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Breast cancer remains a 
critical research focus in 
medical image analysis, 
being a leading cause of 
mortality among women. 
Digital mammography 
enhances early detection 
accuracy, crucial for 
improved prognosis. By 2020, breast cancer is projected to account for 25% of all cancer cases, characterized by uncontrolled cell proliferation 
in breast tissue. X-ray imaging can reveal tumor formation, with malignancy defined by metastatic potential. Traditional diagnostic approaches, 
often time-consuming and operator-dependent, necessitate more efficient detection methods. This study proposes an innovative deep learning-
based classification system for automated breast cancer identification using biopsy images. The model's performance is evaluated using statistical 
metrics including precision, recall, and accuracy. By addressing key challenges in AI-assisted risk assessment, this research aims to accelerate the 
integration of advanced predictive tools, potentially optimizing and personalizing mammography screening programs in the future. 
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INTRODUCTION 
The progressive proliferation and spread of aberrant cells in the 

human body are considered to be the cause of cancer. On a global 
scale, breast cancer has been identified as one of the leading causes 
of death among women.1 The death rate from breast cancer is 
greater than that from TB or malaria. According to the International 
Agency for Research on Cancer (IARC) and the American Cancer 

Society, the World Health Organization (WHO) cancer research 
organization, there were 17.1 million cancer diagnoses worldwide 
in 2018 and that number is predicted to nearly double by 2026.2 
Even though medical experts and researchers have conducted 
considerable studies, they are unable to offer the best technique for 
breast cancer treatment to acquire the therapy & ensure the 
possibility of credible proof for its prevention.3,4 Additionally, 
some crucial malignant tissue associated with cancer of the breast 
is aggressive & creates a greater risk to the patients since they are 
more prone to infect more crucial human body parts.5,6 Women may 
develop tumors due to the breast cells' incredibly rapid 
development. The scores from the Breast Cancer Reporting & Data 
System (BI-RAD) determine how these huge tumor cells split into 
cancer cells & non-cancer cells based on the region, size & position. 
"Benign" describes the initial tumor region of non-cancerous 
tumors, whereas the term malignant refers to the supplementary 
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tumor area of cancerous tumors.7 The lifestyles of women are not 
going to be at risk from benign tumors since they are curable and 
their growth may be controlled with the right treatments. Secondary 
cancers may metastasize to distant sites or neighboring tissues. 
Malignant tumors can spread to other bodily areas when cancer 
cells infiltrate the respiratory system or blood. Unchecked breast 
cell growth is the cause of the tumor.8,9 Only if the patient receives 
the proper care, such as surgery or radiation, can a malignant tumor 
be cured.3,10 Cancer cells in the Breast can damage other body 
organs by spreading in the nodes of lymph, such as the lungs. 
Invasive ductal carcinoma, the typical precursor of breast cancer, 
results in ductal malfunction. However, it can also start in breast 
tissue, lobules, and other glandular structures.11 Additionally, the 
researchers discovered that adjustments to lifestyle, environment, 
and hormone levels all raise the risk of breast cancer.12,13 To see the 
interior anatomy of the breast, low-dose X-ray imaging of the breast 
is used. Medical terminology for this procedure is mammography. 
This is thought to be the most effective strategy for finding breast 
cancer. Mammography exposes the breast to a significantly lower 
radiation dosage compared to previously employed technology.14 It 
is among the most reliable screening techniques & recently been 
demonstrated as a major method to diagnose breast cancer.15 
Biomedical imaging is a popular study area since it may help 
specialized radiologists. Breast cancer investigation and treatment 
are greatly aided by early tumor discovery.16 Regular screening 
mammography testing has been linked to lower rates of breast 
cancer morbidity and death, according to randomized trials and 
screening cohort studies.17  

 

 
Figure 1: Diagram illustrating the connections between the various 
artificial intelligence approaches 

 
Figure 1 shows a diagram illustrating the connections between 

the various artificial intelligence approaches. Breast cancer testing 
was mainly carried out using analog mammography based on 
screen film, Over the past two decades, the field has transitioned to 
entirely digital platforms. For instance, full-field digital 
mammography (FFDM) has enabled the transformation of 
pixelated data into the quasi-3D format known as digital breast 
tomosynthesis (DBT).2,18 To improve the results of breast cancer 
screening, efforts have focused on increasing screening intervals, 
changing the reading formats (annual screening instead of biannual 
screening, double-reading instead of single-reading), and 
incorporating additional screening methods (mammography, 
ultrasound, or MRI) in addition to cancer screening.2 While all the 
improved methods used for screening were able to find more 

tumors, the higher imaging and resource requirements generally 
increased false-positive rates might potentially be a function of 
screening intensity.2 As a result, there has been an increase in 
support for "personalized" breast cancer screening programs that 
are related to a mix of demographics and imaging, where available, 
genetic data, and are customized to a specific woman's breast 
cancer risk.8,19 The inclusion of image-derived data into breast 
cancer risk evaluation algorithms should enhance screening 
algorithms while maintaining harm-benefit ratio equilibrium. In 
this work, a systematic literature review is provided to understand 
the current standing of machine learning techniques for breast 
cancer detection from mamograph images. 

DEPENDABLE AND REPEATABLE BREAST DENSITY 
MEASUREMENT FOR MORE ACCURATE RISK ANALYSIS 

Jia Ou et al classify the greater level local auto connection 
characteristics of histopathology images. 20 A methodology used to 
automate categorization for breast malignancies in histological 
images was proposed by Luiz S. Oliveira et al.21 This dataset 
includes 7909 images of breast cancer from 82 people. The 
accuracy range is between 80 and 85%. Maruf Hossain Shuvo and 
colleagues presented research that featured a Wavelet neural 
network classifier.22 As a synthetic neural network, this Wavelet 
neural network operates, Mammography pictures are mainly 
utilized in modern medical strategies to detect breast cancer.18 

DL techniques have recently attracted considerable interest in 
image identification, segmentation, detection, and computer 
vision.3,21,23–25 The American College of Radiology's (ACR), Breast 
Imaging-Reporting and Data System (BI-RADS), Breast Density-
Reporting & Data System (BI-RADS), etc provide standardized 
guidelines for interpreting and reporting breast imaging findings 
and assessing breast density, respectively. It has been well-
established for some time that considerable variation exists among 
readers in assigning breast density, particularly for those with less 
experience. The accuracy rates for this assessment have been 
observed to range from 0.4 to 0.7. Multiple research created various 
DL systems with several topologies that can categorize 
mammographic images into BI-RADS density types with the help 
of evaluations provided by radiologists to improve reliability in 
breast density assessment.11,24,26–29 (Table 1 ). In a study by 
Mohamed et al.30, transfer learning with the AlexNet architecture 
was applied to raw FFDM images from 1427 women, resulting in 
an AUC of 0.94 for BIRADS density classification. The researchers 
noted that the model's effectiveness varied depending on the FFDM 
view type, with mediolateral oblique (MLO) views yielding higher 
accuracy (AUC = 0.95) compared to craniocaudal (CC) views 
(AUC = 0.88).27 This assessment was conducted using a separate 
dataset comprising 963 women. Additionally, Lehman et al.23 
created a DL model utilizing the ResNet-18 architecture, which 
demonstrated strong concordance with 12 radiologists (four-class 
kappa (K) = 0.67) when applied to a substantial dataset of processed 
FFDM images from 39,272 women. The model underwent further 
evaluation on 500 randomly chosen FFDM exams, with five 
radiologists achieving a four-class kappa (K) of 0.78. 
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Table 1: Literature Review 
Title 
of 
Paper 
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perfor
mance Imag

e 
form
at 

# 
imag
es(# 
wom
en): 

Vendo
rs (# 
sites): 

Mode
l 
archit
ecture
: 

Output 
densit
y 
measu
re 

Densi
ty 
maps 

 

Model 
develo
pment 
dataset 

Kallen
berg et 
al.31 

FFD
M 
(Raw
) 

N/R 
(493 
wom
en) 

Hologi
c (1 
site)   

CSA
E 

 

APD% 

 

Yes DSC- 
63% in 
dense 
tissue 
segme
ntation 

Model 
develo
pment 
dataset 

Li et 
al. 10 

FFD
M 
(Raw
) 

 

661 
imag
es 
(444 
wom
en) 

 

GE (1 
site) 

CNN 

 

APD% 

 

Yes DSC= 
76%  
dense 
tissue 
segme
ntation 

Model 
develo
pment 
datase. 

Haji 
Maghs
oudi 

et al.25 

FFD
M 
(Raw
) 

 

15,6
61 
imag
es 
(443
7 
wom
en) 

 

Hologi
c (2 
Sites) 

U-net 

 

APD% 

 

Yes DSC = 
92.5% 
in 
breast 
segme
ntation 

APDdi
ff = 
4.2–
4.9% 

Model 
develo
pment 
dataset 

Moha
med et 
al.32 

FFD
M 
(Proc
essed
) 

15,4
15 
imag
es 
(963 
wom
en) 

Hologi
c (1 
site) 

CNN 
Alex
Net 

 

BI-
RADS 
densit
y 

-- AUC = 
0.95 
for 

MLO 
views , 
AUC = 
0.88 
for CC 

Model 
develo
pment 
dataset 

Moha
med et 
al. 30 

FFD
M 
(Proc
essed
) 

 

22,0
00 
imag
es 
(142
7 
wom
en) 

Hologi
c (1 
site) 

CNN 
Alex
Net 

 

BI-
RADS 
densit
y 

-- AUC = 
0.94 

Model 
develo
pment 
dataset 

Ciritsi
s et al. 
27 

FFD
M  

 

20,5
78 
imag
es 
(522
1 
wom
en) 

 

N/R (1 
site) 

CNN 

 

BI-
RADS 
densit
y  

(conse
nsus of 
2 
interpr
eting 

radiolo
gists) 

-- AUC = 
0.98 
for 

MLO 
views 

AUC = 
0.97 
for CC 
views 

Model 
develo
pment  

datase. 

FFD
M 
(Raw
) 

 

108,
230 
imag
es 
(21,
759 

GE, 
Kodak, 
Fischer 
(33 
sites) 

ResN
et-50 

 

BI-
RADS 
density 
(92 
interpreti
ng 

-- Four-
class K 
= 0.67 

Chang 
et al. 23 

wom
en) 

radiologi
sts) 

Model 
develo
pment 
dataset 

Perez 
Benito 

et al. 33 

FFD
M 
(Proc
essed
) 

 

6680 
imag
es 

(
1785 
wom
en) 

 

Fujifil
m, 
Hologi
c, 
Sieme
ns, GE, 
IMS 
(11 
sites) 

ECN
N 

 

BI-
RADS 
densit
y  

(2 
interpr
eting 
radiolo
gists) 

Yes DSC = 
0.77 

Model 
develo
pment  

dataset  

Deng 
et al. 24 

FFD
M 

 

18,1
57 
imag
es 
(wo
men
) 

Hologi
c (1 
site) 

SE-
Attent
ion 
CNN 

 

BI-
RADS 
densit
y 

-- Acc = 
92.17
% 

Model 
develo
pment 
dataset 

Naik 
et al. 34 

FFD
M 

 

410 
imag
es 
(115 
wom
en) 

 

Sieme
ns (1 
site) 

cGA
N, 
CNN 

 

BI-R 
ADS 
densit
y (92 
interpr
eting 
radiolo
gists) 

Yes DSC = 
98% in 
dense 
tissue 

segme
ntation 

Model 
develo
pment 
dataset 

Roth 
et al. 23 

FFD
M 
(Proc
essed
) 

 

109,
849 
imag
es 
(N/R
) 

N/R (7 
sites) 

Dense
Net-
121 

 

BI-
RADS 
densit
y 

-- Four-
class K 
= 0.62–
0.77 

Model 
develo
pment  

dataset 

 

Matthe
ws et 
al. 35 

FFD
M 
(Proc
essed
) & 
SM 

 

FFD
M: 
750,
752 
imag
es 
(57,
492 
wom
en) 

SM: 
78,4
45 
imag
es 
(11,
399 
wom
en) 

Hologi
c (2 
sites) 

ResN
et-34 

 

BI-
RADS 
densit
y 

(11 
interpr
eting 
radiolo
gists) 

-- Four-
class K 
= 0.72 
for 
FFDM, 
Site 1 

Four-
class K 
= 0.72 
for 
SM, 
Site 1 

Four-
class K 
= 0.79 
for 
SM, 
Site 2 

Model 
develo
pment 
dataset 

Dontc
hos et 
al.36 

FFD
M 
(Proc
essed
) 

 

N/R 
(217
4 
wom
en) 

 

Hologi
c (1 
site) 

ResN
et-18 

 

BI-
RADS 
densit
y  

(13 
interpr
eting 
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gists) 

 

No 

Dense 
versus 
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dense 
Acc: 
94.9% 
(acade
mic 
radiolo
gists) 

90.7% 
(comm
unity 
radiolo
gists) 
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Model 
develo
pment 
dataset 
Short-
term 
risk 
assess
ment  

Lotter 
et al. 3 

FFD
M 
(proc
essed
) 
DBT 
(MS
P) 

 

N/R 
(> 
1000 
case
s; 62 
K 
cont
rols) 

 

GE, 
Hologi
c (7 
databa
ses/site
s) 

Retin
aNet 

 

BI-
RADS 
densit
y 

(13 
interpr
eting 
radiolo
gists) 

 

No AUC = 
0.75–
0.76 

Model 
develo
pment 
dataset 

Ha et 
al. 37 

FFD
M 
(Proc
essed
) 

 

N/R 
(210 
case
s; 
527 
cont
rols) 

 

GE (1 
site) 

CNN 

 

BI-
RADS 
densit
y 

(13 
interpr
eting 
radiolo
gists) 

No OR = 
4.42               
Acc = 
72% 

Model 
develo
pment 
dataset 

 

Yala et 
al.28 

FFD
M 
(Proc
essed
) 

 

88,9
94 
imag
es 
(182
1 
case
s; 
38,2
84 
cont
rols) 

 

Hologi
c (1 
site) 

ResN
et-18 

 

BI-
RADS 
densit
y 

(13 
interpr
eting 
radio 
logists
) 

 

No AUC = 
0.68 
for 
image 
only 
DL 

AUC = 
0.70 
for 
hybrid 

DL + 
risk 
factors 

Model 
develo
pment 
dataset 

Dembr
ower 
et al. 38 

FFD
M 
(Proc
essed
) 

 

150,5
02 
imag
es 
(1188 
cases; 
10,56
3 
contr
ols) 

Hologi
c 
(N/R) 

Incept
ion-
ResN
et 

 

BI-
RADS 
densit
y 

(13 
interpr
eting 
radiolo
gists) 

No OR = 
1.55      
ORadj 
= 1.56   
AUC = 
0.65 

 

SPECIFIC TECHNICAL DIFFICULTIES WITH BREAST 
SCREENING  

AI does not have a magic solution for breast cancer risk 
assessment, and mammographic pictures pose several technical 
difficulties that go beyond adjusting a model's weight. Instead of 
suggesting novel architectures especially suited to this domain, 
most attempts to date have concentrated on applying current DL 
models to mammographic pictures. Developing a deep learning 
model for full-field digital mammography (FFDM) and digital 
breast tomosynthesis (DBT) images is not as straightforward as 
simply choosing an existing model designed for natural images and 
training it on a large dataset. The process requires additional effort 
and considerations. First, compared to ordinary natural pictures, 
mammographic images have a significantly larger dimensionality. 
This is a typical, efficient method used in DL models for natural 
photos because the item of interest often takes up a significant 
portion of the image and its macro-structure, which includes 
attributes like form and colour, is what counts most. Nevertheless, 

reducing the resolution of a high-quality mammogram can 
significantly affect the performance of deep learning models, 
especially when assessing breast cancer risk. This is because subtle 
parenchymal patterns or tiny calcifications associated with breast 
cancer risk may be obscured or lost in the process.  The CC view, 
as well as the MLO view, are the two views that make up 
mammogram imaging for every breast. Radiologists typically find 
a pattern more believable in practice if it is apparent from both 
angles. However, this outlook association in DL methods to risk of 
breast cancer evaluation has received relatively little attention. The 
variance in mammographic pictures produced by various 
technicians, suppliers, and units must also be taken into account by 
DL models. Normalizing mammographic images from different 
manufacturers is challenging, particularly because raw image data 
is rarely stored. This difficulty arises from the fact that each 
manufacturer employs its own proprietary post-processing software 
to prepare FFDM images for display and uses distinct methods to 
reconstruct individual DBT slices. The resilience of a DL model 
confronts substantial difficulties since vendor-specific software is 
often updated and picture collection parameters might vary. As a 
result, harmonization and quality control of mammographic 
pictures are important challenges that may be resolved using the AI 
approach. 

Mammograms are used for female breast cancer diagnosis and 
screening. Mammograms are extremely low-intensity X-rays used 
to evaluate a person's breasts. Therefore, mammograms are 
typically used to detect breast cancer. These mammograms must be 
screened to discover breast cancer signs. There are three different 
types of mammography. 

ANALOG (SCREEN-FILM) MAMMOGRAPHY 
In this type, mammography films are created for breast imaging, 

and an exclusive X-ray machine is created for this purpose. The 
numerous X-ray rays are collected and turned into a mammography 
film with this equipment. The doctor will next examine this breast 
tissue picture film to find any breast cancer and other abnormalities. 

DIGITAL 2D MAMMOGRAPHY 
In this digital 2D kind of mammography, x-ray rays are captured 

using a particular digital camera, and a picture is created using a 
computer. The numerous X-ray beams used in this sort of 
mammography are photographed using a standard digital camera. 
Then, using a computer, this breast tissue is electronically sent to 
doctors for inspection. 

 3D DIGITAL MAMMOGRAPHY 
A particular, more powerful processing system is used in 

tomosynthesis (digital 3D mammography) to turn digitised breast 
images into slices. Using these slices, this procedure enables 
doctors to detect breast cancer in its early stages. Computers are 
used to electronically communicate photographs of breast tissue to 
doctors for monitoring purposes. 

The block diagram displays the various breast cancer detection 
techniques depicted in Figure 2. The Break-His database images of 
histopathological images are used in this dissertation study to 
identify breast cancer. 
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Figure 2: Different methods for processing biomedical images 

DEEP CONVOLUTION NEURAL NETWORK TRAINING 
Deep architectures, in particular deep-feed forward neural 

networks, may be trained using a general framework similar to that 
of more traditional (less deep) models. The key methods used to 
train them are stochastic gradient descent and error 
backpropagation, specifically. However, a few particular factors 
must be taken into account for successfully developing deeper 
networks. In practice, deep networks don't perform any better than 
shallow ones if these issues aren't resolved. Deep learning models 
produce very non-linear functions because every layer in a deep 
network generates a nonlinearity. The input data teaches the 
model's parameters, such as whether the hierarchy of the model's 
representations is appropriate for a certain job. An optimization 
problem might be stated as finding a great parameter configuration 
for a training standard. 

SUGGESTED DEEP LEARNING MODELS 
Figure 3 illustrates a CNN architecture designed for digital 

mammography, specifically to classify breast tissue as malignant or 
benign. 

Convolutional Layers extract image features like edges and 
patterns. 

ReLU Activation Layers introduce non-linearity to model 
complex features. 

Max Pooling Layers downsample feature maps, reducing spatial 
dimensions while retaining essential information. 

GAP Layer (Global Average Pooling) simplifies the feature map 
into a single vector, reducing overfitting. 

Dense Layers (fully connected) make the final classification into 
malignant or benign categories. 

The Pause- Histopathological images are separated into two 
separate datasets: an examination dataset and a training dataset. 

MODEL A 

 

 
Figure 3: Residual unit of a proposed model A 

 
Pictures used for testing are included in the test data collection. 
These aid in forecasting the model for this subnet. The training 
dataset yields the results of Histopathological images that are 
known to occur. The residual unit of a proposed model A is depicted 
in Figure 3. The suggested method makes sense of these images 
from the training data set for the subsequent computations. This 
dataset frequently displays features with a wide range of ranges, 
units, and magnitudes. Since most algorithms use the Euclidian 
distance between two locations to calculate these characteristics, it 
is necessary to bring all features to the same level of magnitude for 
this purpose.  

This architecture helps in identifying breast abnormalities from 
mammograms effectively. 

Figure 4 depicts a Convolutional Neural Network (CNN) 
structure designed for examining digital mammography images to 
differentiate between malignant and benign breast tissue. A brief 
overview of its elements and process is as follows: 

Mammogram Input: 
The starting point is a mammogram image, represented as a 

three-dimensional tensor (height, width, and depth). 
Convolutional Layers (Blue Sections): 
These layers identify crucial features in the mammogram, such 

as edges, patterns, and textures associated with breast tissue. 
The complexity of these features increases with each subsequent 

layer. 
ReLU Activation Layers (Gray Sections): 
These apply non-linear transformations to boost feature learning 

and enhance the model's effectiveness. 
Max Pooling Layers (Pink Sections): 
These layers reduce the spatial dimensions, decreasing image 

size while preserving key features, thus improving computational 
efficiency. 

Global Average Pooling (GAP) Layer (Pink Rectangle): 
This layer condenses the feature maps into a compact 

representation, minimizing overfitting & enhancing generalization. 
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MODEL B 

 

 
Figure 4: Residual unit of a proposed model B 

Dense Layers (Pink and Yellow Circles): 
These fully connected layers process the features and perform 

the final classification. 
The final layer categorizes the image as either  
malignant (blue) 
 or  
benign (yellow). 
This CNN architecture is specifically designed to identify 

abnormalities in mammograms, assisting in breast cancer diagnosis 
by distinguishing cancerous tumors from non-cancerous tissues. 

To do this, scaling is used. Scaling involves transforming and 
fitting the provided data into a certain scale. The algorithm 
selection is used by the machine to learn any dataset to provide 
superior outcomes. Therefore, the two classification groups that are 
presented for the selection purpose of the database are unsupervised 
learning and supervised learning. Unsupervised learning involves 
extracting data directly from a dataset without any supervision. The 
information that was not labelled nor classed was utilised by this 
method. Residual unit of a proposed model B is shown in Figure 4. 
The knowledge acquired for supervised learning is necessary for 
both the desired output and input. The fundamentals of learning are 
presented for the categorization of the input and output data for 
future data processing. In a supervised learning method, the 
classification problem and the regression problem are the two 
classification issues that are presented. While weight and salary are 
examples of regression issues, the categorization of emails as spam 
or not is an example of a classification problem. A schematic of the 
Hybrid Deep Convolutional Networks For Breast Malignant 
Detection for histopathology images is shown in Figure 5. 

 

 
Figure 5:  Overview of the suggested approach 

LIMITATIONS OF CURRENT METHODOLOGIES AND THE 
PROPOSED ENHANCEMENTS IN THE SUGGESTED APPROACH 

The limitations of traditional techniques are highlighted, 
including lower accuracy rates and ineffective differentiation 
between benign and malignant tumors. A research gap is identified, 
emphasizing the necessity for improved algorithms to enhance 
tumor detection and classification precision, particularly in 
complex cases where atypical tumor characteristics are exhibited. 
To address these gaps, an approach integrating advanced machine 
learning techniques and image processing methods is proposed. 
This integration is anticipated to improve diagnostic accuracy and 
reduce false positives and negatives in mammography readings. 
The importance of developing a more robust framework is 
emphasized, with the aim of adapting to various imaging conditions 
and patient demographics. Ultimately, this approach is expected to 
lead to improved patient outcomes in breast cancer detection and 
diagnosis. 

CONCLUSION 
The malignancy of breast tumours is thoroughly analysed in this 

study for the thesis. In this thesis work, a comparison of many 
contemporary techniques is also included. It is obvious from this 
comparison that the planned study efforts produce better 
performance results than alternative approaches. Break-Up 
Histopathological Images His dataset, which was used in this 
article, demonstrates precise breast tumor malignancy 
identification. The many channels in the images are given 
prominence in the intended study efforts for any deep learning 
model. AI's growth and use in breast cancer detection are expected 
to enhance risk evaluation for the disease and enable individualized 
screening suggestions. 

Unfortunately, there are still a lot of technical issues with 
mammographic scanning that need to be resolved, particularly 
when mammographic computed tomography and AI technologies 
merge. Additionally, it is crucial to improve the repeatability, 
explainability, and durability of AI breast cancer risk models 



Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2025, 13(5), 1105           Pg  7 

utilizing large, diverse datasets to hasten their validation and 
transfer into clinical deployment. AI will revolutionize breast 
cancer screening by using inventive ways to increase accuracy, 
validate performance, and foster trust in decision-making. 
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