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Human Falls are a significant cause of fatal, non-fatal injuries and mortality worldwide in all age groups, especially in older adults, according to 
WHO. Falls are the major cause of hospital admissions, which impose substantial financial burdens on individuals, the healthcare system, and 
society. An automatic & accurate fall monitoring system is necessary for fall detection and early assistance to reduce fall after-effects. It has been 
a hot topic among researchers for the last two decades. Vision, wearable, ambient, and muti-model techniques are used for fall detection, but 
the wearable technique is more suitable due to its cost-effectiveness and no area restriction on the subject. Most wearable techniques use 
accelerometers and gyroscope sensors, whereas little research is going on muscular & cortical bioelectrical activity for fall detection and Brain-
computer interface. This research analyzes single-channel EEG signals for various non-fall and fall activities. This research aims to evaluate the 
feasibility of fall detection using morphological, statistical, and spectral analysis of EEG signals during non-fall and fall activities. The study shows 
significant variations in EEG signals for various non-fall and fall activities. The single-channel EEG signal technique can successfully discriminate 
fall events from non-fall events. 

Keywords: Falls, Fall detection, Fall detection techniques, Single-channel EEG, EEG feature extraction 

INTRODUCTION 
WHO defines fall as “inadvertently coming to rest on the ground, 

floor or other lower level, excluding intentional change in position 
to rest in furniture, wall or other objects”.1 Human falls are a major 

cause of accidental injury and death. The second leading cause of 
accidental or unintentional injury deaths all over the world is falls, 
and an estimated 6,84,000 individuals each year die from falls 
worldwide.2 Falls count for more than 30% of people aged 65-70 
years and about 50% of people over 80 years, making them the 
leading cause of injury-related deaths and non-fatal injuries in all 
age groups.3 The Centers for Disease Control and Prevention found 
that one in four Americans aged 65 and older falls every year.4 Falls 
are a prime cause of hospitalizations. The CDC highlights that more 
than 95% of hip fractures are due to a fall, and nearly everyone falls 
sideways. WHO report 2004 shows that globally, 424000 deaths 
occur due to falls, where 95000 occur in India alone, which is equal 
to 20%; this number increased to 160000 in India in 2005. 5 From 
2015 to 2050, the proportion of older adults above 60 rises from 
12% to 22% worldwide.6 With the increase in age and frailty level, 
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fall frequency increases. Every year, 28-35% people of age 65 and 
over fall; it increases to 32-42% for people over 70 years.1 As age 
grows, a person’s cognitive, sensory, and physical ability reduces, 
increasing the chances of falling.7 Falls and consecutive injuries are 
prime public health risks for all age groups. Falls and successive 
injuries require hospitalization & medical assistance, which 
increases the financial burden on the family & healthcare system. 
So, accurate fall detection is crucial in fall study, prevention, and 
treatment of post-fall injuries. Timely fall detection is helpful in 
medical assistance and minimizes the fall consequences. The latest 
research in automatic fall detection systems may enable early fall 
detection, reducing fall-related injuries and burden on the 
healthcare system. 

RELATED LITERATURE REVIEW 
Different approaches used for fall detection are Vision-based, 

Wearable, Ambient, and Multi-model. The wearable approach is 
widely used due to low cost, user privacy preservation, and no area 
constraints. Our research focuses on the feasibility of fall detection 
using EEG signals. All the voluntary and involuntary movements 
are monitored & controlled by the brain. Movement-related EEG 
potentials(MRPs) include Bereitschaftspotential(BP), Event-
related synchronization(ERS), Event-related 
desynchronization(ERD), Pre-motion positivity(PMP), and Motor 
potential(MP).8 Three movement-related brain potentials before 
voluntary movement of the finger were recorded from the scalp 
surface(FP1, FP2, P3, P4, Pz, C3, C4) using time-reversed 
averaging along with EMG and analyzed that 
Bereitschaftspotential, Pre-motion positivity, Motor potential 
occurs 750ms, 90ms, 60ms respectively before finger movement.9 
Scalp recorded µ-rhythm(8-12 Hz) of EEG activity from the 
somatosensory cortex(C3, C4) using Common average reference 
and large Laplacian method successfully controls the cursor 
movement on the screen.10 The location of recording electrodes and 
reference is crucial for detecting MRPs from scalp surfaces for 
diagnostic, rehabilitative, and BCI applications. The performance 
of the BCI system can be improved by choosing SMA(FCz, Fz) as 
an optimal reference location in the motor imaginary task of finger 
movement.11 Unpredictable body perturbation results in balance 
corrections leading to large negative cortical evoked potential 
recorded at midline electrode locations (FCz, Cz, CPz) compared 
to predictable body perturbation.12 Considering SMA as a reference 
& M1 as recording location, C3-FCz & C4-FCz are shown as 
optimal locations for identifying motor imaginary task of hand 
movement for BCI.13 EEG-based driver fatigue detection was 
investigated using an ensemble deep random vector functional link 
(edRVFL) network by applying two strategies using 
InterpretableCNN features to input of network and improving the 
feature learning ability of the network using FGloWD-edRVFL 
approach.14 The ICNN and FGloWD-edRVFL hybrid approach 
shows good cross-subject driver fatigue detection results. EEG-
based(Fp1) fall classification using genetic programming for 
machine learning pipeline with Wavelet, Polynomial, and PCA-
based feature extraction on Preliminar Fall-Up dataset was done, 
achieving an average accuracy of 90.52% with inference time 0.019 
sec.15 Single-channel EEG and EMG-based low-cost systems are 

designed to provide real-time user feedback for fall prevention.16 
MRCP detects the movement intention at the Cz location, which 
enables the EMG analysis and matches the EMG template with a 
pre-characterized user profile to alert the user for fit to move or stop 
moving. Using EEG and Heart rate variability, the reoccurrence of 
falls can be detected by detecting similarities from previous fall 
data to warn the user or caretaker about the possibility of falls.17 
The author also proposed a fall detection system using an RFID tag 
mounted on the user’s belt & RFID reader on the user’s hand by 
received signal strength, which varies with sudden hand 
movements when a fall occurs. Fall risk prediction with Bispectral 
EEG Fp1 & Fp2 in delirious elders using Random forest for EEG 
feature extraction and Kernalized SVM for classification yield 89% 
accuracy.18 EEG-EMG-based Multi-sensor architecture is used for 
pre-impact fall detection with a time of 370.62 ± 60.85 ms and 
96.21% accuracy.19 EMG computation for specific movement 
triggers the EEG analysis, which jointly extracts thresholds and 
uses a logical condition network to classify the loss of balance. For 
the safety of construction workers, an IoT-based helmet is designed 
that uses prefrontal EEG(FP1, FP2) to detect sleep deprivation and 
IMU for fall detection of onsite workers with an emergency alert to 
the supervisor.20 Wavelet energy & Hjorth parameters are used for 
feature extraction, and Random forest is used as a classifier, 
providing 98% accuracy. From EEG analysis of MRCPs and ERD 
during unilateral wrist extension, motor potential during movement 
execution & contingent negative variation during movement 
preparation has the largest amplitude at Cz, whereas µ-ERD during 
movement execution was smallest at Cz.21 FPGA-based 
architecture is used for real-time hand movement prediction using 
EEG MRCP and EMG.22 Integration of BSN and Vehicular ad-hoc 
Network architecture is proposed using EEG (Fp) to detect driver 
attention level & trigger alert for low attention level toward traffic 
safety.23 A cyber-physical system is designed using EEG-EMG 
coupling to assess involuntary movement for fall prevention by 
providing user feedback.24 BP, μ, β-rhythm, and EMG co-
contraction are used as a basis for possible fall risk detection. A 
wearable wireless system with feedback is designed to detect and 
prevent falls using simultaneous monitoring of EEG and EMG.25 
BP increases before voluntary movement and is absent during 
involuntary movement. BP and EMG are used for involuntary 
movement detection using a matchmaking algorithm, and feedback 
is provided to the user to maintain posture for fall prevention. A fall 
detection system using a smartphone was developed for the safety 
of construction workers.26 EEG and motion sensors of smartphones 
are used to get workers' physiological status and provide alerts for 
any unsafe action. The motor imaginary task of ankle movement is 
detected using MRCPs by a self-paced asynchronous BCI system 
that triggers peripheral electrical stimulation.27 Such a system is 
useful for deliberate skill acquisition in normal people and 
rehabilitation of brain-damaged people. Bioelectric signals28,29 and 
imaging30 have been successfully used for disease prediction, 
diagnosis, and treatment. According to the above studies, EEG 
signal varies significantly for voluntary and involuntary 
movements. This study analyzes EEG signals for various fall and 
non-fall activities to find the possibility of fall detection using EEG. 
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METHODOLOGY 
In this study, we acquired unipolar EEG signals from subjects 

for various non-fall and fall activities, preprocessed the signal, and 
performed feature extraction for analysis of EEG. Safety 
precautions were taken during the experiment. 

Subjects 
Two healthy subjects (33±0.2 years, 63±2 kg, Male) participated 

in this study. Both the subjects gave their consent before 
participation. 

Experimental Setup 
Unipolar Electroencephalographic (EEG) signals were recorded 

from the scalp with Ag/AgCl surface electrodes. EEG acquisition 
hardware was placed on the subject’s chest with an active electrode 
placed on the primary motor cortex area16 and a reference electrode 
on the right mastoid (RM) according to the 10-20 system, as shown 
in Figure 1. A wireless EEG acquisition system was used to acquire 
EEG signals during non-fall and fall activities, which wirelessly 
transmits the data to a laptop via Bluetooth. EEG signals were 
sampled at a frequency of 100Hz, amplified with a gain of 40000, 
and bandpass filtered at 0.8-48 Hz. 

Figure 1. EEG acquisition hardware, Placement and Setup 

Experimental Protocol 
EEG signal was recorded for three non-fall activities and five fall 

activities. Subjects were asked to perform the following activities 
as mentioned in Table 1. Each activity was performed two to three 
times. Recording time for each activity is around 7 to 10 seconds. 
Number of Recorded activities = [(3 non-fall x 2 trial) + (5 fall x 3 
trial)] x 2 subject = 42.  

Table 1. Types of Non-fall & Fall Activities performed 
Sr. No. Activity Type 

1 Standing idle Non-fall 
2 Sitting idle Non-fall 
3 Stand then walk Non-fall 
4 Stand then Back-fall Fall 
5 Stand then Front-fall Fall 
6 Stand then Right-side fall Fall 
7 Stand then Left-side fall Fall 
8 Walking & Front-fall by obstacle Fall 

Preprocessing of EEG signal 
The recorded EEG signal contains motion artifacts, eye blinking, 

and other noises. Unwanted noise from the EEG signal must be 
removed to extract the features from EEG data. To remove such 
noises, a 16th-order low-pass Butterworth filter with a cutoff 

frequency of 2 Hz and an 8th-order high-pass Butterworth filter 
with a cutoff frequency of 40 Hz was used. 

EEG feature Extraction 
Feature extraction is an important step for the preliminary 

analysis of EEG signals for various non-fall and fall activities. 
Appropriate feature selection is important as it should indicate 
variation between non-fall & fall activities. After preprocessing of 
the EEG signal, the following time-domain & frequency-domain 
EEG features of non-fall and fall activities were extracted for 
further analysis: Min, Max, Mean, Med, P2P, Var, STD, RMS, 
RSS, Totpow, Avgpow. 

Table 2. List of Extracted EEG Features 
 Feature Description Formula 

Min 
Minimum 
of EEG 
signal 

Min 

Max 
Maximum 
of EEG 
signal 

Max 

Mean Mean of 
EEG signal 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  

∑𝑋𝑋𝑖𝑖
𝑁𝑁  

Med Median of 
EEG signal 

𝑀𝑀𝑀𝑀𝑀𝑀 =  �
𝑁𝑁 + 1

2 �
𝑡𝑡ℎ

𝑡𝑡𝑀𝑀𝑡𝑡𝑡𝑡,𝑁𝑁 = 𝑂𝑂𝑀𝑀𝑀𝑀 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
�𝑁𝑁2�

𝑡𝑡ℎ
𝑡𝑡𝑀𝑀𝑡𝑡𝑡𝑡 + �𝑁𝑁2 + 1�

𝑡𝑡ℎ
𝑡𝑡𝑀𝑀𝑡𝑡𝑡𝑡 

2 ,
𝑁𝑁 = 𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀 

P2P 
Peak-to-
peak of 
EEG signal 

P2P = |Max – Min| 

Var Variance of 
EEG signal 𝑉𝑉𝑀𝑀𝑡𝑡 =  

∑(𝑋𝑋𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)2

𝑁𝑁  

STD 

Standard 
Deviation 
of EEG 
signal 

𝑆𝑆𝑆𝑆𝑆𝑆 = �∑(𝑋𝑋𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)2

𝑁𝑁  

RMS 
Root mean 
square of 
EEG signal 

𝑅𝑅𝑀𝑀𝑆𝑆 = �1
𝑁𝑁�𝑋𝑋𝑖𝑖2 

RSS 
Root sum 
square of 
EEG signal 

𝑅𝑅𝑆𝑆𝑆𝑆 = ��|𝑋𝑋𝑖𝑖|2 

Totpow 
Total 
Power of 
EEG signal 

𝑆𝑆𝑇𝑇𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇 = �𝐼𝐼𝑘𝑘(𝑓𝑓𝑛𝑛) 
𝐾𝐾

𝑘𝑘=1

 

Ik(fn) is periodogram of k segments of Xi. 

Avgpow 
Average 
Power of 
EEG signal 

𝐴𝐴𝐸𝐸𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 =
1
𝐾𝐾�𝐼𝐼𝑘𝑘(𝑓𝑓𝑛𝑛) 

𝐾𝐾

𝑘𝑘=1

 

RESULTS & DISCUSSION 
For primary analysis of EEG signals, we have to perform 

morphological, time-domain, and frequency-domain analysis. 
Figure 2 shows the EEG signal with power spectrum for one set of 
non-fall and fall activities listed in the experimental protocol. 
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Using morphological analysis of EEG signals, we observe that 
for three non-fall activities, overall amplitude & positive-negative 
peak values are lower than five fall activities. By observing the 
power spectrum of non-fall activities for standing & sitting idle 
states, we found that most of the signal power is concentrated at 
lower frequencies below 10Hz, and higher frequency content is 
negligible. For the non-fall activity of stand then walk, the power 
spectrum indicates that the majority of the signal power is 
concentrated at lower frequencies below 12Hz, and small power is 
concentrated at higher frequencies. The EEG signal of five fall 
activities indicates that overall amplitude and positive-negative 
peak values are larger than non-fall activities. For fall activities, the 
EEG power spectrum has a higher peak amplitude at lower 
frequencies compared to non-fall activities. By observing the power 
spectrum of fall activities, we found that signal power is distributed 
over lower frequencies below 10Hz and higher frequencies above 
10Hz. During fall activities, we get higher EEG signal power at 
lower & higher frequencies and multiple peaks at higher 
frequencies in the power spectrum compared to non-fall activities. 

We have extracted time-domain and frequency-domain EEG 
features for various non-fall & fall activities to analyze the EEG 
signal further, as indicated in Table 3 and Figure 3. Table 3 shows 
the EEG features for one set of activities, while Figure 3 shows the 
range of feature values of all recorded activities. The statistical 
analysis indicates that min-max values of EEG for fall activities are 
higher than non-fall activities. The mean and median value of EEG 
for non-fall & fall activities has no significant difference. The 
standard deviation of the EEG signal is comparatively higher in the 
case of fall activities than in non-fall activities. The peak-to-peak 
values of fall activities are significantly higher than that of non-fall 
activities. The variance of fall activities is higher than that of non-
fall activities. The Root mean square & Root sum square of the EEG  
signal are higher in the case of fall activities compared to non-fall 
activities. Frequency domain features like EEG Total power & 
Average power are higher for fall activities than non-fall activities. 
There is a notable difference in most of the time & frequency-
domain features of EEG for non-fall and fall activities. 

 

 
Figure 2. EEG Signal and Power spectrum during Non-fall & Fall activities 

Table 3. Extracted Features for one set of Non-fall & Fall activities 

Activity Min Max Mean Med STD P2P Var RMS RSS Totpow Avgpow 

Standing idle -40.174 45.465 0.040 0.642 11.847 85.638 140.362 11.848 381.151 148.601 2.914 

Sitting idle -36.422 35.561 0.033 -0.133 12.876 71.984 165.791 12.876 423.149 166.392 3.263 

Stand then walk -40.960 55.109 0.147 -0.266 12.688 96.069 160.977 12.689 414.082 143.617 2.816 

Stand then Backfall -63.277 66.298 0.005 0.360 14.204 129.576 201.766 14.204 450.305 207.463 4.068 

Stand then Front fall -62.519 55.049 -0.118 0.524 16.708 117.568 279.141 16.708 424.329 265.787 5.212 

Stand then Right fall -67.925 69.977 -0.090 -0.437 16.991 137.902 288.693 16.991 474.539 252.272 4.947 

Stand then Left fall -64.017 86.080 0.050 0.156 17.619 150.097 310.425 17.619 501.444 320.982 6.294 

Walking & Front-fall by 
obstacle -71.038 63.976 0.041 0.298 19.833 135.015 393.364 19.833 509.531 343.443 6.734 

 



H. Patel et. al. 

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2025, 13(2), 1041           Pg  6 

  

 

 

 

Figure 3. Range of Extracted Features for Non-fall & Fall Activities 
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CONCLUSION & FUTURE WORK 
A little research is being done on bioelectric signals for fall 

detection among different types of fall detection techniques. Our 
study evaluated the feasibility of fall detection using 
morphological, statistical, and spectral analysis of single channel-
EEG signals during fall and non-fall activities. In our research, we 
have acquired single-channel EEG from the primary motor cortex 
area and reference at the right mastoid for three non-fall & five fall 
activities. The acquired EEG signal is bandpass filtered from 2Hz 
to 40Hz for feature extraction using a Butterworth filter. Nine time-
domain features and two frequency-domain features are extracted 
to analyze EEG signals during non-fall & fall activities. From 
morphological analysis, we conclude that there are significant 
differences in amplitude, waveform & frequency distribution of 
EEG for non-fall & fall activities. From statistical analysis, we 
found that values of time-domain & frequency-domain features of 
EEG are significantly higher for fall activities than non-fall 
activities. Our study concludes the use of Single-channel EEG for 
fall detection due to significant differences in morphology, time-
domain & frequency-domain features of single-channel EEG 
between non-fall and fall activities. 

In future work, we will include more subjects for detailed EEG 
analysis and extract more features for non-fall and fall activities. 
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