaptive pooling, and feature recalibration techniques. Below is the 
step-by-step approach: 
Step 1: Data Preprocessing and Augmentation 
• Load and preprocess the dataset (e.g., PlantVillage dataset). 
• Apply data augmentation techniques:  
• Random rotation, flipping, scaling, contrast adjustments, and 

brightness normalization. 
• Convert all images to 224×224 pixel size (ResNet50 input 

requirement). 
• Normalize pixel values to range [0,1] for stable model 

training. 
• Split the dataset into training, validation, and test sets. 
Step 2: Load Pre-Trained ResNet50 and Modify Architecture 
• Load ResNet50 with ImageNet pre-trained weights. 
• Modify the first convolutional layer: Adjust the stride to 1 for 

improved spatial resolution retention. 
• Introduce attention mechanisms: Add spatial and channel-

wise attention layers to improve focus on diseased regions. 
• Integrate adaptive pooling layers to enhance feature selection. 
• Apply feature recalibration techniques to prioritize important 

features while reducing noise. 
• Replace the fully connected layer with a custom classifier:  
• Use Softmax activation for multi-class disease classification. 
Step 3: Model Compilation and Hyperparameter Optimization 
• Compile the model using Adam optimizer with learning rate 

0.001:  
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• Use categorical cross-entropy loss function for multi-class 
classification. 

• Apply batch normalization to improve gradient stability. 
Step 4: Model Training and Evaluation 
• Train the model for 10-50 epochs, depending on dataset size. 
• Use early stopping to prevent overfitting. 
• Monitor training and validation accuracy/loss:  
• Evaluate model performance on test data. 
• Generate the classification report and confusion matrix to 

analyze misclassifications. 
Step 5: Model Deployment and Optimization 
• Quantize the model for mobile and edge devices:  
• Deploy the model to Google Cloud or AWS Lambda for real-

time disease detection. 
• Develop a web/mobile interface using React.js for user-

friendly plant disease identification. 
Step 6: Real-Time Prediction and Classification 
• Upload or capture an image of a plant leaf. 
• Preprocess the image (resize, normalize, augment). 
• Run the image through the Modified ResNet50 model to 

predict disease class. 
• Display the classification results with confidence scores. 

 

Model Training 
Before training, fine-tuning the model is essential to adjust its 

weights for improved performance in specific classification tasks. 
The model is trained using labeled training data, and its 
performance is assessed using a validation dataset. To optimize 
learning, categorical cross-entropy is used as the loss function, 
while the Adam optimization algorithm is applied for efficient 
weight updates and faster convergence. 

Distinction between Existing Methods and the Proposed 
Approach 

Traditional deep learning techniques for plant disease detection 
primarily rely on architectures like VGG16, VGG19, GoogLeNet, 
and InceptionV3. While these models have shown effectiveness in 
image classification tasks, they often struggle with capturing subtle 
variations in plant diseases. Additionally, these architectures 
require extensive computational resources and do not incorporate 
mechanisms to focus on disease-affected regions, which can lead to 
misclassification. Similarly, the standard ResNet50 model has been 
widely adopted due to its skip connections, which mitigate 
vanishing gradient issues. However, in its original form, ResNet50 
lacks adaptive pooling layers, feature recalibration techniques, and 
attention mechanisms, limiting its ability to differentiate between 
similar plant disease symptoms. 

The Modified ResNet50 architecture presented in this study 
introduces several novel enhancements to address these limitations. 
Firstly, attention mechanisms have been incorporated, allowing the 
model to prioritize disease-affected regions of the plant leaves. This 
ensures a higher focus on relevant features, leading to improved 
classification accuracy. Secondly, the inclusion of adaptive pooling 
layers enhances feature selection, making the model more robust 
across different plant species and environmental conditions. 
Another key innovation is the use of feature recalibration 

techniques, which refine channel-wise learning and enable the 
model to distinguish between important and redundant features. 
Furthermore, transfer learning strategies have been employed by 
leveraging pre-trained ImageNet weights, significantly improving 
model convergence and accuracy. Lastly, data augmentation 
techniques, including GAN-generated synthetic images, have been 
integrated to increase dataset diversity, helping the model adapt to 
previously unseen plant diseases. These modifications collectively 
make the proposed model more efficient, accurate, and 
generalizable compared to existing methods. 

RESULTS AND DISCUSSION 
A key advantage of the Modified ResNet50 architecture is its 

ability to focus on disease-affected regions of plant leaves, which 
significantly enhances classification accuracy. The inclusion of 
attention mechanisms and feature recalibration techniques allows 
the model to prioritize relevant visual features, improving its ability 
to differentiate between healthy and diseased plants. Compared to 
traditional CNN architectures such as VGG16, VGG19, and 
GoogLeNet, the proposed model exhibits better feature extraction 
efficiency, particularly in cases where plant diseases manifest as 
subtle variations in color and texture.                    

The Modified ResNet50 model was extensively tested on the 
Kaggle PlantVillage dataset containing 3,000 previously unseen 
test images, where it achieved an accuracy of 98.90% over 10 
training epochs. The training, validation, and test loss graphs 
illustrate the accuracy attained at the end of each epoch. The 
training and validation loss curves indicate a steady decline in loss 
values, confirming that the model effectively learns disease patterns 
from the dataset. Furthermore, the accuracy graph illustrates 
consistent improvement, demonstrating the model’s ability to 
generalize across different plant species and disease categories. 

 

 
Figure 10. Training, Validation Accuracy and Loss 
 
As observed in the graph, increasing the number of epochs 
significantly reduces training and validation loss, indicating 
improved model convergence. 
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Figure 11: Prediction on Sample Image 

 

 
Figure 12. Result shows Potato is Healthy and is 79.02% Confident 

 

 
Figure 13. Result shows Pepper Leaf is Healthy and is 65.93% 
Confident 

 
When evaluated on sample test images, the model correctly 

classified a healthy potato leaf with 79.02% confidence. However, 
in the case of a pepper leaf, the model predicted it as healthy with 
only 65.93% confidence, suggesting a higher probability of 
misclassification. This indicates that while the model performs well 
overall, certain plant categories may require further fine-tuning to 
achieve higher classification confidence. The model’s ability to 
correctly classify plant diseases depends heavily on dataset 
diversity and the presence of high-quality annotated samples. 
Expanding the training dataset to include more diverse disease 

variations and environmental conditions can further improve 
classification confidence. 

A comparative analysis was conducted to assess the performance 
of Modified ResNet50 against existing deep learning architectures 
used for plant disease detection is given in Table 1. 

 
Table 1: Comparative Analysis of Deep Learning Models for Plant 
Disease Detection 

Model Accuracy 
(%) 

Key Features 

VGG16 91.20% Basic CNN with deep layers 
GoogLeNet 93.45% Inception modules for deeper 

learning 
Standard 
ResNet50 

95.78% Skip connections to prevent 
gradient vanishing 

Modified 
ResNet50 

98.90% Attention mechanisms, 
adaptive pooling, and feature 
recalibration 

 
The results confirm that Modified ResNet50 outperforms 

traditional deep learning models, largely due to its enhanced feature 
selection capabilities. While VGG16 and GoogLeNet provide good 
results, their reliance on standard convolutional operations limits 
their ability to capture fine-grained disease features. In contrast, the 
proposed Modified ResNet50 model efficiently extracts and 
prioritizes disease-related patterns, improving classification 
accuracy. 

The model's performance in real-world agricultural scenarios 
was also examined. Training without a GPU took approximately 
four hours, highlighting the computational demands of deep neural 
networks. While validation and testing were significantly faster, 
real-time deployment in field conditions may require further 
optimization techniques such as model quantization to enable use 
on mobile and edge devices. Additionally, while the Modified 
ResNet50 model outperforms standard deep learning approaches, it 
still faces challenges in handling ambiguous cases, particularly 
when different plant diseases exhibit similar visual symptoms. 
Addressing these limitations in future research will further enhance 
the model’s real-world applicability and accuracy.  

The results obtained from the modified ResNet50 architecture 
for plant disease detection highlight its remarkable effectiveness. 
Achieving an impressive accuracy of 98.90% on the Kaggle 
PlantVillage dataset, the model demonstrates its potential as a 
game-changer in agricultural diagnostics. This significant 
performance boost is largely driven by the integration of attention 
mechanisms, adaptive pooling layers, and feature recalibration 
strategies, which collectively enhance the model's ability to focus 
on the most critical features of diseased leaves. As a result, it can 
accurately identify subtle variations, making it particularly 
effective in detecting early-stage plant diseases. 

A key advantage of this approach is its ability to significantly 
reduce the time and resources required for disease diagnosis 
compared to conventional methods. By automating the detection 
process through deep learning, farmers can receive faster and more 
reliable insights, enabling timely interventions. This proactive 
disease management not only improves crop health but also 



Alok Singh Chauhan et. al. 

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2025, 13(5), 1117     Pg 10 

mitigates potential economic losses caused by undetected or late-
identified plant infections. 

The incorporation of transfer learning using pre-trained weights 
from the ImageNet dataset has further enhanced the model's 
generalization capability. This allows the architecture to perform 
effectively across diverse datasets, making it adaptable for various 
crops and environmental conditions. Such versatility is vital for 
scaling the solution in precision agriculture applications. 

Future research should focus on optimizing the model for real-
time applications and improving its robustness against dataset 
biases. Additionally, integrating this system with IoT platforms and 
mobile applications could facilitate on-field disease detection, 
making advanced diagnostic tools more accessible to farmers. This 
would foster smarter agricultural practices, ultimately boosting 
productivity and sustainability. 

CONCLUSION 
This study presents Modified ResNet50 architecture for plant 

disease detection, integrating attention mechanisms, adaptive 
pooling layers, and feature recalibration techniques to enhance 
classification accuracy. The proposed model addresses the 
limitations of traditional deep learning approaches, such as VGG16, 
GoogLeNet, and standard ResNet50, by improving feature 
extraction and prioritization of disease-affected regions. Through 
transfer learning and advanced data augmentation, the model 
achieves 98.90% accuracy, demonstrating superior performance in 
identifying various plant diseases. The findings of this study 
reinforce the importance of deep learning-based plant disease 
detection in improving agricultural productivity. 

This research contributes significantly to precision farming and 
smart agriculture, offering farmers and agronomists a powerful tool 
for early disease diagnosis. By leveraging deep learning for 
automated plant health monitoring, this study lays the foundation 
for sustainable agricultural practices, enhanced food security, and 
improved crop yield management. The successful development of 
the Modified ResNet50 model has significant implications for 
agriculture, food security, and precision farming. The findings 
emphasize the pivotal role of deep learning in transforming the 
agricultural sector by promoting sustainable practices and 
enhancing food security. Through early and accurate disease 
detection, farmers can make informed decisions that lead to more 
effective crop management while reducing dependency on harmful 
chemicals. This proactive approach not only safeguards crop health 
but also supports eco-friendly farming practices, contributing to 
long-term agricultural sustainability. losses. 

In conclusion, the modified ResNet50 architecture marks a 
significant advancement in plant disease detection and holds 
substantial potential for broader applications in precision farming. 
Its continued refinement and integration into agricultural 
workflows will be essential in addressing global food security 
challenges. By equipping farmers with more efficient and 
accessible diagnostic tools, this technology paves the way for a 
more resilient and sustainable agricultural future. With further 
optimizations, this model can be integrated into mobile and cloud-

based applications, enabling farmers and agronomists to perform 
real-time disease detection using smartphone cameras. 
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