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Malaria is a parasitic infection 
that can be caused by the bite of 
infected anopheles’ mosquitoes 
and can progress from mild 
symptoms to severe forms 
which make it crucial to 
understand its potential 
consequences. This study 
majorly focusses on multiclass 
classification and provides an 
ensemble framework for the 
detection of stages of malaria 
parasite in thin blood smears. In this study, we used publicly accessible dataset comprising 1320 images together with training and test json file. 
Initially pre-processing is applied to improve image quality, then key regions are extracted to retain important information during feature 
extraction phase. During this study, we compared different classification techniques to find the best model for multiclass classification for malaria 
parasite stages. Several metrics, including accuracy, recall, precision, and loss, are used to analyze the performance of the model. In this study, 
the ensemble method VL-M2C ie VGG LSTM Multiclass Malaria Classification has been proposed that raises the overall accuracy and robustness 
of the model by considering the advantages of individual classifiers. It has been compared with VGG16, CNN and RCNN. Our proposed VL-M2C 
has the best accuracy (98.56%) and lowest loss (0.1240), thus proves promising diagnosis system. 
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INTRODUCTION 
Malaria is caused by the infection of plasmodium parasites on 

human bodies, through the infected anopheles mosquito bites which 
serve as their carrier host. After the plasmodium enters into the 
human blood system, it multiplies itself and launches assaults 
against red blood cells, ultimately breaking them down. The initial 
indicators of malaria, include chills, fever, headache and vomiting, 
which can be mild and may not immediately indicate the presence 
of the disease. However, if ignored, it can proceed significantly and 

have serious adverse reactions such as organ failure and even death. 
Therefore, it is essential to get prompt medical treatment if the 
disease has been detected in the human body.1  Figure 1 depicts the 
five species of plasmodium that result in malaria in human beings. 
Plasmodium vivax and Plasmodium falciparum are the most 
prevalent species that causes malaria. Plasmodium falciparum is 
one of the most dangerous of all strain that is the primary cause of 
deaths related to malaria globally.2 Under a microscope, each of the 
aforementioned species can be seen to have a unique appearance as 
they move through different stages of their growth cycle. These 
phases, which occur in a particular order, are the trophozoite, ring, 
schizont, and gametocyte stages.3 The size, morphology, and 
occurrence or absence of malarial pigment determines the stage of 
the malaria parasite. Additionally, different species of the parasite 
exhibit variations in the infected cell's shape, the existence of 
characteristic dots and the parasite morphology at various life cycle 
stages. Monitoring the stages of malaria parasites helps healthcare 
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workers to understand the effectiveness of their medication and 
identify their potential resistance.4 
 

 
Figure 1. Types of Plasmodium Species 
 

Diagnosing malaria accurately is very crucial for the effective 
treatment of disease. Various methods are available to predict 
malaria in human beings.5 Some of the methods are Rapid 
Diagnostic Test (RDT), Light Microscopy, and molecular 
approaches like PCR. RDT are very quick and easy-to-use method 
for detecting disease and it is generally used in remote areas.6 
Molecular approaches like PCR are highly accurate but expensive 
as they require specialized equipment to perform testing which 
reduces its usage in resource-limited settings.7 Light Microscopy is 
the commonly used method to detect malaria parasites in the human 
body 8. In this method, a small drop of blood is carefully placed on 
a glass slide to form a blood smear. Then the smear is submerged 
in a staining solution like Giemsa stain to enhance the visibility of 
parasite present which can be examined under a light microscope. 
This technique is generally employed in identifying malaria or any 
other blood-borne parasites. For identifying the malaria parasites 
basically two types of smears are used namely, Thin and Thick 
smears. A drop of blood is dispersed evenly across the glass slide 
to create a Thin Smear. This is generally used to determine the 
existence of parasites, recognize the species, and also to determine 
stage of the development. However, in a Thick smear, a blood drop 
shows as a dense stain on the glass slide. This technique is used to 
determine whether or not human blood contains parasites.9 It is a 
quicker and more precise way to determine whether a patient has 
malaria or not. Due to the absence of visible red blood cells in thick 
smears, parasites can be directly detected and counted. 

    In traditional methods, an extensive workforce and skilled 
macroscopic observers were required to analyze malaria slides and 
identify malaria parasites. Presently, however, automated 
technologies are being created to reduce human labour and increase 
the precision of the outcomes. Malaria diagnosis plays a very 
essential role in the treatment of malaria infection. Early diagnosis 
of the disease empowers one to fight the disease effectively. It is 
required to plan proper treatment and ensure the well-being of a 
patient. Thus, Artificial Intelligence in disease diagnosis plays a 
vital role in achieving safe and effective patient care. This paper 
presents a deep Learning technique to diagnose and detect the stage 
of malaria in the blood. 

 
 

The Research contribution of this paper is: 
• Most of the papers are based on the binary classification 

which tells the absence and presence of Malaria parasite but this 
paper introduces an innovative automated system to perform 
multistage classification of malaria disease that leverages the 
computer vision as well as Deep learning approaches. The 
suggested system has the potential to substantially improve the 
efficiency as well as accuracy of diagnosis.  

• The study presents an ensemble-based approach by 
integrating classifiers VGG16, and LSTM and demonstrating how 
combining different model’s strengths can enhance overall 
accuracy and reliability of the system. 

• By addressing gaps in current methodologies, this study 
will provide the foundation for future research along with the 
advancements in the field, aiming to enhance patient care and 
improve health outcomes in malaria-affected regions. 

    This paper is organized into several key sections, each 
contributing to a proposed ensemble technique comprehensive 
exploration for malaria parasite detection. Section 1 Introduction, 
sets the stage by highlighting the significance of accurate parasite 
stage detection in the context of malaria diagnosis, emphasizing the 
need for an improved and automated ML approach. Examining 
previous research, the literature review establishes a basis for 
comprehending current approaches and points out gaps that our 
investigation seeks to fill. The Methodology section details the 
dataset, pre-processing steps, and the ensemble technique, 
elucidating the experimental setup for a transparent and 
reproducible study. In the Experimental Setup and Results sections, 
we present the specifics of our approach and provide a thorough 
comparison of classifiers, showcasing performance metrics. It also 
analyses the obtained results, drawing connections between our 
findings and the research objectives. The conclusion encapsulates 
key insights and implications of our research and also throw light 
on future directions. 

RELATED WORK 
Automatic detection of malaria parasite has been extensively 

studied.10–14 However most of these studies focus on binary 
classification i.e. presence of malaria parasite. In exploring the 
landscape of related work, it is essential to comprehend the current 
methodologies employed for malaria parasite detection and stages 
of malaria parasite that will lay the foundation for our novel 
ensemble-based approach. This section provides recent 
advancements in malaria stage detection with performance analysis 
of various techniques used for the multi class classification i.e. 
stages of malaria parasite of different species has been detected. 

 To address the subjective nature of visual parasitemia 
quantification, G. Díaz et al.15 proposed a novel method for the 
classification of erythrocytes infected with Plasmodium 
falciparum. The approach involves pre-processing for luminance 
correction, segmentation utilizing normalized RGB color space, 
and an inclusion-tree representation to identify erythrocytes. A two-
step classification process, aided by user intervention when needed, 
achieves specificity of 99.7% and 94% sensitivity for infected 
erythrocytes. The classification of infection stage shows an average 
sensitivity of 78.8%.  
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A comprehensive approach for the identification and 
categorization of malaria-infected stages utilizing microscopic 
pictures of thin blood smears is presented by D. K. Das et al.16 
Leishman-stained blood slide imaging, reduction of noise, lighting, 
erythrocyte segmentation, correction, and feature selection for 
classification of the machine are all included in the methodology. 
The marker-controlled watershed technique outperforms the other 
segmentation algorithms in boundary detection, especially in 
overlapping configurations. To distinguish between infected and 
non-infected erythrocytes, microscopic features at the texture, 
intensity and levels of morphology were obtained. To find possible 
features, feature selection methods such as information gain 
criterion and the F-statistic were used. For every feature subset, 888 
erythrocytes were employed to train and evaluate five classifiers: 
multilayer perceptron neural network, Naive Bayes, logistic 
regression, classification and regression tree (CART), and RBF 
neural network. The performance evaluation demonstrates the 
multilayer perceptron network's effectiveness in the recognition 
and classification of malaria-infected erythrocytes along with the 
infected stages. The findings show that for the purpose of 
classifying malaria-infected stages, the top 60 features ordered by 
gain of information and the top 90 features ranked by F-statistic 
produce the best overall specificity, accuracy, sensitivity, and 
positive predictive values. 

A. Nanoti et.al.17 present an automated method for detecting and 
classifying malaria parasites and their life cycle stages in thin blood 
smear microscopic images. The proposed method involves 
acquiring images at 100x magnification, pre-processing, separating 
infected cells using k-means clustering in the Lab color space, and 
extracting shape and textural features for classification. The 
algorithm focuses only on infected cells, enhancing speed and 
efficiency. The K-nearest neighbor (KNN) classifier was trained 
with 300 images, achieving 90.17% accuracy and 90.23% 
sensitivity for detecting three life cycle stages across four malaria 
species. Features were ranked using one-way ANOVA, and KNN 
outperforms SVM in classification. 

N. Abbas et al.18 focused on improving the detection along with 
classification of malaria parasites in thin blood smear images using 
digital image processing. They have discussed two approaches: the 
first one uses k-NN, Naïve Bayes and Multi-Class SVM classifiers 
based on HOG and LBP features to classify the life cycle stages of 
malaria parasites. The second approach employs k-NN, SVM and 
Naïve Bayes classifiers to grade parasites based on their life phases 
and uses HOG and LBP features for accurate classification. The 
proposed methods show high sensitivity (96.75%) and specificity 
(94.59%) when tested on a benchmark dataset. The study 
emphasized an economical solution for malaria parasite grading in 
extensive testing. 

Authors R.R Manku et al.19 introduced a two-layer framework 
for malaria diagnosis, utilizing a Faster-RCNN for infected cell 
detection in the first layer and a separate neural network for 
classification in the second layer. The dataset, BBBC041v1 from 
the Broad Bioimage Benchmark Collection, contain 1364 images 
of blood smears with different cell classes. Layer 1 used Faster 
RCNN for infected cell detection, while Layer 2 employed a 
pretrained ResNet-50 for classification based on the detected cells' 

features. The two-layer approach overcomes issues with feature 
loss and achieved better accuracy.     

S.S. Abbas et al.20 proposed a computer-based framework using 
segmentation of images along with life stage classification with a 
RF classifier. The approach is evaluated on a dataset of Giemsa-
stained images from 16 patients infected by the Plasmodium 
falciparum. The two-step process involved pixel classification for 
segmentation and subsequent classification of parasite life stages. 
The segmentation method outperformed the Otsu method, 
achieving a Dice coefficient of 0.82. Overall life stage classification 
accuracy is reported at 58.8%, improving to 82.7% when focusing 
on three main stages (ring, trophozoite, schizont).  

Kittichai et al.5 address the economic threat posed by avian 
malaria (Plasmodium gallinaceum) to the poultry industry. It 
introduced computer-aided diagnosis using deep CNNs (Darknet, 
Darknet19, Darknet19-448, Densenet201) to classify blood stages 
of the parasite. The models exhibit high accuracy, with Darknet 
outperforming others. The methodology employed a two-stage 
model involving YOLOv3 for object detection and subsequent 
classification using selected neural networks. Vijayalakshmi A et 
al.2 introduced a novel approach for identifying infected falciparum 
malaria parasites using a VGG-SVM model, combining VGG 
networks and SVM through transfer learning. The proposed model 
achieves a high classification accuracy of 93.13% in identifying 
infected falciparum malaria, outperforming existing CNN models. 
The transfer learning strategy involved using pre-trained VGG 
layers as expert learning along with SVM as domain-specific 
learning, overcome class distribution mismatches. The method 
utilized digital microscopic images of stained blood smears for 
malaria diagnosis, showcasing the potential of transfer learning in 
medical image analysis. 

    The study by M.S. Davidson et.al.21 introduced an automated 
image analysis approach to enhance the accuracy as well as 
standardization of malaria diagnosis through microscopic blood 
smear examination. A machine learning (ML) approach, 
incorporated Faster R-CNN for RBC detection and a residual neural 
network-50 model for infected cell classification. The model 
achieved high accuracy in cell segmentation and parasite detection, 
offering a practical route to automated malaria diagnosis. The user-
friendly web tool, PlasmoCount, facilitated result review and 
quality assurance. 

A. Molina et al.22 emphasised on optimal deep learning model 
architecture selection for malaria-infected red blood cells (RBCs) 
classification from normal and other inclusion types. Based on 
extensive evaluation criteria such as sensitivity, positive predictive 
value, and overall accuracy, VGG-16 was the preferred model. 
Sequential CNN called VGG-16 has an easy structure that 
demonstrated the best results in those factors and was chosen the 
classification model for further testing purposes. The proposed 
deep learning system aimed at enabling efficient identification of 
malaria-infected RBCs that embodied excellent outcomes in single-
cell recognition and feasibility of automatic identification. This 
approach separated malaria parasites and other RBC inclusions 
thereby providing rapid and objective morphological analysis. S. Li 
et al.23 gave an approach to recognition of multi-stage malaria 
parasite using unsupervised learning and transfer learning from 
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source images with discriminative morphology through DTGCN. It 
proved to be a promising solution for automated low-cost diagnosis 
of malaria by showing its effectiveness across different stages. 

    The research by P. Krishnadas et.al.24 focuses on automating 
malaria diagnosis by utilizing object detection models, YOLOv5, 
and scaled YOLOv4, to classify the type and stage of malaria 
parasites in Giemsa-stained blood smears. Two datasets were 
employed one for parasite classification with 172 images, including 
Vivax, Falciparum, Ovale, and Malariae classes, and another for 
stage classification with 1330 images indicating ring, trophozoite, 
RBC, gametocyte, schizont, leukocyte and difficult stages. While 
both models proved effective, scaled YOLOv4 outperformed 
YOLOv5 in accuracy. 

To address inconsistencies in the manual inspection as well as 
staging, a framework integrating image processing as well as ML 
have been reported by T. Aris et.al.25 Using thresholding and 
clustering, a standardized segmentation framework was developed 
to accurately identify the stages of P. falciparum & P. vivax 
parasites. Experimental Outcomes revealed the efficacy of thick 
smear image segmentation, achieving 99.86% accuracy with 
Phansalkar thresholding. Enhanced k-means (EKM) clustering, 
utilizing variance and a new transferring process, achieved a 
remarkable 99.20% accuracy and 0.9033 F1-score for segmenting 
all malaria stages Moreover, 86.89%, 98.82%, and 90.78% 
accuracy rates for parasite detection, species recognition, and 
staging are attained by an RF. This proposed framework lays the 
foundation for future improvements across a range of malaria 
species and enables flexible malaria parasite detection as well as 
staging. It also yields an interactive outcome. 

Various deep-learning models were applied to classifying 4 
classes of malaria parasite datasets by B. Kakkar et.al.26 
NASNetLarge and the Hybridized model of DenseNet201 and 
ResNet152V2 attained the greatest accuracy during the training 
phase, both reaching 99.9%. Conversely, DenseNet121 exhibited 
the best loss value of 0.001, showcasing superior performance. 
During validation, MobileNetV2 achieved the greatest accuracy, 
while ResNet152V2 obtained the best loss value of 0.005. 
However, DenseNet121, found a decrease in accuracy on the 
validation dataset suggesting overfitting during training. 

The methods discussed in the state-of-art achieved high 
sensitivity, accuracy and specificity, demonstrating the potential of 
digital image processing and machine learning in this domain. 
However, many studies faced limitations such as high 
computational cost, dependency on extensive labeled datasets, 
overfitting and challenges in handling overlapping erythrocytes and 
classifying multiple parasite stages accurately. Our approach, 
utilizing a combination of VGG16 and LSTM, addresses these 
limitations by leveraging the powerful feature extraction 
capabilities of VGG16 and the sequence learning strength of 
LSTM. VGG16, pre-trained on ImageNet, effectively captures 
spatial features from blood smear images, while LSTM model’s 
temporal dependencies, improving the accuracy of stage-wise 
parasite classification. 

PROPOSED FRAMEWORK ENSEMBLE DEEP LEARNING 
3.1 Dataset Description 

The dataset P. vivax (malaria) is publicly available at 
https://bbbc.broadinstitute.org/BBBC041/ and consists of 1364 
images i.e. collected from 3 different sources and labeled by 
malaria expert. A sample image of this dataset shown in Figure 2. 
There are total of six classes, consisting of 2 classes of uninfected 
cells comprising RBC as well as leukocytes and 4 phases of 
infected cells that include gametocyte, ring, trophozoites and 
schizonts stages. Figure 2 displays segmented images of infected 
cell. Two JSON files testing.json and training.json are also 
provided that serves as a structured way to link images with their 
corresponding class labels. A class label and set of bounding box 
coordinates were given for each cell. 
 

 
Figure 2(a) Sample dataset 

 
(b) Ring 

 
(c) Gametocyte 

 
(d) Schizont 

 
  (e) 
Trophozoite 

Figure 2. (a) Sample of dataset, (b-e) After Segmentation (b) Ring 
(c)Gametocyte(d)Schizont(e)Trophozoite 

 
To enhance the quality of the image and to address the artifacts 

that can affect the further analysis, the pre-processing of the dataset 
is employed. This includes resizing of images, normalization and 
noise reduction to ensure a consistent dataset. Different feature 
extraction techniques can be used to extract the relevant features 
that can be used for the accurate identification of different stages of 
malaria parasite.  

Design and implementation of the ensemble technique, 
integrating individual classifiers to leverage their strengths and 
enhance overall accuracy. This involves combining the outputs of 
multiple classifiers to make a consensual decision on the malaria 
parasite stage. Implementation and training of various classification 
techniques, including VGG16, CNN, and LSTM to establish 
baseline performance metrics. Each classifier is individually 
evaluated on the dataset. 

 
3.2 Ensemble Model Design 
Convolutional Neural Network (CNN) for Feature Extraction 

The basic CNN model for image classification applied using 
Tensor Flow is shown in Figure 3. The model starts with an input 
dataset with images and a JSON file containing the image path and 
category label associated with each image. One hot encoding has 
been applied to convert the categorical labels into numerical 
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vectors. Each image is pre-processed, resized to fixed size pixels of 
128x128 to maintain consistency and then normalized to bring it in 
the range of 0-1. The data is split into training as well as validation 
set to ensure the evaluation of the model on the unseen data. The 
model in which the layers are stacked one after another are referred 
as sequential model. Three convolution layers are used to extract 
the features from the data. These layers use filters of different sizes 
{3x3} to detect patterns at various scales within the images. 

Each convolutional layer is followed by a ReLU activation 
function that introduces non-linearity and helps the model learn 
complex features. ReLU is Rectified linear unit 27 which is an 
activation function applied element by element to the convolution 
operation’s output. Mathematically, ReLU is defined in equation 
(1) which means if input is greater than 0 then output is considered 
as x but if input is less than or equal to 0 output is considered as 0. 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = 𝑀𝑀𝑀𝑀𝑀𝑀(0, 𝑥𝑥)   (1)  
Max pooling layers 28 are also inserted after each convolutional 

layer which is use to downsample the feature maps by taking the 
maximum value within a specific window size (2x2). In Equation 
(2) M represent the output of max pooling operation, F represent 
feature map and W is window size say 2x2, then max pooling 
operation at a specific position (x, y) in the output can be expressed 
as: 

M[x, y] = max(F[i, j])for i in range(x, x+), j in range(y, y + W) 
      (2) 

    The max pooling layer preserves key features while assisting 
in lowering the spatial dimensionality of the data. The data is 
flattened into a 1D vector that can be fed into fully connected layers 
after the final convolutional and pooling layers. Two fully-
connected layers are also used for further feature learning and 
classification. Initially, the dense layer has 128 neurons with ReLU 
activation for additional feature extraction. In the output layer, the 
final dense layer is used that has a number of neurons equal to the 
numbers of category labels present in the dataset.  

It utilizes SoftMax activation to generate probabilities for each 
category, essentially predicting the class an image belongs to Adam 
optimizer is used in the compilation of the model with a categorical 
loss function suitable for multiclass classification. During training, 
the model iterates through the training data, updates its internal 
weights and biases to minimize the loss function to accurately 
classify images. After training, the model is evaluated on validation 
set. 
VGG16 with Transfer Learning for Feature Extraction 

A pre-trained VGG 16 model with transfer learning29 is applied 
for feature extraction as shown in Figure 4. The model is pre-trained 
on ImageNet dataset which means it has been trained on massive 

dataset of millions of images and has learnt powerful feature 
representation for the visual recognition task. In this architecture, 
base layer of the model excluding the classification are frozen so 
that it is not retrained during training process as it has already learnt 
a powerful feature for the classification.  

  A custom classification head is added on top of the pre-
trained VGG16 model which includes Global Average pooling 
layer which reduces the feature maps' spatial dimensions from the 
pre-trained model.It also includes the Dense layer with ReLU 
Activation which adds a hidden layer with 128 neuron and ReLU 
activation for further feature extraction. The model is fine-tuned by 
updating only weights in custom head classification layer so that 
model can adapt our specific classification problem. In this model, 
we have split the dataset into training as well as validation set which 
is further converted into TensorFlow dataset. The pre-processing 
function is applied on each image of the dataset which will read the 
image file, decode the image and resize the image to a fixed size of 
(224x224) pixels to match the input size of pretrained VGG16 
model. Normalization of pixel values is also done by dividing it 
with 255 i.e converting it into a range from 0.0 to 1.0. A batch 
function has been utilized to group the data into batches for efficient 
training .In this model, prefetch function is also used to prefetch the 
data asynchronously which will in turn increases the speed of the 
training.  

 Label encoding is done to convert the category labels into 
numerical values for the model. In the output layer, it has the same 
number of units as the number of categories i.e. number of malaria 
stages available in dataset. 

It uses SoftMax activation to predict the probability of each 
category of an image. This model is appropriate for multi-class 
classification problems because it has been compiled by utilizing 
the Adam optimizer and a sparse categorical cross-entropy loss 
function. The model is evaluated by utilizing primary metrics on 
the validation data after a predetermined number of iterations on 
the training set. 
R-CNN for Malaria Parasite Detection 

R-CNN is a region with convolution neural network which is a 
two-stage object detection model. In the first stage it proposes 
candidate regions that may contain objects in an image. In the 
second stage, the model classifies each proposal and refines its 
bounding box for accuracy. R-CNN utilizes pre-trained CNN for 
feature extraction, making it powerful for object detection tasks. In 
this research, we have utilized a pre-trained ResNet50 model30 as 
the base model for feature extraction. This will exclude the top 
classification layer of ResNet50. Again, the base model is set non-
trainable i.e. the weights are freezed to focus on learning in the 

following layers. In 
our model, we 
utilize a simplified 
RCNN that uses a 
pretrained model for 
feature extraction 
and focuses on 
classification based 
on pre-generated 

 
Figure 3. Convolution Neural Network 
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region proposals that would be distinct step in a full R-CNN 
implementation. 

 

 
Figure 4. VGG16 with Transfer Learning 

 
Proposed VL-M2C Model 

In the proposed model VL-M2C, malaria stage classification is 
done using combination of VGG16 and LSTM as shown in Figure 
5. JSON file is used to check the image path and category labels 
showing the stage of malaria parasite in the image. Images are pre-
processed by decoding the jpeg image with 3 channels (RGB). It 
also incorporates data augmentation techniques that include flips 
(left-right, up-down), contrast adjustment, brightness adjustment, 
saturation adjustment and hue adjustment. These transformations 
are generally applied to increase data artificially and to improve the 
model robustness on the variation of real-world images. Images are 
also resized to 224x224 pixels to match VGG16 input size and 
normalize pixel values to the range [0,1] by dividing it with 
255.The dataset has been then split into training and validation set 
utilizing train_test_split method of scikit-learn library. Label 

encoder is used to convert string category labels into numerical 
values. 

A VGG16 model is pretrained on ImageNet dataset. Weights of 
the VGG16 layers are frozen to prevent them from being updated 
at the time of training and which leverages the learned features for 
image recognition . The VGG16 base model’s last few layers are 
fine-tuned during training. This allows the model to adapt the pre-
trained features specifically for the malaria classification task, all 
layers except the last 4 are frozen. Convolution layer is applied to 
an input image data to extract features. Mathematically, it can be 
represented with below equation (3) where i, j, k are the output 
feature map dimensions and m, n, l are the dimensions of the filter 
being applied. 

 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂[𝑖𝑖, 𝑗𝑗, 𝑘𝑘] = �(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼[𝑚𝑚,𝑛𝑛, 𝑙𝑙] ∗ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹[𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 −

𝑛𝑛, 𝑙𝑙, 𝑘𝑘]) + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑘𝑘]   (3) 
 
Global Average Pooling is applied to the output of the VGG16 

to reduces the spatial dimensions i.e. height and width, while 
maintaining the channel dimension. This will recapitulate the 
features extracted by VGG16 into fixe-sized vector. Output 
received from global average pooling layer is reshaped to prepare 
it for the LSTM layer. 

 
 LSTM layer 31 will process the features extracted by VGG16 in 

a sequential manner. This is useful for capturing temporal 
dependencies that is useful in detecting stages of malaria parasite. 
To add non-linearity and decrease the dimensionality of the 
aggregated features, a fully connected layer with 128 neurons as 
well as ReLU activation is applied. 

A fully connected layer employed in the output layer has as many 
neurons as there are categories in the dataset. In addition, the 
probabilities for every category are generated using SoftMax 
activation. The model has been compiled using the Adam optimizer 
and sparse categorical cross-entropy loss function for multiclass 
classification with integer labels. It is evaluated on the validation 
set and trained on the training dataset to test its performance based 
on several key criteria. In order to prevent overfitting, an early 
stopping callback is also implemented to monitor the validation 
loss. If the validation loss remains unchanged for a predetermined 
period of epochs, the training is halted. 

EXPERIMENTS AND RESULTS 
The suggested VL-M2C model effectiveness for identifying 

malaria parasite stages in thin blood smear data is examined in this 
section. In order to determine the efficiency of the model, it is 
analyzed using a range of  performance metrics, such as accuracy, 
loss, precision, recall, and F1-score. The suggested VL-M2C model  

 
Figure 5.  Proposed VL-M2C Model 
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Figure 6. Graphical analysis of different models 
 
in medical image processing achieves remarkable accuracy and 
efficiency by merging the advantages of LSTM and CNNs. 
Assessing the outcomes in Table 1, we could see that VL-M2C 
attained the highest accuracy of 98.56 among the evaluated models 

CNN, VGG16 and RCNN which obtained the accuracy of 97.42, 
97.36 and 98 respectively. 

 
Table 1. Performance analysis of different models 

Model Accuracy Loss Precision Recall 
CNN 97.42 0.1711 97.75 97.81 
VGG16 97.36 0.1854 97.89 97.88 
RCNN 98 0.1558 98.40 98.78 
VL-M2C 
(proposed) 

98.56 0.1240 98.69 98.41 

 
It's noteworthy that CNN, a simpler model frequently used as a 

baseline, achieved a competitive accuracy of 97.42. This suggests 
that CNN captured significant discriminative features within the 
images. However, VL-M2C's edge over CNN highlights the 
potential benefits of incorporating an LSTM layer. LSTMs are 
adapting at learning temporal dependencies, which could be 
particularly useful if the image data exhibits sequential information 
or relationships between image elements. The impressive 
performance of the VL-M2C model, with a precision of 98.69 and 
a recall of 98.41 is demonstrated in Table 1 By expressing the 
percentage of accurately detected parasite stages among all 
projected positives, precision quantifies the accuracy of the model's 
positive predictions. The recall of the model quantifies its capacity 
to recognize actual positive cases. The high precision and recall 
scores of VL-M2C indicate its effectiveness in accurately detecting 
parasite stages and minimizing false positives, making it a reliable 
tool for malaria diagnosis. RCNN, on the other hand, demonstrates 
a good balance between accuracy of 98.00 and loss of 0.1558.  

 

 
Figure 7. Analysis of model performance metrics 

 
It is possible that RCNN effectively localized relevant image 

regions using its region-based approach, leading to a good overall 
performance. VGG16, while having a slightly lower accuracy of 
97.36 compared to CNN, might have encountered challenges in 
capturing specific features crucial for optimal classification in this 
dataset. Figure 6 depicts the graphical analysis of the models 
discuss in this study. 

Delving deeper into the results, we can observe that VL-M2C 
also achieved the lowest loss of 0.1240 when analyzed alongside 
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with the other models CNN, VGG16, RCNN. The discrepancy 
between the actual labels along with the model's predictions is 
represented as loss. The model's predictions and the actual data are 
more closely aligned when the loss value is smaller. This indicates 
that VL-M2C efficiently learned the patterns within the training 
data, minimizing errors during the classification process. Figure 7  
indicates VL-M2C's superior ability to correctly classify image data 
compared to the other individual classifiers. 

CONCLUSION AND FUTURE SCOPE 
A detailed analysis of existing literature divulges strengths and 

limitations in current approaches, setting the stage for our proposed 
ensemble-based technique. The research focuses on a publicly 
available P. vivax (malaria) dataset of 1320 images, employing pre-
processing and feature extraction to optimize image quality. The 
findings indicate the effectiveness of our proposed model VL-M2C 
in image classification. VL-M2C outperformed other models in 
terms of accuracy and losses, suggesting that it can learn distinct 
features and make accurate predictions. A solid experimental 
design ensured a reliable assessment, which has been supported by 
statistical analysis to show significant differences. The integration 
of individual classifiers is part of an ensemble technique whose goal 
is to completely revolutionize multi-stage malaria parasite 
detection. In order to improve its performance, it would be 
interesting for future work to investigate how hyperparameter 
tuning affects VL-M2C and probably explore different LSTM 
architectures. Additionally, applying VL-M2C to various image 
classification tasks would provide further insights into its 
generalizability and effectiveness across different datasets. This 
research moves towards closing some gaps in the field, thus 
providing useful information for future advances in multi class 
classification malaria diagnosis 
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