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ABSTRACT 

 

The electronic fund transfer 
between financial 
institutions is known as EFT.  
The most common use of 
EFT is to     have money 
deposited into an account 
electronically rather than 
receiving a paycheck and depositing it into a bank account. For years, cryptography has been used to protect electronic cash transactions. The 
existing algorithm required very large size key to achieve the optimal level of security and also more complexity in running time and this support 
minimum number of users, but the proposed algorithm enables superior levels of security while employing drastically small size  private keys and 
can accommodate a large number of users with similar     values for their first part of the private key, the naturally split private key enables users 
to store keys with ease, knowing that it’s mathematically impossible to calculate second part of the private key, even when the first part is 
compromised and vice versa. This paper shows the mathematical model using which the algorithm can be implemented. The function and 
operation flow of the electronic money transfer process, as well as its security control system, are proposed in this work. This method is aimed 
at aiding highly secure electronic transactions between financial institutions, for instance transactions between banks, government reserves and 
other institutions, where such high levels of security are non-negotiable. 

Keywords: Electronic fund transfer, Elliptic Curve, Public Key Cryptography, Three- dimensional graph, Dynamic private key. 

INTRODUCTION 
Using Electronic Funds Transfer (EFT) networks, billions of 

dollars are transferred electronically between organizations and 
people every day. Transactions in EFT systems cannot be handled 
securely unless user identities can be verified and message transit 
between system nodes can be guaranteed. In today's competitive 
digital economy, information security is seen as one of the most 
pressing challenges. Electronic data interchange (EDI), direct 
marketing, and information retrieval are all made possible by web 

technologies. Electronic banking and financial services, in 
particular, offer enormous development potential  over the Internet. 
Electronic money and digital cash are two of the most serious 
security concerns.1 As more businesses launch interactive websites 
on the information superhighway, information security has become 
a major concern in the digital economy.2 While the existing security 
protocols have been breached several times, we have developed a 
complete end to end protocol employing its own state of the art 
encryption standard and a new cryptography technique, essentially 
helping financial institutions make their transactions with utmost 
security against several cyber-attacks.3 Cryptography is the science 
of keeping information private while communicating in hostile 
environments. Cryptography is becoming increasingly important in 
the modern era of information technology and the proliferation of 
computer network connections.4 To protect electronic fund transfers 
and classified conversations, cryptography is now commonly 
employed to protect data that must be conveyed and/or kept for 
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lengthy periods of time.5 Number theoretic or algebraic principles 
are used in current encryption approaches. Another paradigm that 
appears promising is chaos. Chaos is a branch of nonlinear dynamics 
that has been extensively investigated. These unique nonlinear 
dynamics approach is being used to examine a wide range of 
applications in real systems, both man-made and natural. The 
chaotic behaviour of a nonlinear system is a subtle characteristic. It 
appears to be random. This unpredictability, on the other hand, has 
no stochastic cause. It is solely the consequence of the deterministic 
processes that define it. The extraordinary sensitivity of chaos to 
the system's beginning state is one of its most notable traits. 

An elliptic curve has an aesthetic structure, these curves have 
been studied for a long time. They play a significant role in several 
mathematical domains today, including integer factorization,6 
number theory algorithms7 and pseudorandom bit generation.8 The 
elliptic curve cryptosystems set themselves apart from the systems 
based on a multiplicative group over a finite field or systems based 
on integer factorization because they do not employ a sub-
exponential-time algorithm, for which we could find discrete 
logarithms in these groups.9,10  The consequences of which are, the 
ability to use smaller key sizes, lower bandwidths, and quicker 
implementation while maintaining the same level of security, which 
give them a potential use in areas having limited circuit space such 
as mobile phones, wireless adapters, and any device employing 
nanochips. 

The cryptosystems employ, Asymmetric cryptography, which is a 
cryptographic system that uses keypairs, (a public key and a private 
key). The public key is shared with everyone, while the private key 
is kept a secret to an individual user. The method of asymmetric 
encryption allows the sender to send a message to the receiver 
without giving away any information about their private key to the 
receiver and nothing about the message or the key to anyone else in 
the world. Digital signatures are used to verify that a message has 
come from the owner of a certain private key and that the message 
(information) has not been tampered with in the journey. These 
asymmetric cryptosystems rely on one-way functions, which are 
mathematical functions that are easy to calculate in one direction 
and extremely difficult (nearly impossible) to calculate from the 
other direction. 

As we are all aware Moore’s law states that the number of 
transistors in a dense integrated circuit doubles about every two 
years, this also gives us an insight into how fast these processors 
become with improving technology and more power encapsulated in 
the computers.  These powerful computers make it possible for 
some one-way functions to be compromised, for example, the 
conventional RSA encryption using 256 bits, can be broken in a 
couple of hundred seconds using the modern computer, so we are 
having to resort to larger number of bits, which currently are around 
2048 bits. These large number of bits cause slower operations, this 
is where the elliptic curve cryptography comes into the picture, 
accomplishing the task of encryption to similar extents while 
employing smaller key sizes. 

The conventional elliptical curve systems, come with their 
complexities, where users cannot make use of any random elliptic 
curve and any random point on it. Only some such elliptic curves 
can satisfy necessary conditions to be called safe and certain fixed 

points on these curves are useful for encryption.11 These include the 
choice of elliptic curve domain parameters such as underlying finite 
field, field representation, elliptic curve, and algorithms for field 
arithmetic, elliptic curve arithmetic, and protocol arithmetic. These 
choices can be different based on the security requirements, 
application platform (including software, hardware and firmware), 
and the constraints of the computing environment (speed of the 
processor, ROM, RAM, consumption of power). It is not an easy job 
to identify the perfect or most suitable choices, for any given 
scenario. 

Over the last few decades, there has been a considerable amount 
of research on the various aspects of elliptic curve cryptography 
implementation.12 Ullah shamsher et.al., presented the challenges 
and applications of elliptic curve cryptogaphy.13 The contribution 
of this paper is a mathematical model, that deals with the 3-
dimensional form of the elliptic curves over finite fields,14 using 
concepts from the Diffie-Hellman key agreement protocol15 and 
employing a naturally split private key, with static and dynamic 
implementation techniques that help enhance the security of the 
algorithm whilst keeping the key sizes considerably small.16 The 
paper explains choosing safe curves for the implementation. The 
methodology proposed works on the graphical aspects of the curve 
and has arithmetic procedures that have been developed specifically 
to operate in this cryptosystem and the signature generation and 
verification using modified EDCSA. 

ELLIPTIC CURVE CRYPTOSYSTEM 
Discrete logarithmic cryptosystems are generally considered 

over a multiplicative group of integers module p, where p is a prime 
number. These systems can be modified using specific functions to 
be able to work as a group of points on an elliptic curve. To achieve 
the asymmetric crypto system, the Diffie-Hellman key agreement 
protocol has been widely used over elliptic curves. We will be using 
the following notation, Fq refers to the finite field of q elements, ^Fq 
refers to the algebraic closure of Fq, In refers to the integers modulo 
n, and the cardinality of a set S is referred to as cS. Assume a finite 
field Fq of characteristic 3, and an elliptic curve E over Fq. 

CURVE AND KEY AGREEMENTS 
Let us consider Alice and Bob to be our sender and receiver 

respectively, now they decide upon an elliptic curve, and choose a 
random point on that elliptic curve, which acts as a key. Both Alice 
and Bob have to agree in advance over a method that both of them 
will be using to convert the points into an integer. (This is called 
symmetric encryption) for easy understating let’s assume they 
agree to take the image of the point on the x- axis. (Following  a 
simple map from Fq to the natural numbers). 

Now, we have the elliptic curve E over Fq, and G is a point on 
the curve, that is mutually agreed upon and is publicly known to 
everyone. Alice chooses a number and keeps it a secret to herself, 
this will be her private key(ka), and calculates the point ka.G, Bob 
chooses a number and keeps it a secret to himself, this will be his 
private key (kb), and calculates the point kb.G. Alice now sends her 
calculated ka.G to Bob and Bob sends his calculated kb.G to Alice, 
both of them use this information to calculate the common key P = 
ka.kb.G. Alice calculates the common key by multiplying her 
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private key with the value received from Bob, and similarly Bob 
calculates the common key by multiplying his private key with the 
value sent by Alice, thereby we get ka.kb.G = kb.ka.G = P. In this 
process Alice did not have to share her private key ka and neither 
did Bob have to share his private key kb. 

ENCRYPTION AND MESSAGE TRANSMISSION 
Let us assume that message has been embedded in E using some 

method that is agreed by both parties. Now Alice wants to send a 
message M∈E. As Alice and Bob have already exchanged and 
generated the common key. Alice makes another random choice of 
an integer m and calculates m.G and m.(kb.G), by multiplying the 
point G with her chosen random value and the second point by 
multiplying the point G with the value received from Bob. She now 
sends the pair of points {(m.G), (M + m.(kb.G))}. 

Encrypted Message sent: {(m.G), (M + m.(kb.G))}. 

DECRYPTION 
Bob takes the pair of points he received and multiplies the first 

point by his private key k, Resulting in: m.G. kb. He then subtracts 
this above-calculated value from the second point he received in the 
pair. Bob takes the pair of points he received, and multiplies the 
first point by his private key kb, Resulting in: m.G. kb, He then 
subtracts this above calculated value from the second point he 
received in the pair Resulting in: M + m.(kb.G)) - m.G. kb. Leaving 
us with: M.   That is the message which was sent by Alice. 

MATHEMATICAL BACKGROUND ON ELLIPTIC CURVES 
We are presenting a paper, using the following concepts, discrete 

mathematics, number theory, and coordinate geometry, specifically 
pertaining to elliptic curves and 3-dimensional geometry. 
Knowledge of the concepts relating to prime numbers and their 
applications in cryptography, the arithmetic of points on an elliptic 
curve, theorems on public-key cryptography like Diffie- Helman 
(explained in Elliptic curve cryptosystems section. (Section 2)), and 
other theorems like Hasse’s theorem would make the understanding 
of the paper smooth and effective. 

Referring to the previously defined notation, Fq refers to the 
finite field of q elements, ^Fq refers to the algebraic closure of Fq, In 
refers to the integers modulo n, and the cardinality of a set S is 
referred to as cS. Assume a finite field Fq of characteristic 3, and an 
elliptic curve E over Fq, is the set of all solutions (x, y) ^Fq x ^Fq, to 
an equation y2 = x3 + ax + b (1) where a, b  Fq, and 4a3 + 27b2 ≠ 0, 
and a point at infinity referred to as ∞. Let E be an elliptic curve 
over a finite field Fq, then E(Fq) will denote the points in E having 
both their coordinates in Fq, including the point ∞. E(Fq) would be 
an abelian group of rank 1 or 2. [7]. We have E(Fq) ≈ Cn1 Cn2, where 
Cn denotes the cyclic group of order n, n2 divides n1. A theorem of 
Hasse states that cE(Fq) = q + 1 – t, where |t| ≤ 2√q. The curve E, 
therefore, is said to be super singular if t2 = 0, q, 2q, 3q, or 4q, 
otherwise the curve is called non-super singular. 

If we consider q to be a power of 2 and E to be super singular, 
then cE(Fq) will be odd. If we consider q to be a power of 2 and E to 
be non-super singular, then cE(Fq) will even. [8]. Therefore, if q is 
a prime number, then for each t satisfying |t| ≤ 2√q there exists at 
least one elliptic curve E defined over the finite field Fq with cE(Fq) 
= q + 1 – t if q is a power of 2, then for each odd number t, satisfying 

|t| ≤ 2√q, there exists at least one non-super singular elliptic curve 
E defined over the finite field F, with cE(Fq) = q + 1 – t. 

Consider the illustration, [12] where we take the elliptic curve E: 
y2 = x3 + x + 1, over I23, now cE(I23) = 28, E(I23) will be cyclic, and 
a generator of E(I23) is P = (0, 1). The points in E(I23) are as follows: 
{P = (0, 1), 2P = (6, -4), 3P = (3, -10), 4P = (-10, -7), 5P = (-5, 3), 
6P =(7, 11), 7P = (11, 3), 8P = (5, −4), 9P = (−4, −5), 10P = (12, 4), 
11P = (1, −7), 12P = (−6, −3), 
13P = (9, −7), 14P = (4, 0), 15P = (9, 7), 16P = (−6, 3), 17P = (1, 
7), 18P = (12, −4), 19P =(−4, 5), 20P = (5, 4), 21P = (11, −3), 22P 
= (7 − 11), 23P = (−5, −3), 24P = (−10, 7), 25P =(3, 10), 26P = (6, 
4), 27P = (0, −1), 28P = ∞}. 
 

 
Figure 1. The elliptic curve x3+x+1 

 
We can now construct a group over elliptic curves. Where: 

• the elements of the group are the points of an elliptic curve 
• the identity element is the point ∞ 
• the inverse of a point P is the one symmetric about the x-

axis 
• addition is given by the rule: given 3 aligned, non-

zero points P, Q, and R, their sum P+Q+R=0. 
Note: the order of the points is not essential, that is, as long as P, 

Q and R are aligned, P + (Q+ R) = Q + (P + R) = R + (P + Q) = 0. 
This says that we have proved that the addition operator is 
associative and commutative. Therefore, we are in an abelian 
group. 

GEOMETRIC ADDITION 
The explanation above proves the group to be abelian and hence 

we can use P + Q + R = 0, and P + Q = - R. This equation lets us 
derive the geometric method to perform the sum of two points P and  

 

 

Figure 2: Addition of points on elliptic curves 
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Q. That is, on drawing a straight line passing through P and Q, this 
line will intersect the curve at a third point R. On taking the inverse 
of this point, we get -R (the symmetric point about the x-axis), 
which is the result of the addition performed. (Figure 2) 

Let us now consider the edge cases: 
• If P = 0 or Q = 0: We will not be able to draw a line, 

as 0 = ∞ is not on the xx-plane. But as we have 
defined 0 as the identity element, P + 0 = P for every 
P. 

• If P = -Q: We will have a vertical line and therefore 
intersect the curve in two points only. But as P is the 
inverse of Q, we can write P + Q = P + (-P)= 0. 

• If P = Q: We will consider the tangent to the curve 
at that point because as we tend the points towards 
each other until they eventually collide the line, we 
get passing through them will satisfy all the 
conditions of being a tangent to that curve at that 
point. (Refer to Figure 1) 

 
 
 

  
 
 
 
 
 
 
 
Figure 3. When the points collide (P = Q.) 
 

If P ≠ Q and there is no third point R: We will have a tangential 
line in this case too, where the line passing through P and Q is a 
tangent to the curve. If we assume P to be the tangency point, then 
P + Q = -P, similarly if Q were to be the tangency point, then P+ Q 
= -Q. 
Proof: 

Let us assume (E) to be the equation and (L) to be the line passing 
through the points P and Q. (E) = y2 = x3 + ax + b and (L) = y = mx 
+ n. Let us take h to be a function differentiable in x = xp, f is a 
function tangent to h in  

x = xp if and only if, f(xp) = h(xp)  
and hence f’(xp) = h’(xp), now, supposing the line (L) passes only 

through P and Q and let h be the function of (E) and f be the function 
of (L): h(x) = ± √ (x3 + ax + b) and f(x)= mx + n, the intersection 
points are the solutions to h(x) = f(x) and therefore to 
h2(x) = f2(x) (2)  

now as the intersection is supposed to happen in two points only, 
the cubic equation Eq.1 has a root a1 and a double root a2. 

 f2(x) − h2(x) = (x – a1) 2(x − a2),  
On differentiating at a point x we get, 

2f’(x)f(x) – 2h’(x)h(x) = (x – a1)(2(x − a2) + x – 
a1)
 

(3) 

On solving the above equation at x = a1, 

( 1) If h(a1), f(a1) ≠ 0, then h is differentiable at x = a1 and f(a1) = 
h(a1) f’(a1) = h’(a1) 

( 2) If h(a) = f(a) = 0, then h is not differentiable at x = a1, and 
we can also say that lim x→a+1 h’(x) = ∞ or lim x→a-1 h’(x) = ∞, 
finding the limit in (3), we get lim x→a-1 f’(x) = ∞. which implies 
that (L) must be a vertical line at x = a1, and as h(a1) = 0 the curve 
(E) passes through the x-axis at x = a1, as we already know that (E) 
is symmetric about the x-axis, we can conclude that (L) is a tangent 
to (E). 

ALGEBRAIC ADDITION 
Let P = (x1, y1) E and Q = (x2, y2) E, and Q ≠ -P, then P + Q = 

(x3, y3). The slope of the line joining the points P and Q is given by 
m = (y2-y1)/(x2-x1) and the equation of the line is given by y = mx – 
mx1 + y1, Substituting the line equation into the curve we get (mx – 
mx1 + y1)2 = x3 + ax + b, Sum of the roots = negation of the 
coefficient of x2 is m2, and hence x3 = m2 – x1– x2, and the y-
coordinate can be calculated by substituting into the equation of the 
line (PQ line), y’ = mx3 – mx1 + y1, on negating this third point (x3, 
y’), which gives y3 = -mx3 + mx1 – y1. Therefore, the sum, P + Q 
gives (x3, y3). where (x3, y3) = (m2 – x1 – x2, -mx3 + mx1 – y1) => 
(x3, y3) = (m2 – x1 – x2, (-x3 + x1)m – y1) 

SCALAR MULTIPLICATION 
We can define scalar multiplication as the repeated summation, 

where nP is given by, P + P + P + P +…..+ P (n times), Where n is 
a natural number. nP requires n additions, and if n has k digits, the 
operation would be O(2k) in time complexity. We use a faster 
method to accomplish the same, called double and add. The double 
and add method essentially takes P, doubles it to get 2P and adds 
2P to P, then doubles 2P to get 22P and so on… and add it to the 
result. We know that any natural number can be represented as the 
sum of powers of 2, thereby calculating nP in lesser iterations while 
using the double and add method. 

SELECTING A SAFE ELLIPTIC CURVE 
We realize from the discussion earlier that, not all elliptic curves 

are fit to be used in the elliptical cryptography. We now understand 
which kind of elliptic curves can be used for the sake of 
cryptography; we majorly require the elliptic curve E defined over 
a finite field Fq, to satisfy the given conditions: 

• To be resistant against the Pollard ρ-attack.17 cE(Fq) 
should be only by a large prime number p. (for instance, 
p > 2150). 

• To be resistant against the MOV reduction attack.18 That 
is p should not divide qk-1 where 1 ≤ k ≤ W, where W is 
sufficiently large enough to be computationally infeasible 
to find discrete logarithms in Fq. 

• To be resistant to the anomalous attack19,20 as given 
by Semaev, Smart, Satoh, that says cE(Fq) ≠ q. 

We now discuss a few techniques for selecting safe elliptic curves. 

PROPOSED ALGORITHM 
Initial Setup 
The following convention would be followed to present the 

proposed methodology, Fq refers to the finite field of q elements 
and ^Fq refers to the algebraic closure of Fq. In refers to the integers 
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module n. The cardinality of a set S is referred to as cS, R is defined 
as all the real values in the range [0,180), excluding 180, and 
including 0. Let us assume that F q has a characteristic greater than 
3. An elliptic curve E defined over Fq, is the set of all solutions (x, 
y) ^Fq x ^Fq to an equation given by, 
E: y2 = x3 + ax + b                      (4) 
    where a, b belongs to  Fq and 4a3 + 27b2 ≠ 0, and a point at 
infinity referred to as ∞. 
   Let us define a curve Eq defined over Fq, is the set of all 
solutions (x, y, z) ̂Fq x ^Fq xFq to an equation given by, 

Eq: z2 = x3 + ax + b - y2 (5)where a, b Fq and 4a3 + 27b2 ≠ 0, and 
a point at infinity referred to as ∞. Let us now define a curve (Eq, 
θ) defined over Fq, which is the set of all solutions (x, y, z, θ)     ^Fq 
x ^Fq x ^Fq x R to an equation given by 

(Eq, θ): z2 = x3 + ax + b - y2                      (6) 
where a, b Fq and 4a3 + 27b2 ≠ 0, θ is the angle through which the 
x-y plane has been rotated with respect to its initial position (θ R), 
and a point at infinity referred to as ∞. Refer to Figure 4, where we 
have represented the general model of the curve plotted over the x-
y-z plane, to get an understanding of the concepts discussed further 
in this article. 

Figure 4: Representing (3) with θ at 0 degrees. 
 

The Generator point(G):  
The generator point (G) is a point of he form (x, y, 0, 00), of large 

prime order n, where (x, y) ^Fq x ^Fq, where n is the max value, 
inside which, we will be considering our encryption valid 

The Rotational dot product (‘.’) 
The rotational dot product defined here is a modified version of 

the original dot product defined on the elliptical curve,21 wherein we 
consider the numerical value (n), with an angle(θ), defined over a 
given curve (Eq, θ). The operation is performed by, rotating the x-y 
plane by an angle θ, in the anti-clockwise direction, having the x-axis 
as the hinge around which the rotation is performed, before dropping 
a dotted perpendicular onto the opposite side of the curve, from the 
point of intersection. (Similar to the original elliptical 
cryptography). 

Graphical understanding: We get an elliptical curve from the 
point of view of the z-axis., We perform rotation as shown in Figure 
6, before dropping the dotted perpendicular from the current 
position of x’-y’ axis, here x’-y’ is the current position after the 
previous rotation has taken place. 

 
Figure 5: Representing how points are added on elliptic curves 
 

We get a circle, from the x-axis point of view, and now we rotate 
x-y axis and effectively the point moves as shown below, before 
dropping a perpendicular. 

The absence of θ can be considered as θ = 0, thereby denoting that 
the x-y plane is in its original position and has not been rotated. (In 
this case, all the rules of general elliptical curves and their 
multiplication apply as usual).21 

Multiplication defined on rotational dot product: 
Let us consider (na, θa) and (nb, θb), where na, nb Real numbers, 

and θa ,θb R. Now the rotational dot product between these points is 
defined as (na, θa). (nb, θb) = [(na x nb),(θa + θb)].21 That is the 
numerical value of the result is the arithmetic product or their 
individual numerical values and the angles get arithmetically 
added. 

Some important properties of rotational dot product: 
The rotational dot product is commutative, (na, θa). (nb, θb) = (nb, 

θb). (na, θa) = [(na x nb),(θa + θb)]. 
Graphical understanding: The angles get added up while we 

perform the rotation every time, with the new numerical value, 
which is given by na x nb, and the angle as shown below 

 

Figure 6. (Representing the angles getting added on point 
Multiplication) 

The rotational dot product is associative, (na, θa). [(nb, θb). (nc, 
θc)] = [(na, θa). (nb, θb)]. (nc, θc) = [(na x nb x nc),(θa + θb+ θc)], Where 
(nc, θc) Real number x R. 
The rotational dot product on a scalar, Let j be a scalar, 
where j real numbers, (na, θa).j = ((na.j), θa). 
real numbers, (na, θa).j = ((na.j), θa). 

PROPOSED CRYPTOSYSTEM 
Key Generation 
We are under the understanding that the curve has been defined 

over Fq, P is a point of prime order N, in E(Fq); and that p is a prime 
number. 
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Private key generation (Privkeyx) 
We employ a naturally split private key that has two distinct 

independent elements in it. Let us denote the key corresponding to 
a person x as Privkeyx, given by, 
Privkeyx = (nx, θ)      (8) 

where nx  [1, N-1] is the numerical part of the key, which 
corresponds to the number of times the iteration is performed. 
(Similar to the private key n used in the original elliptical curve 
cryptography), and θ is the angle (0, 99.999999999999999990) (99 
followed by 17 9s in the decimal place) by which the x-y plane is 
rotated with the x-axis as the hinge after every iteration, in the anti-
clockwise direction, here we restrict the angle to be using 19 bits 
and lie in the range 0 and 99.99999999999999999 both inclusive. 
The user chooses both values as per their choice, following the 
general rules of the cryptosystem they are following, that is making 
sure that they use enough bits for choosing the numerical value. 

Note: θ can be used as a session dependent variable, depending on 
where the algorithm is being implemented, this would make the 
private key dynamic and naturally split.  

Public key generation (Pubkeyx) 
Let us denote the public key corresponding to a person x as 

Pubkeyx, given by,  
Pubkeyx = Privkeyx.G (Eq. 9),  
that is 
 Pubkeyx = (nx, θ).G                 (10) 

The public key is calculated by applying the rotational dot 
product between the private key (nx, θ) and the Generator point(G). 

Common key generation(K) 
Let us denote the common key corresponding to a set of sender 

and receiver as, 
Ksender-receiver = Privkeysender.  
Pubkey receiver = Privkeyreceiver.  
Pubkeysender(11) 
On simplification, using (8), we get 
Ksender-receiver = Privkeysender.(Privkeyreceiver.G)  (11) 
= Privkeyreceiver.(Privkeysender.G)      (12) 
On simplification, using (8) and (10), 

Ksender-receiver = (nsender, θsender). (nreceiver, θreceiver).G 
and hence Ksender-receiver = (nsender,.nreceiver).G.(θsender + 
θreceiver) 

The common key is used to encrypt the message that the sender 
is trying to send to the receiver. The sender and receiver exchange 
their public keys, and each of them calculates the common key used 
for the communication between them. The sender has their private 
key and uses the public key of the receiver and performs a rotational 
dot product to calculate the common key. Similarly, the receiver has 
their private key and uses the public key of the sender and performs 
rotational dot product to calculate the common key. For simplicity 
of use, we will refer to the common key between a set of receiver 
and sender as (K). 

Encryption 
Let us define the process of encryption on the sender end, making 

use of the values and operations we have described so far, We have 

to generate a cipher value (the value of the message, post encryption, 
which will be sent to the receiver).22 

Process (On the sender end): 
Consider the Generator point(G) and the Common key(K) 

corresponding to the pair of receiver and sender, and perform the 
rotational dot product between these values. 

Common key(K). Generator point(G) = K.G (13)This would act 
as the first part of the tuple. The point (K.G) can be expressed as 
(x1, y1, z1), as we are performing this with respect to the three-
dimensional system we have considered. 

Consider the Public key of the receiver (Pubkeyreceiver), and the 
Common key(K) corresponding to the pair of receiver and sender, 
and perform the rotational dot product between these values. 

Public key(Pubkeyreceiver).Common key(K) = Pubkeyreceiver.K 
(14) 

Consider the message(M) to be encrypted and sent, and the 
above-calculated value (Eq.8); choose a mutually agreed method 
between the sender and receiver and add these values. 
Message(M) + (Pubkeyreceiver.K)  (15) 

This would act as the second part of the tuple. The point (M + 
Pubkeyreceiver.K) can be expressed as (x2, y2, z2), as we are 
performing this with respect to the three-dimensional system we 
have considered. 

Generating the Ciphertext, we couple tuple values from (13) and 
(15),  
Cipher text = {(K.G), (M + Pubkeyreceiver.K)}  (16) 

This will encrypt message; the sender will be sending to the 
receiver. 

Decryption 
Let us define the process of decryption on the receiver end, We 

are given the ciphertext, and have to decipher the message that the 
sender has sent, from (16), We have, 
{(K.G), (M + Pubkeyreceiver.K)} 
Process (On the receiver end): 

Consider the first tuple in the ciphertext (K.G) and the private 
key of the receiver (Privkeyreceiver), and perform a rotational dot 
product between these values. 
(K.G). (Privkeyreceiver) (17) 

Consider the second tuple in the cipher text (M + 
Pubkeyreceiver.K) and the above calculated value (K.G). 
(Privkeyreceiver) (11), and subtract the latter from the former, 
(M + Pubkeyreceiver.K) - (K.G). (Privkeyreceiver) 

Using associative property of the rotational dot product as 
discussed earlier, we can simplify the above equation to be, (M + 
Pubkeyreceiver.K) - K.(G. Privkeyreceiver). Using the equation from (9) 
we get,(M + Pubkeyreceiver.K) - K.(Pubkeyreceiver) 

Using commutative property of the rotational dot product as 
discussed earlier, we can simplify the above equation to be,  
(M + Pubkeyreceiver.K) – (Pubkeyreceiver).K ,  
On simplification,  
M + (Pubkeyreceiver.K – Pubkeyreceiver.K)  

We are left with, M. The message has been successfully 
decrypted. 
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Signature Generation 
To sign a message M, sender performs the following (Similar to 

ECDSA). 
We are under the understanding that the curve has been defined 

over Fq, and P is a point of prime order N, in E(Fq); and that p is a 
prime number. 

(1) Select a random integer a that lies in the range [1, N -
1]. 

(2) Calculate the value aP = (x1, y1, z1), let r = x1, mod N 
(here x1, will be considered an integer between 0 and 
q -1). If r = 0, then we perform step 1 again. 

(3) Calculate a-1 mod N. 
(4) Calculate s = a-1{h(M) + nr} mod N, where h is the 

Secure Hash Algorithm.23 
(5) The signature for the message M is the pair of the 

values (r, s). 
Signature Verification 

To verify sender’s signature (r, s) on the message M, the receiver 
must follow the below steps. (Similar to ECDSA),21 

(1) Get the Public key corresponding to the sender 
Pubkeysender. 

(2) Check to see if both the integers received (r, s) lie in 
the range [1, N-1]. 

(3) Calculate w = s-1 mod N and h(M). 
(4) Calculate u1 = h(M)w mod N and u2 = rw mod N. 
(5) Calculate u1P + u2 Pubkeysender = (x2, y2, z2) and v = x2 

mod N. 
(6) Validate the signature only if v = r, else reject it. 

 
Proposed Architecture 
The protocol implements a 2FA (2 factor authentication), to log 

the users in. The protocol suggests the first authentication level to 
be a digital password scheme employing strong passwords, of a 
minimum length of 8 consisting of a sequence of alpha-numeric 
characters and symbols. The second level of authentication is to be 
an email OTP system, where the email OTP is triggered right after 
the password level has been cleared. The user can successfully log 
onto the secure funds transfer platform only on having cleared the 
2FA.  

 
 
 
 
 
 
 
 
Figure 7. (A high-level view of the pact agreement.) 
      

The Figure 8 shows the overall flow of the protocol, at a user 
level. The users view the protocol to be the way its shown here, 
Once both the sender and receiver agree to a Pact set by either of 
them, which is overlooked by an agent from the secure funds 
transfer platform. 

 
Figure 8. The Architecture diagram 
 

The Figure 8 shows the information flow in the proposed 
protocol implementing REGES, where the platform acts as  in 
intermediary in every step, encrypting the data using the novel 
cryptosystem proposed here. The detailed explanation of the process 
is explained in the further sections. 

Entering the Pact 
The user, either the sender or the receiver when chooses to 

transfer funds should enter the pact, wherein they trigger an OTP to 
the other party by selecting them and the type of transaction. The 
other party will be notified about the invite and can choose to agree 
or deny, considering the other party agrees to the pact, they agree 
and enter, triggering an OTP to the initial party. These OTPs 
triggered are sent by phone, and the timer on the screen dies out 
after a certain limit. Making sure both the parties are active and in 
front of the screen while the deal takes place. On entering the right 
OTPs received on their phones, they have successfully entered the 
Pact. 

The users can now transfer the funds over the internet using 
REGES (Rotating elliptic graph encryption Standard), this 
protocol is new and being proposed in this paper, using a novel 
cryptography method, which employs a naturally split dynamic 
private key, making it a perfect use for the electronic funds transfer 
over the internet. 

The Pact is overlooked by a human on the secure platform, or an 
automated service based on the type of the pact generated by the 
users. The platform makes sure the service or goods have been 
successfully exchanged before agreeing to transfer the funds. Once 
the agreement is received, the users and their respective banks 
undergo the transaction employing the REGES. 

The respective elliptic curve(E) and the Generator point(G) are 
given by the platform to both the users and both their banks, so they 
can generate their respective public keys. The encryption protocol 
requires the exchange of public keys in order to calculate the 
common key that is used to encrypt the data. There are 3 exchanges 
that take place.24 

• Between the sender and their respective bank. 
• Between the sender’s bank and the receiver’s bank. 
• Between the receiver and their respective bank. 

We implement a handshake protocol, to make sure a connection 
is established first and then, their respective public keys are 
exchanged. 
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Figure 9. Broadcasting Elliptic surface and Generator point) 
 

The private keys of each party here are session dependent as the 
second part of the private key is dynamic and should be chosen at 
the time of the transaction, the users can choose their private key’s 
second part right before entering the pact, and the banks can choose 
to use a pseudo random algorithm to generate random values for the 
second part of the private key. 

There are 3 communications that will take place now, based on 
the REGES, the communication between the sender and their bank 
is carried out with the secure platform’s API at its centre, wherein 
the authenticity of the transaction message is kept secure as the 
protocol demands REGES, which is technically infeasible to break 
or intercept as, without being able to decrypt all the 3 private keys 
any hacker cannot intercept the transaction or modify anything. A 
message acknowledgment is always sent back to the secure 
platform post every communication attempt to recheck the 
integrity of the messages, as the secure platform has both the 
public keys, the platform performs a membership check and 
signature checking of the messages being transferred. 

 

 
Figure 10. Entities in the transaction 

 
The first message is transferred between the sender and their 

bank, through the secure platform, the user accesses their bank and 
sends a request to transfer a certain amount of funds to the desired 
destination account. The secure platform crosschecks the data, the 
amount and the destination by signature verification and lets the 
message pass through or deny. 

 
Figure 11. Transaction between sender and sender’s bank 

 
The second message is transferred between the sender’s bank 

and the receiver’s bank, through the secure platform, the message 
is sent, and an acknowledgment is sent back to the secure platform, 
the platform on verifying the messages sends an agreement 
message back to the bank servers to agree to the request. The banks 
can now process the transaction. The happens with the clearing 
house as in intermediate, the agreement response is directly sent to 
the clearing house. 

 

 
Figure 12. Transaction between sender’s bank and receiver’s bank. 

  
The third message is transferred between the receiver and the 

receiver’s bank, the receiver then gets a notification about the 
amount being transacted and then an acknowledgment is sent back 
to the secure platform, where the final amount is cross-checked as 
per the pact signed and is verified and is processed, the receiver has 
no say to deny this request, as they have already signed the pact. The 
funds transaction approval is sent to the bank. 
 

 
Figure 13. Transaction between receiver’s bank and receive 
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The secure transaction is now complete. 
Exiting the Pact 
The transaction once completed, and the Pact successfully kept. 

The users can exit the session, their public keys are deleted from the 
secure platform, and they can choose a new value for their 
secondary part of their own private keys. The elliptic surface 
generated, and the Generator point are discarded by the platform. 
The transaction is written onto a ledger, which is publicly visible to 
everyone (the values are encrypted using REGES). The ledger is 
updated and the session is terminated once and for all. 

SECURITY ANALYSIS 
Let us discuss how our proposed method stands strong against 

some very well know attacks performed by hackers and attackers. 
Let us also consider a situation where, we are implementing the 
algorithm using its dynamic version of the private key, that implies 
after every session [a session is a time frame between two parties 
used in online communication], the θ can be reset to a new value, 
giving the hacker absolutely no power over the next session, even if 
they somehow got their hands on the previous version of the private 
key. Let us assume a key size of n for the following section. Listed 
below are few of these attacks. 

Man in the Middle Attack (Replay) 
This attack happens when the hacker places themselves between 

the communication of the receiver and the sender. Specifically, the 
Relay attack occurs when an attacker attempts to intercept and save 
old messages and tries to send them later, impersonating one of the 
parties. We have the Signature verification algorithm, using which 
both the parties can be very sure that the message has been signed 
by the right person and can easily figure out if the signature 
verification fails. If we choose to consider the dynamic key 
approach, it becomes even harder for the attacker to be able to forge 
signatures, as all his work would go to vein, when a new session is 
initiated. 

Parameters targeted: Cipher text => {(K.G),  
(M + Pubkeyreceiver.K)} 

Statistical Strength: Attacker needs to decode n elements of the 
key in the conventional approach. If we implement the dynamic key 
approach, the attacker on having decoded the (n-19) still has to 
decode the 19 bits that correspond to the theta(θ), which keep 
changing post every session. Technically this gives the attacker no 
possible way to confirm that the (n-19) bits he has decoded are valid, 
as the key can only be used as a whole (using all n bits). On somehow 
decoding the (n-19) bits, the attacker still has to decode out of 199 
possibilities. 

Brute Force Attack 
This is a type of password attack, where the attacker uses the 

methos of rando guessing to try different private keys and hope to 
succeed. We have an immense number of possibilities, to brute 
force all keys, but the inherent implementation of the algorithm 
requires the intervention of both the parties to get your messages 
encrypted, so unless the attacker gets access to at least one of the 
parties or is acting at the party themselves, it would still be very 
difficult to try out so many passwords involving the other to be 
agreeing to keep validating multiple attempts of wrong signature 
verifications. On considering the dynamic approach, this approach 
to hack into the system becomes even more difficult as the attack 

would have to go through all this effort just to find out the new θ all 
over again. 

Parameters targeted: Private key => Privkeyx = (nx, θ) 
Statistical Strength: Attacker on stealing one part of the private 

key has no theoretically possible way to mathematically compute 
the other part of the key (either the nx from θ or vice versa), making 
it extremely secure. The dynamic approach keeps the attacker 
continuously making attempts for every new session which is 
infeasible as it would take around 7 years to compute the 19 bits of 
θ. (199 possibilities). 

Dictionary Attack: 
This is a type of password attack, where an attempt is made to 

copy an encrypted file that contains the private key and apply the 
same encryption to a dictionary of commonly used private keys and 
compare the results. The implemented of the algorithm does not 
allow for such an attack, even if the attacker gets a file having the 
encrypted private keys, they cannot perform the encryption with 
only a single party involving in the process, now assuming the 
private key has been stored using a differently encrypted file, the 
attacker will still have to find two parts of the private key, that can 
no correlation whatsoever, so even on compromising a part of it, the 
attack is rendered useless. On considering the dynamic key 
approach, the attacker would have no control over the system, even 
after an element of the key has been compromised as the user would 
use a session dependent θ, and hence the attack has no control over 
it. 

Parameters targeted: Cipher text => {(K.G), (M + 
Pubkeyreceiver.K)} 

Eavesdropping Attack 
This attack occurs through interception of network traffic, and 

the attacker can passively, or actively grab information to gain 
valuable information. We have a system where there is a 
dependency between the sender and receiver before they can 
successfully exchange messages, therefore the hacker should be 
able to get valuable information from both parties to make use of it, 
because the common key used to encrypt the data has elements of the 
both parties’ private keys involved in it, and considering active 
eavesdropping, the attack still has to find two distinct and 
independent elements of the key of a user to be able to use that 
information. On considering the dynamic key approach, the attacker 
is rendered helpless as his information is invalid once the session 
ends, and the attacker must go through the process to get access to 
the new key, while the session lasts, this is very difficult as both the 
parties are active and using the protocol, they would easily spot any 
suspicious activity. 

Parameters targeted: The modified EDSCA signature generation 
and verification protocol. 

Birthday Attack 
This attack involves a message processed by a hash function and 

produce a message digest of fixed length. Now the attack involves 
finding two different messages generating the same digest. We have 
a method, that has immensely high avalanche effect and we are 
working on a 3-dimensional curve giving us a lot of surface area to 
work with, the process involved makes the generation of cipher 
texts very random and placed very far apart on a 3-dimensional 
curve, the possibility of collision is reduced to nearly impossible. 
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Parameters targeted: Cipher text => {(K.G), (M + 
Pubkeyreceiver.K)} 

SECURITY PROOF AND COMPLEXITY ANALYSIS: 
The proposed cryptosystem and digital signature both are based 

on elliptic curve discrete logarithm along with commutative 
property of the rotational dot product. 

Therefore, the security of the protocol depends on the elliptic 
curve discrete logarithm connecting with associative and 
commutative property of the rotational dot product. Hence 
algorithm is more secured as long as ECDLP is unbreakable. Since 
all the equations is either in cryptosystem and digital signature are 
in linear form over elliptic curve then the order of complexity is ‘n’ 
over elliptic curve and hence time to execute the algorithm is less 
when we compare with the existing algorithm. 

STRENGTH AND SOUNDNESS OF THE ALGORITHM 
The algorithm proposed has several strengths and advantages, let 

us shine a light on a few of them, 
• Extremely high degree of security, with just four extra bits in the 

key. This is possible as the extra bits accounts for an angle 
referred to as ‘theta’(θ), that is responsible for the rotation of the 
x-y plane in an anti-clockwise direction post every iteration in 
the process of encryption. This process creates a high degree of 
uncertainty, which accounts for the superior levels of security. 
This also accounts for significant extreme avalanche effect. 

• Naturally split private key, a numerical value, and an angle(θ). 
The angle ‘theta(θ)’ is the second part of the private kay that the 
user gets to choose, with the numerical value as in other 
conventional encryption algorithms. As opposed to other key 
splitting mechanisms where, a single key is split using 
mathematical procedures, which sometimes are back trackable, 
if a few of the split pieces are found, thereby compromising on 
the security, this model proposes the usage of two values, which 
have no interrelation whatsoever, and hence making it 
theoretically impossible to deduce the second using the first or 
vice versa. 

• Ability to accommodate more private keys with the same 
numerical value, given a different angle. The naturally split 
private key, enables multiple users to have the same numerical 
value with different theta(θ) values, which would effectively 
make it a different private key. This allows the model to 
accommodate multiple keys, which effectively only differ by 
four bits. 

• Extremely sophisticated trapdoor function. (Practically 
impossible to backtrack) The mathematical model, which is 
based on a protocol, that has a 3-dimensional surface, with an 
element of rotation, makes it extremely difficult to backtrack or 
brute force, as its understandable that, even the slightest ever 
change in any of the elements of the private key, will cause 
significantly profound change in the produced cipher text, the 3-
dimensional aspect provides exceptional security. 

• Ability to achieve a very high degree of security, while using 
smaller key sizes. The introduction of the second element of the 
private key, provides and accounts for the most amount of 
security apart from the conventional methods, therefore the first 

element in the private key can be smaller and the security is still 
not compromised. 

• The algorithm, when implemented using the dynamic private 
key approach, can immensely change the security aspects of the 
method, the usage of sessions is common in multiple 
communication systems, therefore effectively using a new 
private key to hash the messages corresponding to every new 
session, makes it very difficult for attackers, as they should be 
able to find the key in while the communication is active on 
both ends and the information gained will be rendered not so 
useful in the next session. 

 
Statistical Analysis 
The algorithm proposed will be compared the original elliptical 

curve cryptography. We understand that elliptical curve 
cryptography already uses a low number of bits in its keys to 
achieve respectable amount of security, on the other hand other 
encryption methods like the RSA, would consume a lot of bits to 
achieve a very high level of security, lets now discuss how we fair 
against them, 

Let us consider a key size of n, using the elliptical curve 
cryptography the attacker has to go through, Kn possibilities, where 
K is the number possible values each bit in the key of size n can 
take. Considering the methodology suggested by the paper, 
assuming similar number of bits used, which is n. The key now has, 
the numerical value which uses n-19 bits and an angle that uses 19 
bits. 

Key = numerical value (n-19 bits) + angular value (19 bits) 
Now the total possibilities a hacker must try before succeeding 

goes up exponentially in the power of 19. We will have all possible 
numerical values of size n-19, for every single angle, the angle can 
take a maximum value of 99.99999999999999999 (a part of the 
semi-circle in each iteration). Every such angle can have all 
possibilities of numeric values there by making it, = 19(n-19) extra 
possibilities corresponding to each of their starting points (taking 
the floor value of 99.99999999999999999, for easy calculation). 
Therefore, giving it an extra factor of 99 which now becomes, 

= 19(n-19) x 99 extra possibilities 
The total possibilities for a hacker to check becomes, 
= Kn-19 x 19(n-19) x 9 x 919 possibilities 
Where the last element ‘919’ corresponds to the number of 

possible angles we can choose in each case, as we have 19 bits to 
fill, and each of them has 9 possibilities. Thereby this exponential 
increase in the security makes this a highly secure algorithm 

Time taken to crack the Privkeyx: (nx, θ), for nx. Let us assume in 
any other system it takes time (T) to crack the password by brute 
forcing it. For every such nx, the attacker would now have to 
calculate the corresponding θ, which is mathematically unrelated to 
nx, and every attempt to brute force θ would cost the attacker 7 years 
in 2022. [time taken to brute force 19 bits of data.] (Source: 
security.org), thereby (T x 7) years, making is extremely difficult 
to crack. Given the possibility on implementing the algorithm using 
the dynamic private key approach the attacker would have to 
recalculate the θ for every new session, which would give the 
attacker absolutely no power over the communication, as no session 
would last as long as 7 years, and it is advised that users constantly 
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refresh (restart) their sessions, and therefore making it impossible 
to crack the Private key. Making the algorithm extremely secure and 
a best fit for highly secure transactions. 

CONCLUSION 
The protocol proposed is one of a kind, and the first ever one to 

implement a naturally split dynamic key encryption standard. The 
architecture and the mathematical model proposed are the first in 
their kind, the first ever 3-dimensional curve based, rotating 
encryption, where the private key has two naturally split distinct 
and independent elements to it. The 3-dimensional approach gives 
the algorithm a lot of geometric places to play with, achieving a 
very high avalanche effect and a near zero possibility of a collision 
in the cipher text values generated for different messages. This 
protocol is essentially aimed at enabling highly secure transactions 
between financial institutions, though it can also be implemented at 
lower levels of security based on the need, the level of security it 
could achieve is extremely high if the complete protocol suggested 
is followed end to end. We have discussed the possibility of a 
dynamic implementation of the algorithm where the second part of 
the private key can dynamically change for every session, and this 
would make the system resistant to most types of cyber-attacks as 
we have discussed in the paper. This could be the basis for further 
research, and improvisations. The architecture suggested could act 
as the base for developing and implementing some of the most 
secure encryption algorithms ever made, without compromising on 
the space needed to store the keys, or fear of having compromised a 
part of the key. 
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