
Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2025, 13(2), 1026 Pg 1

J. Integr. Sci. Technol. 2025, 13(2), 1026 . Article .

Journal of Integrated

SCIENCE& TECHNOLOGY

Prediction and classification of software reliability using ensemble learning
Getachew Mekuria Habtemariam1, Sudhir Kumar Mohapatra2*, Hussien Worku Seid1, Srinivas Prasad3, Tarini Prasad
Panigrahy4, Prasanta Kumar Bal4
1Addis Ababa Science and Technology University, Addis Ababa, Ethiopia. 2Sri Sri University, Cuttack, Odisha, India. 3GITAM
University, Vishakhapatnam, Andhra Pradesh, India. 4GITA Autonomous College, Bhubaneswar, India.

Received on: 11-Sep-2023; Accepted and Published on: 02-Sep-2024

ABSTRACT

Software reliability plays a pivotal role in
determining the overall system reliability
and is an inescapable factor when
assessing the integrity of any software
product. When it comes to creating
mission-critical software like software for
space exploration, the health sector,
scientific calculation, the aerospace
industry, etc., where the need for high
reliability is paramount, we encounter
numerous challenges that need to be effectively addressed. Accurate prediction of software reliability ensures software quality, which ultimately
builds the confidence of the customer in the software they are using. Machine learning, particularly the ensemble method, is very important to
solve these prediction problems. This research develops an ensemble learning technique for software reliability prediction. Ensemble methods,
which are a combination of more individual ML models are used in this research. Bagging, Boosting, and stacking techniques are applied for
classification and prediction. Prediction is used to predict the failure time of the software based on the Mean Time Between Failures (MTBF).
Musa, J.D’s benchmark dataset on Software reliability is used for prediction. The classification is used for classifying the software for the presence
of defects or not. NASA dataset is used for classification. The designed model achieves 94% prediction and 97% classification accuracy.

Keywords: Software reliability prediction, Machine learning, ensemble learning, Education Software

INTRODUCTION
Software plays a crucial role in the education sector by

enhancing teaching and learning processes, improving
administrative tasks, and facilitating communication and
collaboration among students, teachers, and administrators. The
areas of education where software is used are Learning
Management Systems (LMS), Educational Apps, Virtual Learning
Environments, Multimedia Tools, Simulations and Virtual
Laboratories, Assessment and Grading, Administrative Systems,
Collaboration and Communication, Personalized Learning, Data

Analysis and Reporting, etc. Overall, software applications and
tools have revolutionized the education sector, providing
opportunities for flexible learning, individualized instruction, and
enhanced collaboration, while also simplifying administrative tasks
and providing valuable data for analysis and improvement. The
increasing demand forqualitative, error-free, reliable software
requires a quality check by the developing companies. Quality of
the software can be possible by using software reliability prediction
at the time of development of the software.

The reliability of software is stated as "The ability of the software
to perform its required function under stated conditions for a stated
period of time". Through fast improvement as well as expanding
the intricacy of a product, the unwavering quality of the product is
difficult to accomplish. Among the most vital aspects as well as
characteristics of software soundness is reliability. Software
reliability, as defined by ANSI,1 is "The probability of failure-free
operation of a computer program for a specified period in a
specified environment."2 The model has been used to predict and

*Corresponding Author: Sudhir Kumar Mohapatra, Sri Sri University,
Cuttack, India
Tel: +91-9556878743; Email: sudhir.mohapatra@srisriuniversity.edu.in

Cite as: J. Integr. Sci. Technol., 2025, 13(2), 1026.
DOI: 10.62110/sciencein.jist.2025.v13.1026

©Authors, ScienceIN https://pubs.thesciencein.org/jist

G. M. Habtemariam et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2025, 13(2), 1026 Pg 2

estimate the number of software errors in this work.2,3 Additionally,
classification was carried out in this work to assign the error to a
desired output class. The principal objective of software reliability
modeling is to determine an expected interval time between
successive failures or the likelihood of a system malfunction within
a stated period frame.4,5

Compared to statistical methods, machine learning (ML)
methods have proven to be more accurate at predicting outcomes
and can be used to predict and classify software failures with
greater precision. Computers are able to evolve, predict, and
classify system behaviour based on failure data from the past and
the present thanks to an approach known as machine learning (ML).
This approach is focused on learning automatically. As a result, it
is quite natural to be able to quantitatively determine which
techniqueinclines to be successful for a particular malfunction
dataset as well to what degree.6-9

Ensemble learning methods have gained significant importance
in solving prediction problems in various domains, including
software reliability.10 In software dependability reliability, the aim
is to evaluate the quality and reliability of software products. This
assessment is crucial in building customer confidence in the
software they are procuring. By accurately predicting software
reliability, organizations can ensure high-quality software that
meets customer expectations. Ensemble learning leverages the
diversity of different models to achieve better predictive
performance.11 It combines the individual predictions of multiple
models through voting, averaging, or weighting mechanisms. This
approach helps mitigate the limitations of individual models and
enhances the overall reliability of the predictions. The ensemble
learning-based model developed in this article holds promise for
improving software reliability prediction. By utilizing diverse
models and combining their predictions, the model can provide
accurate and robust estimations of software failures. This, in turn,
contributes to enhancing software quality and instilling customer
confidence.

LITERATURE REVIEW
This section describes how machine learning approaches are

used by researchers for better software reliability. A study has been
done by Sabnis et al.12 to compare the different technologies, and
they used machine learning methods to estimate the defect level of
the software. They have taken various methods like SVM, ANN,
NB and RF where ANN shows good results as compared to others.
ANN classifiers have the best accuracy about 65.5% among all
other machine learning technologies. Another study has been done
by Jindal et al.13 in which a heuristics test of different Machine
learning and Deep Learning methods on univariate software failure
time stamp data was used to find the best approach for software
reliability. The main objective of this study was to predict Software
reliability using various machine learning methods. After choosing
the algorithm, that algorithm is trained to determine the failure. A
total of 101 data samples have been taken for the testing purpose
and from that 2 attributes have been shown. Here four model have
been trained for the purpose of predicting the software reliability
and also reported their individual performances. ANN has been
taken as the baseline model and found that the LSTM model

performs well. Banga et al.14 introduced an approach which is used
to find the most relevant parameters that affects the software
reliability. In this research, a hybrid approach is used to predict the
fault of software with the help of machine learning.15 The study
proposed a method to detect the quality of software with the help
of matrices. The information provided by the matrices is important
to detect the failure earlier which is very important in the field of
software. In the experiment part, they have taken eight different
types of classifiers using metrics which have been collected from
freely available projects PROMISE data repository.

Yaghoobi et al. (2021)16 gave two multiple-criteria decision-
making methods for contrasting and selecting the most suitable
Software Reliability Growth Model (SRGM) for a specific dataset.
The methods determine an evaluation for every SRGM based on
the weight estimates and compute a weight for every analytical
criterion in terms of the level of diversity. The simplicity, criterion
weighting, and incorporation of numerous descriptive and
predictive properties of a framework in the framework selection
procedure are advantages of the techniques.

Sudharson et al. (2019)17 stated that in order to get dependability
in software results by assessing faults during examination, software
reliability is a crucial quantitative attribute. To find product faults,
time-dependent software reliability models are used, but they are
useless in environments that are constantly changing. The
researcher uses machine learning techniques for software reliability
prediction.18

Li et. al.19 research is on the reliability of the object-oriented
program. For the first time, they come up with special features for
OOP. Soft computing and machine learning models are proposed
and deduced by the researcher for software testing and quality
assurance.20-23

Luo et al.(2023)24 proposed a reliability growth model based on
non-homogeneous poison distribution. The result confirmed the
model is effective in fault fitting and prediction. Chen et. al.
(2023)25 study is on open-source software. The idea is nowadays a
lot of open-source software is used and its reliability is vital for
practical use. The researcher used a modified diffusion model for
it. The model can be used to determine the optimal release time of
the software. Liu et. al.(2022)26 came up with a reliability growth
model based on an uncertain differential equation. The author also
proposed a new method (MESBRGM) using uncertainty theory.
The model comparison with other models shows promising results
in performance and accuracy.27

Table 1. Literature Review Summary
Author Title Perform

ance
Dataset Findings

Sabnis et
al.[12]

A Study on Machine
Learning
Techniques Based
Software Reliability
Assessment.

65.5%
accuracy

NA ANN classifiers
have the best
accuracy among
all machine-
learning
technology

Jindal et
al.[13]

Comparative
Analysis of
Software Reliability
Prediction Using
Machine Learning
and Deep Learning

Mean
Absolute
Error
1.5639
which is
very less

Software
Failures
Dataset[
*]

LSTM model
performs well.

G. M. Habtemariam et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2025, 13(2), 1026 Pg 3

Banga et
al.[14]

Implementation of
machine learning
techniques in
software reliability:
A framework.

78%
accuracy

NA A hybrid new
approach to fault
prediction
based on a
machine learning
algorithm.

Reddivar
iet
al.[15]

Software quality
prediction: an
investigation based
on machine
learning.

AUC of
0.75

UIMS
and
QUES
[**]

decision tree-
based
prediction
techniques
perform well.

Yaghoob
i et al.
(2021)
[16]

Selection of optimal
software reliability
growth model using
a diversity index

85%
accuracy

NA Statistical
models are used

Sudharso
n et al.
(2019)
[17]

A novel machine
learning approach
for software
reliability growth
modelling with
pareto
distribution function

85%
accuracy

NA Soft computing
methods are
used

The major limitation of all the existing work is the accuracy of
the model. The highest accuracy achieved by any model is 86%,
which is very less for the industrial use of the model. The existing
models either use prediction or classification. The main objectives
of our model are

1. Both prediction and classification-based ensemble models.
2. Achieving high prediction and classification accuracy.

DESIGNED MODEL
Developing reliable software for critical business applications is

a significant challenge in the software industry today. Several
factors that contribute to this challenge are the complexity of the
software, security, scalability, reliability and fault tolerance, testing
and quality assurance. Addressing these challenges requires
industry standards and methodologies (such as agile or DevOps),
prioritising software quality, and leveraging automated testing and
deployment pipelines to ensure reliable software development for
critical business applications. Ensemble methods have been applied
for reliability, estimating and classifying the amount of defects
present in software. A principal objective of software reliability
modelling is determining the likelihood of a software malfunction
data specified period interval, if no anticipated time duration among
consecutive breakdowns. For this work, ML methods utilized for
predicting software reliability prediction and classification which
are SVM, KNN, Random Forest, Decision Tree, Linear Regression,
Logistic Regression, Bayesian Ridge Regression, Lasso
Regression, ElasticNet Regression, ANN, Naïve Bayes algorithm,
SVR, bagging, boosting & stacking. The mentioned machine
learning methodologies are used together on two different datasets
in this research.

Prediction:
In order to predict software reliability, the dataset of a successive

failure of the software is used and different above-mentioned ML
techniques are used for prediction of the failure time of the software
reliability dataset. The value is predicted based on the Mean Time
Between Failure (MTBF) using a single feature dataset representing
the meantime between failures in chronological order. To perform

prediction, the cumulative MTBF (equation 1) is calculated for
bagging and hence, the subsequent errors arepredicted. In
prediction, a set of hypotheses is combined to give better accuracy
and improved results.

MTBF= (Total operation time-total breakdown time)/(Number
of break downs)………………………………..1

Classification:
In a classification problem, based on certain parameters of a

module in software like cyclomatic complexity, significate
complexity, blueprint complexity as well as number of lines etc.,
the module of a software needs to be classified as whether it would
have one or more reported defects or not. Using Ensemble learning
for the classification problem is based on the different types of
classifiers mentioned above.

Figure 1. The representation of the designed Model

The proposed model is presented in Figure 1. The individual

models are trained using training data. The ensemblermodel then
combines the individual model prediction. In the proposed model
Bagging, Boosting, and Stacking ensemble techniques are used.
Once the model is trained then the model is tested using the test
data. The data are split using a 10-fold cross-validation method. The
hyperparameters of the individual models are given in Table 2.

Table 2. Hyperparameter of individual models
Base Model Hyperparameter Values
Ridge Alpha 10^range(−5, 0)a
LASSO Alpha 10^range(−5, 0)

Elastic Net
Alpha 10^range(−5, 0)
l1_ratio 10^range(−5, 0)

Bayesian Ridge
alpha_1 10^range(−5, 0)
alpha_2 10^range(−5, 0)

SVM
C linspace(0.01, 5, 20)c
Gamma range(0.01, 0.5, 0.05)
Kernel {linear, poly, rbf}

KNN n_neighbors range(2, 11)
Regression tree max_depth range(4, 23)

Bagging
n_estimators {100, 200, 500}
max_samples {0.7, 0.8, 0.9, 1.0}

Random Forest
n_estimators {100, 200, 500}
max_depth range(4, 10)

Neural network

Alpha linspace(0.0001, 0.5, 20)
learning_rate_init linspace(0.0001, 0.5, 20)

Activation {identity, logistic, tanh,
relu}

G. M. Habtemariam et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2025, 13(2), 1026 Pg 4

RESULT AND DISCUSSION
The proposed model consists of 3 ensemble models. The three

different models are Bagging, Boosting and Stacking. This article
on Software reliability prediction by applying an ensembling
learning approach and three different ensembling machine learning
approaches which are used to forecast and classify the dataset. In
which bagging, boosting & stacking is implemented using Python
programming language given software reliability prediction &
classification dataset. To implement the ensemble model with the
selected software tools, a machine with a processor of Intel(R)
Core(TM) i7-5200U CPU @ 2.20GHz 2.20 GHz and 8 GB RAM
memory capacity is used. It is also tested in Google Colab for
comparing the computational speed with 1gbps internet speed. In
software reliability prediction dataset given a single row of failure
time of the software indexed in a file, where a sample with
replacement technique is used to build another dataset and train the
model on that dataset and after that the prediction is done using the
original dataset and similarly, different rounds are used for the
iteration purpose to enhance the accurateness of the ensembling
model. While predicting an output, different machine learning
regression models are applied to predict an output and then find the
error rate in the model. All the output value is stored in an xlsx file
and tableau software is used to visualize the data or the output that
we got from the Ensemble method for software reliability
prediction. The experiment process is presented in Figure 2.

Figure 2. The process adopted. forSoftware reliability prediction

Dataset:
In this section, it is described the two datasets which are applied

in our proposed work. For the prediction of the time of failure, the
Musa dataset was used. It is a benchmarked dataset containing 101
observations of the pair (T, Yt) pertaining to software failure. T

represents the Tth modification corresponding to the time of failure
Yt. The data set is publicly available in the Mohanty et. al. research
article [28].

Table 3: The Musa dataset
T Yt T Yt T Yt T Yt
0 5.7683 26 8.5941 52 10.0998 78 14.7824
1 9.5743 27 11.0399 53 12.6078 79 14.8969
2 9.105 28 10.1196 54 7.1546 80 12.1399
3 7.9655 29 10.1786 55 10.0033 81 9.7981
4 8.6482 30 5.8944 56 9.8601 82 12.0907
5 9.9887 31 9.546 57 7.8675 83 13.0977
6 10.1962 32 9.6197 58 10.5757 84 13.368
7 11.6399 33 10.3852 59 10.2994 85 12.7206
8 11.6275 34 10.6301 60 10.6604 86 14.192
9 6.4912 35 8.3333 61 12.4972 87 11.3704
10 7.901 36 11.315 62 11.3745 88 12.2021
11 10.2679 37 9.4871 63 11.9158 89 12.2793
12 7.6839 38 8.1391 64 9.575 90 11.3667
13 8.8905 39 8.6713 65 10.4504 91 11.3923
14 9.2933 40 6.4615 66 10.5866 92 14.4113
15 8.3499 41 6.4615 67 12.7201 93 8.3333
16 9.0431 42 7.6955 68 12.5982 94 8.0709
17 9.6027 43 4.7005 69 12.0859 95 12.2021
18 9.3736 44 10.0024 70 12.2766 96 12.7831
19 8.5869 45 11.0129 71 11.9602 97 13.1585
20 8.7877 46 10.8621 72 12.0246 98 12.753
21 8.7794 47 9.4372 73 9.2873 99 10.3533
22 8.0469 48 6.6644 74 12.495 100 12.4897
23 10.8459 49 9.2294 75 14.5569
24 8.7416 50 8.6971 76 13.3279
25 7.5443 51 10.3534 77 8.9446

For classification, NASA (http://mdp.ivv.nasa.gov) dataset is

used. The data set consists of 22 static metrics of the software. The
details of the feature are presented in Table 4.

Table 4: The NASA dataset details
R.no Metrics Explanation
1 loc McCabe's code of line count
2 v(g) McCabe "cyclomatic complexity"
3 ev(g) McCabe "essential complexity"
4 iv(g) McCabe "design complexity"
5 n Halstead over-all operands+ operators
6 v Halstead "volume"
7 l Halstead "program length"
8 d Halstead "difficulty"
9 i Halstead "intelligence"
10 e Halstead "effort"
11 b Halstead “value”
12 t Halstead's time estimator
13 lOCode Halstead's line count
14 lOComment: Halstead's count of lines of comments
15 lOBlank: Halstead's count of blank lines
16 lOCodeAndCo

mment
IO lines

17 uniq_Op: unique operators
18 uniq_Opnd: unique operands
19 total_Op: total operators
20 total_Opnd: total operands
21 branchCount: of the flow graph
22 prediction : {false, true} module has one or more reported defects

or not

Organize the input and generated dataset into 10k fold which
require for practicing and checking model.

Employ methods for train the framework by applying 10k
fold data

Verified the framework by applying 10k fold data

Document the result and evaluate the efficiency standard

Carry out as experimental evaluation of the selected ML
methods

Input value: week as evaluation period.
Generated data: a collective number of failure

G. M. Habtemariam et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2025, 13(2), 1026 Pg 5

Bagging
The prediction models or the regression methods those are used

in this research are Linear Regression, Decision Tree regression,
Ridge regression, Lasso regression, ElasticNet regression, Random
Forest regression, Support vector regression and others. After
predicting the dataset and finding the error; the error value is very
less in each model. We can also say that the error is tends to zero.

For each of the regression method the error rate is very less and
for some regression like the logistic regression and support vector
regression the error rate is bit high. The comparison between
actualfailure interval values versus various regression model and
the bagging model is shown in Figures 3, 4 & 5.

Figure 3. Regression model comparison between Ridge regression,
lasso regression, Decision Tree regressor and the Actual time interval.

Figure 4. Regression model comparison between Random Forest
regression, linear regression, Bayesian Ridge regressor, LassorLars
Regressor and the Actual time interval.

Figure 5. Actual failure time interval and Bagging model failure time
interval comparison.

Similarly, in the bagging approach for the classification 7
different models or machine learning classifiers are used to classify
the sample with replaced dataset and then the original dataset is
used to get the output class and then finding the final output voting
approach is used to find the final output value. While displaying the
output in the bagging approach accuracy of the model is printed
also the confusion matrix and maximum value, minimum value,
mean value and final bagging accuracy is printed which gives a
clear idea about the classification of each model. The visualization
of the accuracy of each model while where the iterator range is 7 is
visualized below in Figure 6.

Similarly, while we print the confusion matrix of each model
there are four possible values where 2 out of 4 options are correct
and others are incorrect. The accuracy value of each model depends
upon the confusion matrix of each model and the accuracy can be
calculated by using the confusion matrix. If there is a plot between
each value of the confusion matrix in each model, then the line
graph is shown as in Figure 7.

Figure 6. Accuracy of the different machine learning classification
model

Figure 7. Confusion matrix visualization of different machine learning
models

96.05 97.22

87.4 88.13 88.5

82.11

86.01

70

75

80

85

90

95

100

Ac
cu

ra
cy

Methods

A C C U R A C Y

G. M. Habtemariam et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2025, 13(2), 1026 Pg 6

Boosting:
Adaboost algorithm is used to implement boosting over software

reliability prediction to enhance the accuracy of a dataset where for
each model we are creating multiple instances of the boosting
where each instance will act as a neuron; the weight will be
initialized in very small amount and then output will be predicted
and again the weight will be adjusted and similar thing continues.
At last the model gives us the individual accurateness of every
model as well as aboosted accuracy of each model for each
iteration. And we can also observe the following graph to observe
the individual accuracy of each model for each iteration and
boosting accuracy of each model for each iteration in the Figures 7,
8, 9 & 10.

Figure 8. Comparison between boosting accuracy and individual
accuracy of 3 models for iterative range k=9

Figure 9. Comparison between boosting accuracy and individual
accuracy of 3 models for iterative range k=11

Figure 9. Comparison between boosting accuracy and individual
accuracy of 3 models for iterative range k=13

Figure 10. Comparison between boosting accuracy and individual
accuracy of 3 models for iterative range k=15

As we can see from the above graph that for different value of K
the result is different and for some k the accuracy is higher in
increasing k.

Stacking:
In stacking, to learn a machine learning techniques over a

working out dataset, afterwards the current dataset is produced
through these models. The current dataset is utilized as an input for
the combiner machine learning techniques.

In stacking, sub-models produce different predictions. All these
sub model’s prediction is combined to generate a new dataset and
then that is used for the combiner model. For different iteration of
stacking different models are used in stacking and the accuracy
value of the stacking is represented in the Figure 11.

85.78

81.88

89.03

85.35

81.42

91.03

76

78

80

82

84

86

88

90

92

Logistic
Regression

Naïve Bayes KNN

Ac
cu

ra
cy

K = 9

Individual Accuracy Adaboost Accuracy

86.28

82.88

89.53

86.04

82.42

92.73

76

78

80

82

84

86

88

90

92

94

Logistic
Regression

Naïve Bayes KNN

Ac
cu

ra
cy

K = 1 1

Individual Accuracy Adaboost Accuracy

86.45

82.77

89.86

86.11

82.32

92.67

76

78

80

82

84

86

88

90

92

94

Logistic
Regression

Naïve Bayes KNN

Ac
cu

ra
cy

K = 1 3

Individual Accuracy Adaboost Accuracy

86.95

83.02

91.12

86.71

82.72

94.21

76
78
80
82
84
86
88
90
92
94
96

Logistic
Regression

Naïve Bayes KNN

Ac
cu

ra
cy

K = 1 5

Individual Accuracy Adaboost Accuracy

G. M. Habtemariam et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2025, 13(2), 1026 Pg 7

Figure 11. Comparison between stacking accuracy of different
machine learning model for different iterative range

Thus, from the above graph we conclude that for different value

of k in different model different model gives different accuracy.
And from the above graph we can clearly see the variance of the
accuracy for different models for different k.

CONCLUSION
Various machine learning prediction and classification

techniques are applied in ensemble learning methods for software
reliability prediction. As we have realized that in bagging approach
of the classification the output is classified in different class and
then voting method is used to get the final output. In prediction
problem we are getting very less error rate for prediction. In
boosting model, we have taken weak machine learning model and
then by using AdaBoost algorithm the accuracy of the model is
improved. In stacking we are combining different base learner
algorithm and then predicting the dataset and finally we are using
combiner algorithm to predict the output. In bagging method of
classification, we can see that for k=7 the decision tree gives a
highest performance among all other machine learning model. In
boosting method, for different value of k the output of KNN model
is improved and the accuracy value is increased by maximum 1%.
For stacking for different value of k i.e. 7,9 or 11 KNN model gives
the highest accuracy among all.The ununiform result with a varying
value of K is a challenge of this model. The researcher planning to
do more study on the result and to derive a consistent lag value(k),
which uniformly impacting on the classification result. The model
is trained and tested using a benchmark dataset i.e. Musa, NASA,
but it needs to be tested using the real dataset from the industry. The
researcher also planned to apply this model in a software company
and observe the prediction and actual output.

CONFLICT OF INTEREST STATEMENT
Authors declare that there is no conflict of interest for this work

as no financial help was received for this work.

REFERENCES
1. A. Quyoum, M.-U.-D. Dar, S.M.K. Quadri. Improving Software Reliability

using Software Engineering Approach- A Review. Int. J. Comput. Appl.
2010, 10 (5), 41–47.

2. S.H. Aljahdali, K.A. Buragga. Employing four ANNs Paradigms for
Software Reliability Prediction: an Analytical Study. ICGST AIML J 2008,
8 (Ii), 1687–4846.

3. N. Karunanithi, D. Whitley, Y.K. Malaiya. Prediction of software reliability
using connectionist models. IEEE Trans. Softw. Eng. 1992, 18 (7), 563–
574.

4. K.K. Sharma, A. Sinha, A. Sharma. An analytical study on testing metrics
for software applications. J. Integr. Sci. Technol. 2023, 11 (3), 517.

5. J.H. Lo. Predicting software reliability with support vector machines. In 2nd
International Conference on Computer Research and Development, ICCRD
2010; 2010; pp 765–769.

6. D. Kumari, K. Rajnish. Investigating the effect of object-oriented metrics
on fault proneness using empirical analysis. Int. J. Softw. Eng. its Appl.
2015, 9 (2), 171–188.

7. N. Yadav, V. Yadav, D.A.P.J. Abdul. Software reliability prediction and
optimization using machine learning algorithms: A review. J. Integr. Sci.
Technol. 2023, 11 (1), 457.

8. R. Malhotra, A. Kaur, Y. Singh. Empirical validation of object-oriented
metrics for predicting fault proneness at different severity levels using
support vector machines; Int. J. System Assurance Engin. Management,
2010, 1, 269-281.

9. R. Agrawal, O. Sharma, N.O. Aljehane, R.F. Mansour. Soft Computing:
Goals, importance and various problem-solving techniques. J. Integr. Sci.
Technol. 2023, 11 (3), 522.

10. V. Shrivastava, A.K. Chaturvedi. A review on intrusion detection system
for distributed network based on Machine Learning. J. Integr. Sci. Technol.
2024, 12 (2), 739.

11. S. Chorey, N. Sahu. Rapid Recover Map Reduce (RR-MR): Boosting
failure recovery in Big Data applications. J. Integr. Sci. Technol. 2023, 12
(3), 773.

12. P.S. Sabnis, S. Joshi, J. Naveenkumar. A Study on Machine Learning
Techniques based Software Reliability Assessment. In 4th International
Conference on Inventive Research in Computing Applications, ICIRCA
2022 - Proceedings; IEEE, 2022; pp 687–692.

13. A. Jindal, A. Gupta, Rahul. Comparative Analysis of Software Reliability
Prediction Using Machine Learning and Deep Learning. In Proceedings of
the 2nd International Conference on Artificial Intelligence and Smart
Energy, ICAIS 2022; IEEE, 2022; pp 389–394.

14. M. Banga, A. Bansal, A. Singh. Implementation of Machine Learning
Techniques in Software Reliability: A framework. In 2019 International
Conference on Automation, Computational and Technology Management,
ICACTM 2019; IEEE, 2019; pp 241–245.

15. S. Reddivari, J. Raman. Software quality prediction: An investigation based
on machine learning. In Proceedings - 2019 IEEE 20th International
Conference on Information Reuse and Integration for Data Science, IRI
2019; IEEE, 2019; pp 115–122.

16. T. Yaghoobi. Selection of optimal software reliability growth model using
a diversity index. Soft Comput. 2021, 25 (7), 5339–5353.

17. D. Sudharson, D. Prabha. A novel machine learning approach for software
reliability growth modelling with pareto distribution function. Soft Comput.
2019, 23 (18), 8379–8387.

18. J. Lou, Y. Jiang, Q. Shen, et al. Software reliability prediction via relevance
vector regression. Neurocomputing 2016, 186, 66–73.

19. W. Li, S. Henry. Object-oriented metrics that predict maintainability. J.
Syst. Softw. 1993, 23 (2), 111–122.

20. G.M. Habtemariam, S.K. Mohapatra, H.W. Seid, D.B. Mishra. A
Systematic Literature Review of Predicting Software Reliability Using

Rando
m

Forest
KNN

Decisi
on

Tree
SVM

Logisti
c

Regre
ssion

Naïve
Bayes

K=7 86.95 83.87 83.86 85.13 83.94 84.12
K=9 86.32 85.89 83.21 85.65 86.13 82.11
K=11 86.15 85.69 84.22 84.12 84.93 83.15

79
80
81
82
83
84
85
86
87
88

Ac
cu

ra
cy

Method

Stacking

K=7 K=9 K=11

G. M. Habtemariam et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2025, 13(2), 1026 Pg 8

Machine Learning Techniques. In EAI/Springer Innovations in
Communication and Computing; 2022; pp 77–90.

21. S.K. Mohapatra, A.K. Mishra, S. Prasad. Intelligent Local Search for Test
Case Minimization. J. Inst. Eng. Ser. B 2020, 101 (5), 585–595.

22. R. Sharma, A. Saha. Optimization of object-oriented testing using firefly
algorithm. J. Inform. Optim. Sci., 2017, 38(6), 873-893.

23. D. Getachew, S.K. Mohapatra, S. Mohanty. A Heuristic-Based Test Case
Prioritization Algorithm Using Static Metrics. In EAI/Springer Innovations
in Communication and Computing; Springer International Publishing,
Cham, 2022; pp 45–58.

24. H. Luo, L. Xu, L. He, L. Jiang, T. Long. A Novel Software Reliability
Growth Model Based on Generalized Imperfect Debugging NHPP
Framework. IEEE Access 2023, 11, 71573–71593.

25. K.J. Chen, C.Y. Huang. Using Modified Diffusion Models for Reliability
Estimation of Open Source Software. IEEE Access 2023, 11, 51631–51646.

26. Z. Liu, R. Kang. Imperfect Debugging Software Belief Reliability Growth
Model Based on Uncertain Differential Equation. IEEE Trans. Reliab.
2022, 71 (2), 735–746.

27. Z. Liu, S. Wang, B. Liu, R. Kang.. Change point software belief reliability
growth model considering epistemic uncertainties. Chaos, Solitons &
Fractals, 2023, 176, 114178.

28. R. Mohanty, V. Ravi, M.R. Patra. Application of Machine Learning
Techniques to Predict Software Reliability. Int. J. Appl. Evol. Comput.
2010, 1 (3), 70–86.

	ABSTRACT
	Introduction
	Literature review
	Designed Model
	Result and Discussion
	Bagging

	Conclusion
	Conflict of Interest statement
	References

