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ABSTRACT 
This study aims to investigate the classification 
of individuals with Left Temporal Lobe Epilepsy 
(LTLE) and Right Temporal Lobe Epilepsy (RTLE) 
in comparison to Healthy Controls (HC) based on 
machine learning approaches.  The dataset of 
patients and Healthy Cohorts of resting-state functional magnetic resonance imaging (rs-fMRI) is preprocessed using CONN software which works 
on MATLAB. Twelve Regions of Interest (ROIs) were selected in CONN.  Supervised learning algorithms, particularly the Random Forest Algorithm, 
were employed for categorizing the connection matrices of the 12 ROIs. The Random Forest Algorithm achieved the highest accuracy during five 
cross-validation folds, with 83% accuracy in classifying Right Healthy Controls (RHC)-RTLE and 72.10% in classifying Left Healthy Controls (LHC)-
LTLE. Feature importance plots generated by the Random Forest Algorithm were utilized to identify critical relationships influencing the 
categorization, demonstrating distinct connection patterns between individuals with RTLE and RHC and LTLE and LHC, suggesting potential 
implications for understanding temporal lobe epilepsy. 
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INTRODUCTION 
Advances in advanced magnetic resonance imaging (MRI), 

especially functional MRI (fMRI), SPECT, PET, and CT are 
revolutionizing how people with neurologic disorders are treated. 
One of fMRI’s primary benefits over EEG and MEG is its higher 
spatial resolution. By acquiring detailed spatial maps of brain 
activity, fMRI allows researchers to pinpoint neural activity in 
specific brain regions1 or structures. A relatively common 
diagnostic method for neurological disorders is resting-state 
functional magnetic resonance imaging (rs-fMRI)2. The basis of rs-
fMRI is the blood oxygenated level dependency(BOLD) signal. It 
is predicated on the idea that variations in local blood flow and 
oxygenation align with variations in brain activity. Functional 
connectivity (FC) analysis is a crucial component of rs-fMRI, 

which examines the temporal relationships between various brain 
regions. Several techniques are frequently employed to investigate 
functional connectivity3  such as independent component analysis 
(ICA), graph theory, and seed-based correlation analysis. 

The brain is active at rest, and this activity measures changes or 
modifications that people with temporal lobe epilepsy (TLE) 
experience. To fully comprehend how complex epilepsy is, the 
primary goal of this investigation is to investigate the changes in 
FC during the resting state. Modifications in FC may facilitate the 
use of surgical methods to treat temporal lobe epilepsy in patients 
who are not responding to medication. Surgery is the most effective 
line of treatment4 for about 20–30% of epileptic individuals whose 
seizures are not controlled by medication.5 Approximately 60–70% 
of patients6 achieve seizure independence after a thorough 
preoperative assessment. 

A useful method for researching neurological disorders, such as 
epilepsy, is non-invasive brain imaging called resting-state 
functional magnetic resonance imaging, or rs-fMRI. rs-fMRI is the 
imaging methodology used in this work. Recording spontaneous 
brain activity while the patient is at rest, enables scientists and 
medical professionals to examine the brain’s functional connectivity 
(i.e., not executing any activities). This approach sheds light on how 
communication between various brain regions—which might be 
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disrupted in epilepsy—is affected. rs-fMRI reveals patterns of 
functional connectivity by tracking correlations in the activity of 
several brain areas across time. In individuals with epilepsy, 
networks implicated in the production and transmission of seizures 
(such as the epileptogenic zone) frequently exhibit aberrant 
connections. Many times, localized or broad failure in particular 
brain networks is linked to epilepsy. These networks can be mapped 
with the use of rs-fMRI, which might reveal regions that might be 
involved in seizure activity even in the absence of overt seizures. 
This is especially helpful when seizures are hard to pinpoint with 
conventional methods like structural MRI or electroencephalogram 
(EEG). While positron emission tomography (PET), task-based 
fMRI, and electroencephalography (EEG) are also utilized in the 
diagnosis of epilepsy, rs-fMRI has the benefit of not requiring the 
patient to actively participate. Patients who may have difficulty with 
task-based imaging, such as children or those with cognitive 
disabilities, will find this to be especially helpful. Epilepsy patients’ 
rs-fMRI data is generated and compared to those of Healthy 
Cohorts(HC). Functional connectivity alterations were found in 
specific regions of the brain that are relevant to memory-related 
functional ability. These regions are used in this work for 
classification. Finding discrepancies between the functional 
connectivity patterns of TLE patients at rest and those of healthy 
controls may help during surgery. Understanding the differences in 
the regions of interest can help surgical assistance by determining 
which regions’ connection patterns are most impacted when 
compared to the TLE and healthy groups. 

Patients who are candidates for epilepsy surgery can have their 
aberrant brain networks and functional connections identified by rs-
fMRI. It gives surgeons a better understanding of the regions that 
are essential for the beginning of seizures as well as regular brain 
activity. By observing changes in brain connection over time, rs-
fMRI can help with not only the planning of surgery but also the 
diagnosis of epilepsy subtypes, tracking the progression of the 
condition, and assessing the efficacy of treatment. 

HISTORY OF MACHINE LEARNING IN NEURO-IMAGING 
The most cutting-edge research concentrates on the diagnostic 

requirements for epileptic patients, a field in which EEG is currently 
being actively used in clinical practice. According to the present 
standards, highly skilled specialist epileptologists must laboriously 
manually annotate many hours of EEG recording to make 
diagnoses and provide treatments.7 Machine learning techniques 
allow the automatic identification of epilepsy markers utilizing 
certain spectral, morphological, or network-based properties in 
interictal (non-seizure) data. While some feature-based methods try 
to mimic the expert’s eye by employing features similar to those that 
epileptologists see, other end-to-end neural networks and deep 
learning models try to extract previously unidentified epilepsy 
markers directly from the raw data. Sorting regular EEG data into 
normal and abnormal categories is one example of this; abnormal 
is by definition heterogeneous.8 Machine learning-based clinical 
decision support for epileptologists has enormous potential for 
diagnosing and localizing epileptic foci because it can uncover 
complex relationships among brain regions and actions that are 
difficult to see with the naked eye. Numerous deep-learning-based 

techniques have also been developed to lessen metal artifacts in CT 
imaging of various anatomies9. Patients who use deep brain 
stimulation (DBS) devices may benefit from improved brain CT 
imaging through the application of similar approaches. Figure 1 
demonstrates the popularity of the utilization of rs-fMRI and 
machine learning approach and the articles published about them in 
recent years. 

 

 
Figure 1. Publications obtained from Pub Med with the following 
Search query: “Resting-State Functional Magnetic Resonance 
Imaging” or “rs-fMRI” or “fMRI”  

 

FMRI & RS-FMRI: MACHINE LEARNING PERSPECTIVE 
Until the 2000s, magnetic resonance imaging (MRI) served as the 

main neuroimaging technique used to investigate the roles played by 
various brain regions and how this combines to produce various 
cognitive images that are derived from neural processes. Numerous 
follow-up investigations and identifying associated impulsive 
variations in well-characterized cortical nets as suggested by 
Biswal et. al.2 have made rs-fMRI a valuable tool for investigating 
the brain’s functional architecture. Over the last decade, the number 
of studies using the resting-state paradigm has increased at a never-
before-seen rate. Compared to other task-based experiments,  these 
methods are far more straightforward and can nonetheless yield 
important information about the functional connectivity of the 
healthy brain and how it is disrupted in disease. Another appealing 
feature of the resting state is that it facilitates cross-site cooperation. 

In the field of epilepsy research, functional magnetic resonance 
imaging (fMRI) and resting-state fMRI (rs-fMRI) have different 
properties and uses. In fMRI research, participants do particular 
activities to monitor brain activation associated with those tasks, 
offering insights into cognitive processes and task-specific brain 
activity.  On the other hand, spontaneous oscillations in BOLD 
signals during rest are captured by rs-fMRI, which reveals intrinsic 
patterns of functional connectivity. Machine learning algorithms 
applied to rs-fMRI aim to uncover abnormalities in functional 
connectivity associated with neurological illnesses like epilepsy, 
differentiating between healthy and epileptic brains based on faulty 
resting-state connections.10 

 

0

50

100

150

200

250

300

20032006200820102012201420162018202020222024

Pu
bl

ic
at

io
ns

Year



Deepa Nath et. al. 

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2025, 13(4), 1082           Pg  3 

MATERIAL AND METHODS 
CONN11 neuroimaging software, based on MATLAB 2022b, is 

used to determine connection patterns between Temporal Lobe 
patients(TLE) and healthy controls. Functional Connectivity 12 
could be between seeds and voxels, as well as between regions of 
interest (ROIs) and voxels. Within- and between-subject factors are 
also included in group-level analyses. A dataset of 16 Healthy 
Controls was generated for rs-fMRI, and a dataset of 16 Epilepsy 
patients was available(out of which 7 subjects are for Right 
TLE(RTLE) and 9 subjects are for Left TLE(LTLE)). 

The statistical dependency or coordination between neural 
activity in various brain regions is called functional 
connectivity.13 The primary indication of functional connectivity is 
the temporal correlations between signals originating from distinct 
brain areas. For example, if two regions show comparable patterns 
of activity over time, they are deemed functionally related. 
Functional connectivity studies often focus on large-scale brain 
networks, such as the default mode network (DMN).14 These 
networks are collections of brain regions that regularly exhibit 
synchronized activity, indicating a cooperative role for these 
networks in particular cognitive activities. In this study, Region-
Region Connectivity in CONN11 is considered and their 
correlational analysis15 is the basis used as a feature for the machine 
learning approach. In functional connectivity analysis (fMRI data 
analysis, for example), a first-level connectivity matrix is a matrix 
that measures the connection or correlations between various brain 
areas or voxels at the first level of analysis for a particular 
participant or session. Typically, it is a square matrix with a row 
and column for each brain region (such as a Region of interest 
(ROI) or voxel). Every matrix component symbolizes the 
relationship (correlation, for example) between two locations. 

Database- The age group considered for the subjects has an 
average age of 28. It includes a few subjects with ages of 15-25 
years and a few subjects with ages which ranged from 35-45 years. 
Subjects had a mixed gender of Male and Females suffering from 
RTLE and LTLE. The average age of healthy controls is around 24 
years. So the experimentation done in this work and the accuracy 
results obtained are based on the varied range of age as well as 
gender. 

The Regions of Interest (ROIs) selected for the said study are 
described in the given Tables. 

 
Table 1. List of ROIs for Statistical Testing in RTLE and Right 
Regions of Healthy Controls (RHC)  

    ROI Name                                       Abbreviation                    
Medial Prefrontal Cortex                                        MPFC 
Posterior Cingular Cortex                                        PCC 
Cingulate Gyrus, anterior division                           AC 
Cingulate Gyrus, posterior division                         PC 
Planum Temporal Right                                           PT r 
Temporal Pole Right                                                 TP r 
Insular Cortex Right                                                  IC r 
Parahippocampal Gyrus, 
 anterior division Right                                         aPaHC r  
Parahippocampal Gyrus,  
posterior division Right                                       pPaHC r  
Hippocampus Left                                                Hippo l 
HippocampusRight                                               Hippo r 
Amygdala Right                                               Amygdala r 

Table 2. List of ROIs for Statistical Testing in LTLE and left Regions 
Healthy Controls (LHC)  

ROI Name                                                    Abbreviation 
Medial Prefrontal Cortex                                       MPFC 
Posterior Cingulate Cortex                                     PCC 
Cingulate Gyrus, Anterior division                        AC 
Cingulate Gyrus, posterior division                       PC 
Planum Temporal Left                                           PT l 
Temporal Pole Left                                                TP l 
Insular Cortex Left                                                 IC l 

 Parahippocampal Gyrus,  
 anterior division Left                                          aPaHCl  
 Parahippocampal Gyrus, 
 posterior division Left                                        pPaHC l  
Hippocampus Left                                   Hippo  l                    
Hippocampus Right                                  Hippo r 
Amygdala Left                                                Amygdala l  
 

MACHINE LEARNING IN RS-FMRI 
The popular machine learning algorithms for the rs-fMRI use 

unsupervised methods of learning. Modeling resting-state activity 
is more difficult than in task-driven investigations since these 
oscillations are not caused by controlled stimuli. Consequently, the 
methods of analysis16 17 18 employed to describe the spatial-
temporal patterns for the activity or task fMRI are frequently 
inappropriate for rs-fMRI. 

To gain a better understanding of data in both the temporal and 
spatial domains, it is not surprising that early analytical techniques 
concentrated on subdivision or grouping tactics. Using techniques 
like ICA 19, aided in the identification of networks at rest. Following 
this, the main objective for rs-fMRI is brain parcellations or 
lateralization which will aid in surgical decisions20 21. 

In the late 2000s, machine learning discovered another, 
potentially more therapeutically useful application. These 
neuroimaging-based indicators can be used to create prognostic or 
diagnostic tools through the application of machine learning. These 
neuroimaging-based indicators can be used to create prognostic or 
diagnostic tools through the application of machine learning. 
Together with statistical evaluation, visualization and 
understanding of these models can offer new perspectives on the 
degree of abnormal resting-state patterns in brain diseases22 23 The 
majority of these techniques24 concentrate on obtaining connectome 
features for single-subject predictions. 

UNSUPERVISED MACHINE LEARNING 
Understanding the dynamics and functional architecture of the 

healthy brain is the primary objective of unsupervised learning 
approaches in rs-fMRI. Techniques such as matrix splitting and 
grouping, for instance, can disclose the underlying structure of 
dynamic functional connectivity in the brain. 

 
K-Means 
The objective of clustering, given a set of data points {X1,..., 

Xn}, is to divide the data into distinct groups {C1,..., Ck }. The 
clustering objective of many clustering algorithms varies, to 
optimize within-cluster similarity or between-cluster dissimilarity-
means. Currently, the most often used learning algorithm for data 
partitioning is K-means clustering. The within-cluster variance is 
what the algorithm seeks to minimize. 
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Formally, this translates to the subsequent clustering goal: 
Initialize cluster centroids µ1,µ2, ,µk randomly or based on some 

heuristic 
Repeat until convergence: Assign each data point xi to the 

nearest cluster centroid: 
 
           c(i)  = argmin j||x(i) − µj||2 (1) 
 
Update cluster centroids to be the mean of the data points 

assigned to them: 

                    (2)            
  where Cj is the set of data points assigned to cluster j. 

SUPERVISED MACHINE LEARNING 
Detailed characterizations of rs-fMRI are made possible by 

machine learning techniques. Much work has gone into applying 
rs-fMRI to guide treatment decisions and predict illness prognosis, 
as well as to classify patients against controls. From creating 
individual-level forecasts to mapping functional networks. 

 
Support Vector Machine 
Support vector machines or SVMs25 for tasks like regression and 

classification, a support vector machine builds a hyper-plane or set 
of hyper-planes in an infinite or high-dimensional space. 

  
Gaussian Naive Bayes 
Naive Bayes26 is a set of supervised learning algorithms based 

on applying Bayes’ theorem with the “naive” assumption that every 
pair of features, given the value of the class variable, is 
conditionally independent. In Gaussian Naive Bayes, the likelihood 
of features is assumed to be Gaussian. 

Given a dataset X = {x1,x2,...,xn} with features xi = (xi1,xi2,...,xi) 
and corresponding class labels y = (y1,y2,...,in). Let Ck represent 
the kth class, where k = 1,2,..., K, with prior probability P(Ck) or 
each feature xij, assume it follows Gaussian distribution within the 
class Ck. 

�𝑥𝑥𝑖𝑖𝑖𝑖�𝐶𝐶𝑘𝑘� = 1

�2𝜋𝜋𝜋𝜋𝑗𝑗𝑗𝑗
2
𝑒𝑒𝑥𝑥𝑒𝑒 �− �𝑥𝑥𝑖𝑖𝑗𝑗 − 𝜇𝜇𝑗𝑗𝑗𝑗�

2

2𝜋𝜋
𝑗𝑗𝑗𝑗
2 �                 (3)            

is the mean of feature j in class k. 
σjk2 is the variance of feature j in class k. 
 
To predict the class label for a new instance x∗, calculate the 

posterior probability for each class Ck using Bayes’ theorem: 

                (4) 
Assign the class label for x∗ as: 
                yˆ = argmax k P(Ck|x∗)                              (5) 
 
Random Forest 
Random forest27,28 is a machine-learning algorithm that combines 

the outputs of multiple decision trees to produce a single result. In 
this section the comparison is done for the Regions of Interest for 

the RTLE versus RHC and on similar lines it is done for LTLE 
versus LHC.  

MACHINE LEARNING IN EPILEPSY 
Presently, neuroimaging helps epileptic patients when a specific 

treatment may be targeted based on the identification of an 
underlying lesion. Vergun et al.’s study29 suggests that using rs-
fMRI and machine learning techniques can help identify areas of 
the eloquent cortex, and provide the surgeon with safer maximum 
resection boundaries. Several rs-fMRI imaging metrics were 
employed along with an SVM classifier. Yang et al.30 found that 
they could predict the lateralization of temporal lobe epilepsy in a 
group of 12 individuals with 83% accuracy. Chiang and 
colleagues15,31 were able to lateralize temporal lobe epilepsy in a 
group of 24 patients with 95.8% accuracy by employing rs-fMRI 
imaging features in conjunction with a machine learning technique 
called computer-automated diagnosis using fMRI interictal graph 
 theory. The use of machine learning techniques on rs-fMRI data 
from patients,  aged 4 to 19,  was examined by Paldino and 
colleagues.32,33 

CLASSIFICATION OF NETWORK CONNECTIONS 
Supervised machine learning algorithms including Support 

Vector Classifier (SVC), Gaussian Naive Bayes (NB), and Random 
Forest were employed to classify individual network connections 
derived from the connectivity matrix of the study cohort. 
Classification tasks were conducted separately for Right Temporal 
Lobe Epilepsy (RTLE) and Right Healthy Controls (RHCs), as well 
as for Left Temporal Lobe Epilepsy (LTLE) and Left Healthy 
Controls (LHCs). Cross-validation using 5 folds was implemented 
to assess the mean accuracy of the machine learning models in 
classifying the groups (TLE and HCs). A feature importance plot 
was used to visualize the regions utilized for the classification of 
the healthy and the patient groups. 

RESULTS AND DISCUSSION 
RTLE v/s RHC 
The classification model was implemented using multiple 

supervised learning algorithms, Support Vector Machine, Naive 
Bayes, and Random Forest. A comparison of performance metrics 
of different machine learning models. Table 3 indicates that 
Random Forest gave the highest mean cross-validation accuracy of 
83% in classifying the networks of HC and RTLE  patients. 
Furthermore, it is analyzed for the Feature Importance34 35  of the 
random forest model to get the Top k significant features as shown 
in Figure 2. 

 
Table 3. Performance Metrics for classification of network connections 
in RTLE v/s RHC  

 
Algorithm  Mean Cross-Validation    

Accuracy 
Support Vector Classifier 70 % 
Gaussian Naive Bayes 72.1% 
Random Forrest Classifier 83.1% 
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Figure 2. Feature Importance plot of significant networks in the 
classification of RTLE and RHC subjects 

 
LTLE v/s LHC 
A similar process was repeated for the classification of networks 

between HC and LTLE using the same algorithms (SVM, Naive 
Bayes, Random Forest). The comparison of performance metrics in 
HC and LTLE network classification (Table 4) showed similar 
results, with Random Forest achieving the highest mean cross-
validation accuracy of 72%. (Figure 3 shows the top k significant 
network connections which were derived from the Feature 
Importance plot from the random forest. 

 
Table 4.    Performance Metrics for classification of network 
connections in LTLE v/s LHC 

 
Algorithm Mean Cross-Validation Accuracy 
Support Vector Classifier                     56.6 % 
Gaussian Naive Bayes                       72% 
Random Forrest Classifier                      72.1% 
 

 
Figure 3. Feature Importance plot of significant networks in the 
classification of LTLE and LHC subjects 

 
This study makes a comparison between the memory-related 

regions for the right side of the controls with the RTLE group and 

similarly the memory-related regions for the left side of the controls 
and the left-sided TLE group. The literature reviewed for carrying 
out this research had compared RTLE and LTLE groups with 
controls and not particularly for left and right regions of controls. 
The current study lays the groundwork for further advancements in 
understanding network classification among Healthy Controls (HC) 
and Temporal Lobe Epilepsy (TLE) patients using resting-state 
functional magnetic resonance imaging (rs-fMRI). To enhance the 
robustness and generalizability of our findings, expanding the 
dataset by including a larger and more diverse sample of subjects is 
imperative. This will not only contribute to the reliability of the 
identified network changes but also allow for the exploration of 
potential subgroups within the TLE population. 

Because fMRI data is high-dimensional, the number of features 
can increase rapidly when there are numerous ROIs. To prevent 
overfitting, appropriate feature selection or dimensionality 
reduction strategies are crucial.  Supervised machine learning 
techniques are essential for identifying or predicting outcomes 
based on patterns of brain connection in resting-state fMRI (rs-
fMRI) research. The capacity of these algorithms to assess feature 
importance is a major benefit as it facilitates the identification of 
the most important brain areas and their connections that influence 
the model's predictive performance. These findings are helpful in 
figuring out which areas of the brain or linkages between functions 
are critical in identifying distinct cognitive states or illnesses. 
Changes in connection are seen in temporal lobe epilepsy (TLE), 
such as decreased connectivity in areas of the hippocampus and 
amygdala implicated in memory-related functions. Additionally, 
TLE patients have extensive network connectivity issues, such as 
in the default mode network (DMN).  

rs-fMRI provides a non-invasive method that helps map the 
functional connectivity of brain areas during rest, enabling deeper 
insights into how epilepsy affects network organization in the brain. 
Disturbances in the functional connectivity between various brain 
regions are common signs of the abnormal brain activity that 
characterizes epilepsy. Researchers can map resting-state networks 
(RSNs), which may be altered in epileptic patients, by using rs-
fMRI to record the spontaneous variations in brain activity while a 
patient is not executing any specific task. Looking ahead, the 
application of more sophisticated machine learning techniques, 
particularly Deep Neural Networks (DNNs), holds great promise 
for unveiling nuanced connectivity patterns. Integrating DNNs can 
unveil intricate relationships within the data, capturing subtle 
distinctions that traditional algorithms may overlook. This approach 
can provide a more comprehensive and detailed characterization of 
network alterations in TLE patients compared to HC, ultimately 
offering a clearer and more refined understanding of the 
neurobiological underpinnings of this condition. Furthermore, 
future research could delve into longitudinal studies to investigate 
dynamic changes in network connectivity over time, providing 
insights into the evolution of TLE-related alterations. Additionally, 
exploring the potential correlation between clinical outcomes and 
network changes may open avenues for personalized therapeutic 
interventions. 
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CONCLUSION 
This study presents an exploration of connectivity differences 

between HCs and TLE subjects. The identified 12 ROIs are used as 
a base for comparison of the Right HC-RTLE  and on similar lines 
for comparison between the Left HC-LTLE group. Alterations in 
connection are seen in the hippocampus and amygdala regions that 
are important in memory-related functions of temporal lobe 
epilepsy (TLE) patients, and these abnormalities are commonly 
reported in patients with temporal lobe epilepsy (TLE). In networks 
such as the default mode network (DMN), patients with TLE also 
exhibit widespread connection abnormalities.  The application of 
ML specifically the Random Forest Algorithm, proved effective in 
classifying connectivity matrices, achieving high accuracy rates of 
83% for RHC-RTLE and 72.10% for LHC-LTLE. Feature 
importance plots facilitated the identification of critical connections 
influencing the classification. The unique connection 
characteristics linked to temporal lobe epilepsy are better 
understood as a result of these discoveries, with particular emphasis 
on the right hemisphere. These insights pave the way for further 
investigations into personalized treatment ap- approaches and the 
development of diagnostic tools for temporal lobe epilepsy. 
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