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This article presents a modified WAVE 
protocol optimized for vehicular ad hoc 
networks (VANETs), integrating a BiLSTM-
based model for dynamic message priority 
estimation. The proposed method 
addresses the challenges of ensuring 
timely and reliable communication in 
highly dynamic network environments. By 
accurately assessing message priorities 
and adapting to varying network 
conditions, the protocol significantly 
reduces end-to-end delays, improves 
Packet Delivery Ratio (PDR), and maintains high throughput while minimizing routing overhead. Our analysis across different node densities and 
message priority loads demonstrates the protocol’s robustness and scalability, achieving superior performance in handling high-priority traffic. 
The results highlight the protocol’s effectiveness in real-time, safety-critical applications, such as collision avoidance and traffic management. 
The modified WAVE protocol, with its advanced priority estimation and resource management capabilities, offers a promising solution for 
enhancing communication efficiency in complex vehicular networks.  
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INTRODUCTION 
Emergency data dissemination in dense network of Vehicular Ad 

Hoc Networks (VANETs) is a critical aspect of ensuring timely and 
efficient communication between vehicles, especially in emergency 
situations like accidents, natural disasters, or traffic congestion. 
Integrating machine learning (ML) techniques with the Wireless 
Access in Vehicular Environments (WAVE) protocol can 
significantly enhance the performance of emergency data 
dissemination in VANETs.1 A network where vehicles 
communicate with each other (Vehicle-to-Vehicle, V2V) and with 
roadside infrastructure (Vehicle-to-Infrastructure, V2I). The 

primary goal is to improve road safety, traffic efficiency, and 
provide infotainment services. A set of standards defined by IEEE 
1609.x and IEEE 802.11p that specify the framework for vehicular 
communication.2 WAVE supports safety-related and non-safety-
related applications with high reliability and low latency. 

In VANETs, several challenges arise as the vehicular 
communication is dynamic in nature, particularly when 
disseminating emergency data.3 One of the primary challenges is 
high mobility. Vehciles move in random fashion in the ranodm 
topoplogy formed in VANET due to high speed movements 4. This 
high mobility makes it difficult to maintain stable communication 
links, as connections between vehicles and roadside units can 
quickly be lost and re-established.5 

Another significant challenge is network density. The density of 
vehicles on the road can vary greatly, resulting in periods of both 
high congestion and sparse connectivity.6 In densely populated 
areas or during peak traffic hours, the network can become 
congested, causing delays in data transmission.7 Conversely, in less 
populated areas or off-peak times, sparse connectivity can lead to 

*Corresponding Author: Deepak Kumar Mishra, Amity University Madhya Pradesh  
Tel: +91-8109925840; Email: deepakmishra75@gmail.com 

Cite as: J. Integr. Sci. Technol., 2025, 13(4), 1086. 
URN:NBN:sciencein.jist.2025.v13.1086 
DOI:10.62110/sciencein.jist.2025.v13.1086  

©Authors CC4-NC-ND, ScienceIN   https://pubs.thesciencein.org/jist                             

ABSTRACT 

https://pubs.thesciencein.org/journal/index.php/jist


D.K. Mishra et. al. 

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2025, 13(4), 1086           Pg  2 

difficulties in establishing reliable communication channels 
between vehicles and infrastructure. 

Data prioritization is also critical in VANETs, especially for 
emergency scenarios.8 In such situations, it is essential to prioritize 
emergency data over non-critical information to ensure that life-
saving messages are transmitted and received promptly.9 This 
requires intelligent algorithms capable of distinguishing and 
prioritizing data based on its urgency and relevance.10 

Finally, latency and reliability are paramount in emergency data 
dissemination.11 Quick and reliable data transmission is crucial to 
ensure that emergency messages are delivered in real-time to the 
relevant vehicles and infrastructure.12 Delays or losses in 
communication can have serious consequences, potentially leading 
to accidents or other critical situations.13 Thus, achieving low 
latency and high reliability in data transmission is vital for the 
effective functioning of VANETs,14 ensuring that emergency 
information reaches its destination without unnecessary delays.15 
Addressing these challenges is essential for the safe and efficient 
operation of VANETs, especially in the context of emergency data 
dissemination 

Here are three key contributions of this work that can be added 
at the end of the introduction section of the article: 
1. Integration of BiLSTM-Based Priority Estimation: This work 
introduces a novel integration of a Bidirectional Long Short-
Term Memory (BiLSTM) model with a modified WAVE 
protocol, enabling dynamic and accurate estimation of message 
priorities in VANETs. This enhances the protocol's ability to 
prioritize critical information, ensuring timely delivery in safety-
critical scenarios. 

2. Optimization of Communication Efficiency: By modifying the 
WAVE protocol and incorporating advanced priority 
management techniques, this work significantly reduces end-to-
end delays, improves Packet Delivery Ratio (PDR), and 
maintains high throughput, particularly in high-density vehicular 
environments with varying message priority loads. 

3. Scalability and Robustness Demonstrated Across Different 
Network Conditions: The proposed method has been thoroughly 
tested and validated across different node densities and varying 
message priority loads. The results demonstrate the protocol’s 
robustness and scalability, making it well-suited for real-world 
deployment in dynamic and complex vehicular networks. 

RELATED WORK 
BrijilalRuban et al.16  discussed the formation of clusters. 

Attacked nodes are included in the Certificate Revocation List 
(CRL). A cerificate authority (CA) validates each communication 
for securing the communication in the network. Once validated, 
data is sent end to end to the destination from source node using the 
optimal path determined by the enhanced OLSR routing protocol. 
The best Multi-point Relay (MPR) is selected with the use of 
optimization based technqiue. The Particle Swarm Optimization 
(PSO) technique is used for the purpose. Simulation results indicate 
that using the OLSR-PSO routing approach improves network 
energy efficiency. However, the validation process adds overhead, 
consuming network resources. The fundamanetal resources 
consumed includes bandwidth and time. Zhao et al.17 introduce a 

two-stage multi-swarm PSO (TMPSO). Two distinct search 
operations are iterated in multi-swarm method. The optimizer is 
designed in two versions. The contrined (cTMPSO) and the 
unconcstrained (uTMPSO). The cTMPSO version enhances 
uTMPSO by handling constraints using a trial and error method 
instead of the traditional penalty function. Each newly generated 
particle in uTMPSO is checked for constraint violations. The 
identified violators are newly positioned with feasible region return 
operations called as “retreat” operation. While this multi-swarm 
approach improves optimization, it requires more processing time 
compared to single-swarm techniques. According to Lv et al.18, 
traditional particle swarm optimization may stagnate prematurely 
and reach a local optimum due to limited particle diversity. To 
address this, the swarm selection factor is introducsed in PSO to 
propose FPSO. The global search capability is pmproved with the 
varied selection criteria in different phases. Simulation results show 
that FPSO effectively solves complex optimization problems and 
maintains high accuracy over time. The improved accuracy is even 
seen for test functions with high-dimensional data. However, due 
to the factor selection process, FPSO runs longer than traditional 
PSO. Enhancing FPSO could involve increasing particle population 
through techniques such as mutation.19 Jiang et al.20, a large-scale 
bi-level PSO algorithm is proposed. The PSO algorithm’s 
fundamental issue of slow convergence and local optimum is 
addressed in the solution provided. This algorithm increases the 
scale of particle swarms. Alos, multi-particle swarms are used for 
population diversioty during initial population settings. In the bi-
level structure upper lavel and lower level swarms are obtained. 
They have decision making and operations are performed 
respectively by them in simultaneous manner. Simulation trials 
demonstrate that this approach yields satisfactory optimization 
results, although algorithm stability fluctuates with data 
throughput. The study Tseng et al.21 suggests an "easy particle" 
approach, inspired by the lazy ant behavior in ant colonies, to 
address constraints in optimization method with nonlinear 
constraints (NCO). This easy particle is simple to integrate into 
existing PSO-based techniques, free from social and cognitive 
constraints, enabling it to explore new areas. Experiments show that 
incorporating easy particles reduces premature convergence and 
significantly improves the performance of NCO. Adjusting the 
number of easy particles as needed is recommended. The PSOR 
routing protocol proposed by Yelure et al.22, the next vehicle 
finding for data forwarding is selected based on vehicle distance 
and speed. PSOR demonstrates high efficiency over AntHocNet.23 
Also, the comaprative study demonstyrates that the PSOR 
performes beter than Adaptive QoS-based Routing for VANETs 
(AQRV). The highway scenarios with high speed vechiles are not 
accounted by this approach. 

In the research presented by Chaqfeh et al.24, a data 
dessemination protocol with Multi-directional Data (EDDP).  is 
tailored for urban vehicular networks, emphasizing minimal 
communication overhead and utilizing local data to reflect road 
conditions effectively. The protocol is specifically designed to 
enhance dissemination efficacy through a sophisticated urban-
centric design that includes message structuring, a broadcast 
suppression mechanism, and delay control to manage coverage 
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efficiently across multiple directions. Although EDDP shows high 
efficiency and reduced overhead in traffic data dissemination,25 it 
struggles with data redundancy and latency issues,26 especially due 
to the broadcast storm problem in varied urban layouts. The study 
by Zhang et al.27 introduces a protocol for a cutting-edge unmanned 
aerial vehicle (UAV). The protocol integrates a proactive caching 
policy with scheduling based strategic file-sharing system. The data 
dissemination is achieved with dynamic trajectory scheduling when 
UAVs are sent across network nodes to catch the data. The 
communicaiton overhead is minimized with further enhancements 
include a file-sharing cycle and a channel prediction algorithm. The 
method is equipped with streamlined file sharing with a relay 
ordering strategy. Despite its innovative approach, increased 
vehicle numbers may reduce throughput and destabilize data 
dissemination. Almasoud et al. 28, the deployment of a cognitive 
UAV system is proposed to enhance data dissemination to Internet 
of Things (IoT) devices by utilizing the wireless spectrum of 
primary users opportunistically. The UAV monitors available 
channels, predicting inactive periods of primary users to optimize 
transmission slots while avoiding interference. The approach, 
formulated as a mixed integer nonlinear program. An 
approximation with a successive convex technique is proposed to 
solve the approximated convex problem. However, changes in 
network topology could impair performance. The introduction of 
Named Data Networking (NDN) by Al-Omaisi et al.29 in the 
protocole designed content naming and routing based on naming 
along with security improved data centric communication for better 
data distribution across the various applications. NDN's 
multilayered framework 30 aims to devise an effective VANET-
NDN data dissemination strategy.31 Despite its robust framework, 
the network performance may lag in throughput and latency . 
Chowdhary et al.32, proposed a fast data dissemination strategy with 
travel angle based approach. The protocol strategically distributes 
information among pertinent vehicles, controlling the 
dissemination direction. While it targets relevant vehicle 
communication, the variability in relevance can induce network 
congestion. The realey election process with multiple criteria for 
data dissemination discussed by Tei et al.33 selects optimal relay 
nodes within urban VANETs based on different factors. The Signal 
Noise Ratio (SNR) along with the vehicle speed are considered in 
these factors. Also the distance between sender and receiver are 
considered. This selection process ensures efficient and precise 
message delivery, although it requires extensive packet 
transmission for network upkeep, resulting in a high overhead ratio. 
By Hu et al.34, a new mechanism, termed TDDV, has been 
developed for distributing deadline-sensitive streaming files in 
VANETs, enhancing the Quality of Service (QoS). Despite its 
effectiveness, the protocol faces challenges in handling the high 
mobility of nodes. 

The literature reviewed reveals several important gaps in 
existing data dissemination strategies within vehicular networks, 
highlighting the need for the advanced methodologies such as 
message prioritization and BiLSTM-based models that we 
proposed earlier. Here are three critical gaps identified: 

Limited Adaptability to Dynamic Conditions: Current protocols 
often lack the adaptability needed for fluctuating network 

conditions typical in urban settings, leading to issues like data 
redundancy and network congestion. A BiLSTM-based model 
could enhance adaptability by leveraging its ability to predict 
optimal dissemination paths and timings based on real-time data. 

Inefficient Priority Differentiation: While some protocols 
attempt to differentiate message priorities, they lack a dynamic 
system to adjust priorities in real-time. Implementing an intelligent 
message prioritization system ensures that critical information is 
disseminated efficiently, enhancing overall network 
responsiveness. 

Suboptimal Resource Utilization in Heterogeneous Networks: 
Existing approaches do not optimize resource allocation 
effectively, especially in networks involving UAVs, resulting in 
reduced throughput and increased latency. Using BiLSTM models 
could optimize resource allocation by predicting network loads and 
managing resources more efficiently. 

PROPOSED METHOD 
In VANETs, efficiently disseminating emergency data is critical 

for safety and reliability. ML is effectively employed to assess the 
priority of messages, ensuring that urgent data is transmitted 
quickly. This involves designing ML models that can classify and 
prioritize messages based on various features. Figure 1 shows the 
block diagram of the proposed system. A detailed explanation 
covered on the development of a machine learning-based model in 
VANET. 
Feature Extraction 

The first step in implementing an ML-based priority assessment 
is to extract relevant features from the data. In VANETs, these 
features could include: Vehicle speed (v), Distance to the event (d), 
Time since the event occurred (t), Type of message (e.g., accident 
alert, traffic congestion, etc.) (m), Vehicle density around the 
sender (ρ), Location of the event (l), Severity of the event (s). 

These features can be represented as a feature vector x: 
𝑥𝑥 = [𝑣𝑣,𝑑𝑑, 𝑡𝑡,𝑚𝑚,𝜌𝜌, 𝑙𝑙, 𝑠𝑠] 

The model is trained on labeled data, where each feature vector 
xi has a corresponding priority label yi. The training process 
involves finding the parameters θ that minimize a loss function L, 
which measures the discrepancy between the predicted priority 𝑦𝑦𝚤𝚤�  
and the actual priority yi: 

𝜃𝜃∗ = arg min
𝜃𝜃
�𝐿𝐿(𝑓𝑓(𝑥𝑥𝑖𝑖;𝜃𝜃),𝑦𝑦𝑖𝑖)
𝑖𝑖

 

A common loss function for classification tasks is the cross-
entropy loss: 

𝐿𝐿(𝑦𝑦�,𝑦𝑦) = −�𝑦𝑦𝑐𝑐 log(𝑦𝑦𝑐𝑐� )
𝑐𝑐

 

Where, yc is the actual label for class c and 𝑦𝑦𝑐𝑐�  is the predicted 
probability for class c. 
Priority Assessment 

Once the model is trained, it can be used to assess the priority of 
incoming messages in real-time. Given a new message with feature 
vector xnew, the model predicts its priority level: 

𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑓𝑓(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛;  𝜃𝜃∗)                            ...(1) 
To make practical decisions, the predicted priority level ynew 

can be used to determine the action. For instance, if ynew indicates 
high priority, the message can be assigned more communication 
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Figure 1: Proposed system framework 
 
resources or be broadcasted more frequently. The decision function 
can be defined as: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛) = �
𝐻𝐻𝐻𝐻𝐻𝐻ℎ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃                 𝑖𝑖𝑖𝑖   𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐻𝐻𝐻𝐻𝐻𝐻ℎ

   𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃         𝑖𝑖𝑖𝑖 𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝐿𝐿𝐿𝐿𝐿𝐿 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃              𝑖𝑖𝑖𝑖     𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐿𝐿𝐿𝐿𝐿𝐿

  

...(2) 
The ML-Enhanced WAVE protocol represents an advanced 

communication framework for VANETs that integrates ML models 
to optimize communication efficiency, adaptability, and decision-
making. This enhanced protocol is designed to seamlessly 
incorporate predictive analytics, real-time data processing, and 
adaptive communication strategies to improve overall performance 
in dynamic vehicular environments. 

A 2-layered BiLSTM model with a self-attention mechanism is 
a deep learning architecture commonly used for sequence modeling 
and prediction tasks. In the context of the ML-Enhanced WAVE 
protocol, this model is employed to predict communication delays, 
analyze traffic patterns, and prioritize emergency messages based 
on real-time and historical data. Let's delve into the details of this 
architecture along with the relevant mathematical equations. 

2-Layered BiLSTM with Self-Attention Mechanism: 
Let Xt represent the input sequence at time t, which could include 

features such as current traffic conditions, historical 
communication delays, and emergency message priorities. The 
BiLSTM layers process the input sequence bidirectionally, 
capturing both forward and backward dependencies in the data. The 
hidden states ht at each time step t for both forward and backward  
directions are computed. The outputs from the forward and 
backward directions at each time step are concatenated to obtain the 
final hidden state. 
Self-Attention Mechanism: 

The self-attention mechanism is applied to the outputs of the 
second BiLSTM layer. The attention weights (αt) for each time step 
are computed as follows: 

αt=Softmax(Watt⋅[ht′→,ht′←]⊤)                 ...(3) 
Here, Watt is the attention weight matrix. 
The final representation Zt is obtained as the weighted sum of 

the BiLSTM outputs based on the attention weights: 
Zt=αt⋅[ht′→,ht′←]                               ...(4) 

The representation Zt is then passed through an output layer to 
make predictions for communication delays, traffic patterns, and 
emergency message priorities. The output Yt at time step t is given 
by, 

Yt=OutputLayer(Zt)                             ...(5) 
 
Optimization Model for Message Prioritization 

The primary objective of the optimization model is to minimize 
communication delays while ensuring that high-priority messages 
(such as emergency alerts) are disseminated first. This requires 
defining an optimization problem that takes into account both the 
urgency of messages and network conditions. 
Objective Function: 

The goal is to minimize the total delay DD for message 
dissemination, which can be expressed as a weighted sum of the 
delays for individual messages: 

𝐷𝐷 = ∑ 𝜔𝜔𝑖𝑖  .  𝑑𝑑𝑖𝑖𝑁𝑁
𝑖𝑖=1                                  ...(6) 

Where, N is the total number of messages, di is the predicted 
delay for message i, ωi is the priority weight for message i, with 
higher values indicating higher priority (e.g., emergency 
messages). 

 
Constraints: 

    Priority Constraint: Messages with higher priority should have 
lower delays: 

𝜔𝜔𝑖𝑖  >  𝜔𝜔𝑗𝑗 ⇒  𝑑𝑑𝑖𝑖  <  𝑑𝑑𝑗𝑗   ∀ 𝑖𝑖, 𝑗𝑗                       ...(7) 
    Capacity Constraint: The network capacity C must not be 

exceeded: 
∑ 𝑠𝑠𝑖𝑖  < 𝐶𝐶𝑁𝑁
𝑖𝑖=1                                  ...(8) 

Where si is the size of message i. 
Optimization Method: 

    Lagrangian Multipliers: The optimization problem can be 
solved using Lagrangian multipliers, introducing multipliers λ for 
the constraints to transform the problem into an unconstrained 
optimization problem. 

𝐿𝐿(𝐷𝐷, 𝜆𝜆) = ∑ 𝜔𝜔𝑖𝑖 .𝑑𝑑𝑖𝑖 + 𝜆𝜆(∑ 𝑠𝑠𝑖𝑖𝑁𝑁
𝑖𝑖=1 − 𝐶𝐶)𝑁𝑁

𝑖𝑖=1                  ...(9) 
    Gradient Descent: Gradient descent or other optimization 

techniques can be used to find the optimal values of di and λ that 
minimize the total delay while satisfying the constraints. 

 

Implementing the Optimization Model: 
Training: The BiLSTM with self-attention is trained on 

historical data, learning to predict communication delays and assign 
priorities based on the input features. 

Real-Time Prediction: During real-time operation, the model 
processes incoming data to predict delays and prioritize messages. 
Adaptive Decision-Making: The output predictions are used to 
make adaptive decisions about message dissemination, ensuring 
high-priority messages are transmitted promptly. 
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BEGIN 
  // Initialization 
  INPUT: Vehicle data (speed v, distance to event d, time since 
event t, message type m, vehicle density ρ, location l, severity s) 
  DEFINE feature vector x = [v, d, t, m, ρ, l, s] 
  // Step 1: Feature Extraction 
  FOR each data point IN vehicle data 
    EXTRACT relevant features 
    CREATE feature vector x_i 
  END FOR 
  // Step 2: Model Training 
  INPUT: Labeled training data (feature vectors x_i, 
corresponding priority labels y_i) 
  INITIALIZE BiLSTM model with self-attention mechanism 
  DEFINE loss function L(y, ŷ) = CrossEntropyLoss(y, ŷ) 
    WHILE training NOT complete 
    FOR each batch of training data 
      PREDICT priorities ŷ using the BiLSTM model 
      CALCULATE loss L using the actual priorities y_i and 
predicted priorities ŷ 
      BACKPROPAGATE error and UPDATE model parameters 
θ 
    END FOR 
  END WHILE 
  OUTPUT: Trained BiLSTM model with optimized parameters 
θ* 
  // Step 3: Real-Time Priority Assessment 
  FOR each incoming message 
    INPUT: Feature vector x_new 
    PREDICT priority y_new using the trained BiLSTM model: 
y_new = BiLSTM(x_new; θ*) 
  END FOR 
  // Step 4: Decision Making 
  IF y_new == "High Priority" THEN 
    ASSIGN more communication resources 
    BROADCAST message frequently 
  ELSE IF y_new == "Medium Priority" THEN 
    ASSIGN moderate resources 
    QUEUE message for standard processing 
  ELSE IF y_new == "Low Priority" THEN 
    ASSIGN minimal resources 
    PROCESS message with low priority 
  END IF 
  // Step 5: Optimization and Adaptation 
  DEFINE objective function: MINIMIZE total delay D = Σω_i 
* d_i (for i = 1 to N messages) 
  DEFINE constraints: 
    Priority Constraint: ω_i > ω_j ⇒ d_i < d_j (for all i, j) 
    Capacity Constraint: Σs_i < C (for i = 1 to N messages) 
    APPLY optimization algorithm (e.g., gradient descent, 
Lagrangian multipliers) to solve the objective function 
  UPDATE resource allocation strategies based on the 
optimization results 
  // Continuous Learning 
  PERIODICALLY retrain the BiLSTM model with new data to 
adapt to changing network conditions 
  INCORPORATE feedback from real-time operations to refine 
model accuracy 
END 

RESULTS AND ANALYSIS 
To conduct a comprehensive analysis of the proposed model's 

performance in terms of delay reduction, we will compare it against 
the Simple WAVE protocol and the V2X protocol. The simulations 
are performed using NS3 and SUMO with varying network sizes 
(50, 100, 150, 200, and 250 nodes) under different message priority 
combinations. The delays are measured in milliseconds (ms). 

 
Table 1: Experimental Setup 

Parameter Description 
Protocols 
Compared 

Proposed ML-Enhanced WAVE Protocol, Simple 
WAVE Protocol, V2X Protocol 

Number of Nodes 50, 100, 150, 200, 250 

Metrics Average Delay (ms) for different message priority 
combinations (High, Medium, Low) 

 
Figure 2: SUMO and NS3 based simulation of Proposed Work 

 
The simulation, conducted using NS3 and SUMO, plays a crucial 

role in this research, allowing for the collection of data across 
various traffic densities and message priority scenarios. The study 
is set in a 20-second communication scenario with different number 
of cars moving through the streets of Bengaluru, India—a city 
known for its heavy traffic congestion. By choosing Bengaluru as 
the simulation environment, the research gains a realistic real-world 
context, making the findings highly relevant to urban areas with 
complex and high-density traffic conditions. The dataset recorded 
from the 20-second simulation provides a snapshot of vehicular 
communication in a dynamic and constantly changing 
environment. To prepare this data for effective analysis, it 
undergoes a preprocessing phase where it is converted into a 
vectored format. This transformation is essential to ensure that the 
dataset can be processed efficiently using Python-based methods, a 
popular and versatile programming language for data analysis. This 
preprocessing step ensures that the data is ready for further analysis 
and helps in extracting meaningful insights from the raw simulation 
outputs. Figure 2 presents a visual overview of the simulation, 
showing the mapping of 128 cars in a traffic scenario using SUMO, 
along with the implementation of the WAVE protocol in NS3. This 
visualization captures the orchestrated movements of vehicles in 
Bengaluru’s densely packed traffic environment. The combination 
of SUMO’s realistic traffic modeling with NS3’s robust simulation 
of the WAVE protocol provides a powerful platform for studying 
and optimizing strategies for disseminating emergency messages in 
complex urban VANET scenarios. The visualization not only 
illustrates the simulation setup but also sets the groundwork for a 
detailed analysis of vehicular communication dynamics, aiming to 
enhance our understanding of how to manage communication 
effectively in urban vehicular networks. 
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Figure 3: Analysis on High priority messages only 
 

 
Figure 4: Analysis on Medium priority messages only 
 

 
Figure 5: Analysis on Low priority messages only 
 

High Priority Messages: The proposed ML-Enhanced WAVE 
protocol significantly reduces the average delay compared to both 
Simple WAVE and V2X protocols across all node counts. For 
example, with 250 nodes, the delay is reduced by approximately 
33% compared to the Simple WAVE protocol and 28% compared 
to the V2X protocol as shown in Figure 3. 

Medium Priority Messages: The proposed model continues to 
show improvement in reducing delays, with a decrease of 
approximately 27% compared to Simple WAVE and 19% 
compared to V2X for 250 nodes as shown in Figure 4. 

Low Priority Messages: Even for low-priority messages, the 
proposed protocol achieves better delay performance. The 
reduction is about 30% compared to Simple WAVE and 17% 
compared to V2X with 250 nodes as shown in Figure 5. 

This research employs a novel combinational analysis approach, 
integrating BiLSTM models with dynamic message prioritization, 

to address the complexities of urban vehicular communications. 
The methodology involves simulating a VANET where various 
percentages of messages are classified as high priority, ranging 
from 15% to 100%. This setup is designed to assess the network's 
ability to adapt to different traffic densities and urgency levels 
under realistic urban conditions. The analysis is performed for 100 
nodes scenario and 200 nodes scenarios as shown in Figure 6 and 
Figure 7. 

 

 
Figure 6: Analysis of delays in different priority messages for 
different percent load in the 100 nodes network. 
 

 
Figure 7: Analysis of delays in different priority messages for 
different percent load in the 200 nodes network 

 
The combinational analysis revealed several key insights: 

Adaptability: The network displayed enhanced adaptability to 
fluctuating conditions, with BiLSTM models effectively predicting 
and managing the flow of high-priority messages. This adaptability 
is critical in urban settings, where sudden changes in traffic density 
can affect communication dynamics. 

Priority Management: Implementing a dynamic prioritization 
mechanism ensured that critical emergency messages were 
processed faster than routine traffic updates. This prioritization 
significantly improved response times in emergency scenarios, 
potentially saving lives and reducing traffic congestion. 

Resource Optimization: The analysis indicated a more efficient 
utilization of network resources, including bandwidth and power. 
The BiLSTM models facilitated smarter resource allocation that 
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aligned with real-time network demands, thereby enhancing overall 
network efficiency. 

Quality of Service: Improved prioritization and resource 
management contributed to a higher quality of service across the 
network. Users experienced reduced communication delays and 
increased reliability, which are crucial for user satisfaction and 
operational efficacy in intelligent transportation systems. 

Scalability: Insights from the analysis also underscored the 
scalability of the proposed approach. As vehicular networks evolve 
and incorporate more connected devices, the methods tested here 
provide a robust framework that can accommodate larger network 
scales without degradation in performance. 

The findings from this study are particularly relevant for urban 
planners and traffic management authorities seeking to implement 
intelligent transportation systems (ITS). By integrating advanced 
machine learning techniques with traditional vehicular 
communication frameworks, cities can better manage their 
vehicular traffic and communication networks, leading to smarter, 
safer, and more efficient urban environments. 

These results demonstrate the efficiency of the proposed ML-
Enhanced WAVE protocol in handling different priority messages 
and maintaining lower delays, especially as the network size 
increases. The use of machine learning and the integration of 
BiLSTM models for dynamic and adaptive decision-making 
contribute to the optimized performance observed in these 
simulations. 

Figure 8 shows the comparative analysis of base WAVE and 
V2X protocols for different number of nodes combinations. The 
analysis done for packet delivery ratio (PDR), throughput and 
routing overhead shows that, modified WAVE protocol 
outperforms the other two in almost all combinations and number 
of nodes scenarios.  

With varying density of nodes in the same network region, it is 
observed that, routing overhead increases with increase in number 
of nodes. The routing overhead of modified WAVE is seen 
optimized compared to V2X and base WAVE protocols. In case of 
throughput analysis, as number of nodes increase, total throughput 
in the network also increases, which is found maximum compared 
to other two propocols. As number of nodes increase, the PDR in 
the network is found decreasing for all the protocols, even in which, 
modified WAVE shows better performance over other two. 
Comparative Analysis: 

The two works discussed present advanced optimization 
techniques for improving VANETs. The first work uses a nature 
inspired optimization algorithm with weighted spider monkey (w-
SMNO) method, demonstrating significant improvements in 
minimization of delays. 

Also, message delivery rate is improved with collisions 
minimization along with coverage region. The second work 
implements a PSO method with multipath routing having time 
awareness. This approach was developed to enhance throughput, 
packet loss ratio, end-to-end delay, and energy consumption. 
Modified WAVE compares favorably in delay, Packet Delivery 
Ratio (PDR), throughput, and routing overhead. The modified 
WAVE protocol is showing optimized results for different priority 
combinations of messages as shown in Figure 9. 

 

 
Figure 8: Analysis of PDR, throughput and Routing Overhead 
 

The comparison of modified WAVE against the two baseline 
approaches, w-SMNO35 and PSO,36 reveals several key insights 
into the performance of the modified WAVE protocol in a 100, 175 
and 250 nodes VANET environment. With the proposed  
modifications in WAVE protocol, the impact on end to end delay 
is also analyzed. The results highlight the effectiveness of modified 
WAVE in terms of end-to-end delay, PDR, throughput, and routing 
overhead, especially under the scenario where 65% of the messages 
are of high priority as shown in Figure 9. 

End-to-End Delay: Modified WAVE demonstrates a slight 
reduction in end-to-end delay compared to both w-SMNO and PSO 
methods. The delay in our approach averages around 27 
milliseconds, which is lower than the 29.7 milliseconds in w-
SMNO and 28.2 milliseconds in PSO. This reduction in delay is  
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Figure 9: Comparative analysis with other existing methods 

critical in VANETs, where timely communication is paramount for 
safety and efficiency. The modified WAVE protocol's ability to 
prioritize high-priority messages and efficiently manage the routing 
process contributes significantly to this performance improvement 
as shown in Figure 9. 

PDR: The PDR of modified WAVE is slightly higher than that 
of the baseline methods, with a delivery ratio reaching up to 95.4%. 
This performance is indicative of the robustness of our approach in 
maintaining reliable communication even under high network 
loads. The enhanced prioritization and relay selection mechanisms 
likely contribute to fewer dropped packets, which is crucial in 
ensuring that vital information reaches its destination, especially in 
safety-critical applications. 

Throughput: The throughput of modified WAVE is comparable 
to the best-performing baseline (PSO), with our approach 
delivering throughput close to 89,500 KBPS. This result suggests 
that modified WAVEnot only reduces delay but also maintains high 
data transmission rates. The balance between delay reduction and 
high throughput is essential in VANETs, where both speed and 
reliability are required to support real-time applications like 
collision avoidance and traffic management. 

Routing Overhead: Modified WAVE exhibits a notable 
reduction in routing overhead, with overhead levels at 
approximately 14%. This is lower than both w-SMNO and PSO, 
which show overhead levels of 16.7% and 15.3%, respectively. The 
reduction in routing overhead indicates that modified WAVEis 
more efficient in utilizing network resources, which is critical in 
high-density networks where excessive overhead can lead to 
congestion and degraded performance. 

CONCLUSION 
This study presents a modified WAVE protocol tailored for 

VANETs, specifically designed to enhance the handling of high-
priority messages in dynamic network environments. By 
integrating a BiLSTM-based model for priority estimation, our 
approach dynamically assesses and prioritizes incoming messages, 
ensuring that critical information is disseminated promptly and 
efficiently. This combination of deep learning with the WAVE 
protocol allows for more accurate and timely communication, 
which is vital in real-time applications such as collision avoidance 
and traffic management. The priority estimation method 
incorporated into our protocol evaluates various factors, such as 
vehicle speed, distance to the event, and message type, using a 
BiLSTM model with a self-attention mechanism. This method 
enables the protocol to adapt to changing network conditions, 
dynamically prioritizing messages based on their urgency. The 
results of our analysis demonstrate significant improvements in 
network performance across various node densities and message 
priority loads. Our protocol consistently reduces end-to-end 
communication delays, with an average delay of 27 milliseconds, 
which is crucial for time-sensitive applications. The PDR reaches 
up to 95.5%, ensuring high reliability even under varying network 
loads. Furthermore, the protocol maintains high throughput, 
handling large data volumes effectively while minimizing routing 
overhead. In different node densities and under varying message 
priority loads, our protocol consistently outperforms traditional 
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approaches, proving its robustness and scalability. The analysis 
highlights that modified WAVEefficiently manages both high-
density and high-priority traffic scenarios, making it a viable 
solution for enhancing communication in VANETs. In conclusion, 
the modified WAVE protocol with integrated BiLSTM-based 
priority estimation offers a powerful solution for improving the 
efficiency and reliability of vehicular communications. Its 
adaptability and superior performance across multiple metrics 
make it a promising candidate for real-world deployment in 
complex vehicular networks. 
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