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ABSTRACT 
 

 

Software reliability plays a pivotal role in 
determining the overall system reliability 
and is an inescapable factor when 
assessing the integrity of any software 
product. When it comes to creating 
mission-critical software like software for 
space exploration, the health sector, 
scientific calculation, the aerospace 
industry, etc., where the need for high 
reliability is paramount, we encounter 
numerous challenges that need to be effectively addressed. Accurate prediction of software reliability ensures software quality, which ultimately 
builds the confidence of the customer in the software they are using.  Machine learning, particularly the ensemble method, is very important to 
solve these prediction problems. This research develops an ensemble learning technique for software reliability prediction. Ensemble methods, 
which are a combination of more individual ML models are used in this research. Bagging, Boosting, and stacking techniques are applied for 
classification and prediction. Prediction is used to predict the failure time of the software based on the Mean Time Between Failures (MTBF). 
Musa, J.D’s benchmark dataset on Software reliability is used for prediction. The classification is used for classifying the software for the presence 
of defects or not. NASA dataset is used for classification. The designed model achieves 94% prediction and 97% classification accuracy. 
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INTRODUCTION 
Software plays a crucial role in the education sector by 

enhancing teaching and learning processes, improving 
administrative tasks, and facilitating communication and 
collaboration among students, teachers, and administrators. The 
areas of education where software is used are Learning 
Management Systems (LMS), Educational Apps, Virtual Learning 
Environments, Multimedia Tools, Simulations and Virtual 
Laboratories, Assessment and Grading, Administrative Systems, 
Collaboration and Communication, Personalized Learning, Data 

Analysis and Reporting, etc. Overall, software applications and 
tools have revolutionized the education sector, providing 
opportunities for flexible learning, individualized instruction, and 
enhanced collaboration, while also simplifying administrative tasks 
and providing valuable data for analysis and improvement. The 
increasing demand forqualitative, error-free, reliable software 
requires a quality check by the developing companies. Quality of 
the software can be possible by using software reliability prediction 
at the time of development of the software.  

The reliability of software is stated as "The ability of the software 
to perform its required function under stated conditions for a stated 
period of time". Through fast improvement as well as expanding 
the intricacy of a product, the unwavering quality of the product is 
difficult to accomplish. Among the most vital aspects as well as 
characteristics of software soundness is reliability. Software 
reliability, as defined by ANSI,1 is "The probability of failure-free 
operation of a computer program for a specified period in a 
specified environment."2 The model has been used to predict and 
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estimate the number of software errors in this work.2,3 Additionally, 
classification was carried out in this work to assign the error to a 
desired output class. The principal objective of software reliability 
modeling is to determine an expected interval time between 
successive failures or the likelihood of a system malfunction within 
a stated period frame.4,5 

Compared to statistical methods, machine learning (ML) 
methods have proven to be more accurate at predicting outcomes 
and can be used to predict and classify software failures with 
greater precision. Computers are able to evolve, predict, and 
classify system behaviour based on failure data from the past and 
the present thanks to an approach known as machine learning (ML). 
This approach is focused on learning automatically. As a result, it 
is quite natural to be able to quantitatively determine which 
techniqueinclines to be successful for a particular malfunction 
dataset as well to what degree.6-9 

Ensemble learning methods have gained significant importance 
in solving prediction problems in various domains, including 
software reliability.10 In software dependability reliability, the aim 
is to evaluate the quality and reliability of software products. This 
assessment is crucial in building customer confidence in the 
software they are procuring. By accurately predicting software 
reliability, organizations can ensure high-quality software that 
meets customer expectations.  Ensemble learning leverages the 
diversity of different models to achieve better predictive 
performance.11 It combines the individual predictions of multiple 
models through voting, averaging, or weighting mechanisms. This 
approach helps mitigate the limitations of individual models and 
enhances the overall reliability of the predictions. The ensemble 
learning-based model developed in this article holds promise for 
improving software reliability prediction. By utilizing diverse 
models and combining their predictions, the model can provide 
accurate and robust estimations of software failures. This, in turn, 
contributes to enhancing software quality and instilling customer 
confidence. 

LITERATURE REVIEW 
This section describes how machine learning approaches are 

used by researchers for better software reliability. A study has been 
done by Sabnis et al.12 to compare the different technologies, and 
they used machine learning methods to estimate the defect level of 
the software. They have taken various methods like SVM, ANN, 
NB and RF where ANN shows good results as compared to others. 
ANN classifiers have the best accuracy about 65.5% among all 
other machine learning technologies. Another study has been done 
by Jindal et al.13 in which a heuristics test of different Machine 
learning and Deep Learning methods on univariate software failure 
time stamp data was used to find the best approach for software 
reliability. The main objective of this study was to predict Software 
reliability using various machine learning methods. After choosing 
the algorithm, that algorithm is trained to determine the failure. A 
total of 101 data samples have been taken for the testing purpose 
and from that 2 attributes have been shown. Here four model have 
been trained for the purpose of predicting the software reliability 
and also reported their individual performances. ANN has been 
taken as the baseline model and found that the LSTM model 

performs well. Banga et al.14 introduced an approach which is used 
to find the most relevant parameters that affects the software 
reliability. In this research, a hybrid approach is used to predict the 
fault of software with the help of machine learning.15 The study 
proposed a method to detect the quality of software with the help 
of matrices. The information provided by the matrices is important 
to detect the failure earlier which is very important in the field of 
software. In the experiment part, they have taken eight different 
types of classifiers using metrics which have been collected from 
freely available projects PROMISE data repository.  

Yaghoobi et al. (2021)16 gave two multiple-criteria decision-
making methods for contrasting and selecting the most suitable 
Software Reliability Growth Model (SRGM) for a specific dataset. 
The methods determine an evaluation for every SRGM based on 
the weight estimates and compute a weight for every analytical 
criterion in terms of the level of diversity. The simplicity, criterion 
weighting, and incorporation of numerous descriptive and 
predictive properties of a framework in the framework selection 
procedure are advantages of the techniques. 

Sudharson et al. (2019)17 stated that in order to get dependability 
in software results by assessing faults during examination, software 
reliability is a crucial quantitative attribute. To find product faults, 
time-dependent software reliability models are used, but they are 
useless in environments that are constantly changing. The 
researcher uses machine learning techniques for software reliability 
prediction.18 

Li et. al.19 research is on the reliability of the object-oriented 
program. For the first time, they come up with special features for 
OOP. Soft computing and machine learning models are proposed 
and deduced by the researcher for software testing and quality 
assurance.20-23  

Luo et al.(2023)24 proposed a reliability growth model based on 
non-homogeneous poison distribution. The result confirmed the 
model is effective in fault fitting and prediction.  Chen et. al. 
(2023)25 study is on open-source software. The idea is nowadays a 
lot of open-source software is used and its reliability is vital for 
practical use. The researcher used a modified diffusion model for 
it. The model can be used to determine the optimal release time of 
the software.  Liu et. al.(2022)26 came up with a reliability growth 
model based on an uncertain differential equation. The author also 
proposed a new method (MESBRGM) using uncertainty theory. 
The model comparison with other models shows promising results 
in performance and accuracy.27 

Table 1. Literature Review Summary 
Author  Title  Perform

ance  
Dataset  Findings  

Sabnis et 
al.[12] 

A Study on Machine 
Learning 
Techniques Based 
Software Reliability 
Assessment. 

65.5% 
accuracy 

NA ANN classifiers 
have the best 
accuracy among 
all machine-
learning 
technology 

Jindal et 
al.[13] 

Comparative 
Analysis of 
Software Reliability 
Prediction Using 
Machine Learning 
and Deep Learning 

Mean 
Absolute 
Error 
1.5639 
which is 
very less 

Software 
Failures 
Dataset[
*] 

LSTM model 
performs well. 
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Banga et 
al.[14] 

Implementation of 
machine learning 
techniques in 
software reliability: 
A framework. 

78% 
accuracy 

NA A hybrid new 
approach to fault 
prediction 
based on a 
machine learning 
algorithm. 

Reddivar
iet 
al.[15] 

Software quality 
prediction: an 
investigation based 
on machine 
learning. 

AUC of 
0.75 

UIMS 
and 
QUES 
[**] 

decision tree-
based 
prediction 
techniques  
perform well. 

Yaghoob
i et al. 
(2021) 
[16] 

Selection of optimal 
software reliability 
growth model using 
a diversity index 

85% 
accuracy 

NA Statistical 
models are used 

Sudharso
n et al. 
(2019) 
[17] 

A novel machine 
learning approach 
for software 
reliability growth 
modelling with 
pareto 
distribution function 

85% 
accuracy 

NA Soft computing 
methods are 
used 

 

The major limitation of all the existing work is the accuracy of 
the model. The highest accuracy achieved by any model is 86%, 
which is very less for the industrial use of the model. The existing 
models either use prediction or classification. The main objectives 
of our model are 

1. Both prediction and classification-based ensemble models. 
2. Achieving high prediction and classification accuracy. 

DESIGNED MODEL 
Developing reliable software for critical business applications is 

a significant challenge in the software industry today. Several 
factors that contribute to this challenge are the complexity of the 
software, security, scalability, reliability and fault tolerance, testing 
and quality assurance. Addressing these challenges requires 
industry standards and methodologies (such as agile or DevOps), 
prioritising software quality, and leveraging automated testing and 
deployment pipelines to ensure reliable software development for 
critical business applications. Ensemble methods have been applied 
for reliability, estimating and classifying the amount of defects 
present in software. A principal objective of software reliability 
modelling is determining the likelihood of a software malfunction 
data specified period interval, if no anticipated time duration among 
consecutive breakdowns. For this work, ML methods utilized for 
predicting software reliability prediction and classification which 
are SVM, KNN, Random Forest, Decision Tree, Linear Regression, 
Logistic Regression, Bayesian Ridge Regression, Lasso 
Regression, ElasticNet Regression, ANN, Naïve Bayes algorithm, 
SVR, bagging, boosting & stacking. The mentioned machine 
learning methodologies are used together on two different datasets 
in this research.  

Prediction:   
In order to predict software reliability, the dataset of a successive 

failure of the software is used and different above-mentioned ML 
techniques are used for prediction of the failure time of the software 
reliability dataset. The value is predicted based on the Mean Time 
Between Failure (MTBF) using a single feature dataset representing 
the meantime between failures in chronological order. To perform 

prediction, the cumulative MTBF (equation 1) is calculated for 
bagging and hence, the subsequent errors arepredicted. In 
prediction, a set of hypotheses is combined to give better accuracy 
and improved results. 

MTBF= (Total operation time-total breakdown time )/(Number 
of break downs)………………………………..1 

Classification:  
In a classification problem, based on certain parameters of a 

module in software like cyclomatic complexity, significate 
complexity, blueprint complexity as well as number of lines etc., 
the module of a software needs to be classified as whether it would 
have one or more reported defects or not. Using Ensemble learning 
for the classification problem is based on the different types of 
classifiers mentioned above. 

 

 

 

 

 

 

 

Figure 1. The representation of the designed Model 
 
The proposed model is presented in Figure 1. The individual 

models are trained using training data. The ensemblermodel then 
combines the individual model prediction. In the proposed model 
Bagging, Boosting, and Stacking ensemble techniques are used. 
Once the model is trained then the model is tested using the test 
data. The data are split using a 10-fold cross-validation method. The 
hyperparameters of the individual models are given in Table 2. 

Table 2. Hyperparameter of individual models 
Base Model Hyperparameter Values 
Ridge Alpha 10^range(−5, 0)a 
LASSO Alpha 10^range(−5, 0) 

Elastic Net 
Alpha 10^range(−5, 0) 
l1_ratio 10^range(−5, 0) 

Bayesian Ridge 
alpha_1 10^range(−5, 0) 
alpha_2 10^range(−5, 0) 

SVM 
C linspace(0.01, 5, 20)c 
Gamma range(0.01, 0.5, 0.05) 
Kernel {linear, poly, rbf} 

KNN n_neighbors range(2, 11) 
Regression tree max_depth range(4, 23) 

Bagging 
n_estimators {100, 200, 500} 
max_samples {0.7, 0.8, 0.9, 1.0} 

Random Forest 
n_estimators {100, 200, 500} 
max_depth range(4, 10) 

Neural network 

Alpha linspace(0.0001, 0.5, 20) 
learning_rate_init linspace(0.0001, 0.5, 20) 

Activation {identity, logistic, tanh, 
relu} 
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RESULT AND DISCUSSION 
The proposed model consists of 3 ensemble models. The three 

different models are Bagging, Boosting and Stacking. This article 
on Software reliability prediction by applying an ensembling 
learning approach and three different ensembling machine learning 
approaches which are used to forecast and classify the dataset. In 
which bagging, boosting & stacking is implemented using Python 
programming language given software reliability prediction & 
classification dataset. To implement the ensemble model with the 
selected software tools, a machine with a processor of Intel(R) 
Core(TM) i7-5200U CPU @ 2.20GHz   2.20 GHz and 8 GB RAM 
memory capacity is used. It is also tested in Google Colab for 
comparing the computational speed with 1gbps internet speed. In 
software reliability prediction dataset given a single row of failure 
time of the software indexed in a file, where a sample with 
replacement technique is used to build another dataset and train the 
model on that dataset and after that the prediction is done using the 
original dataset and similarly, different rounds are used for the 
iteration purpose to enhance the accurateness of the ensembling 
model. While predicting an output, different machine learning 
regression models are applied to predict an output and then find the 
error rate in the model. All the output value is stored in an xlsx file 
and tableau software is used to visualize the data or the output that 
we got from the Ensemble method for software reliability 
prediction. The experiment process is presented in Figure 2. 

 

 
Figure 2. The process adopted. forSoftware reliability prediction 

 

Dataset: 
In this section, it is described the two datasets which are applied 

in our proposed work. For the prediction of the time of failure, the 
Musa dataset was used. It is a benchmarked dataset containing 101 
observations of the pair (T, Yt) pertaining to software failure. T 

represents the Tth modification corresponding to the time of failure 
Yt. The data set is publicly available in the Mohanty et. al. research 
article [28]. 

Table 3: The Musa dataset  
T Yt T Yt T Yt T Yt 
0 5.7683 26 8.5941 52 10.0998 78 14.7824 
1 9.5743 27 11.0399 53 12.6078 79 14.8969 
2 9.105 28 10.1196 54 7.1546 80 12.1399 
3 7.9655 29 10.1786 55 10.0033 81 9.7981 
4 8.6482 30 5.8944 56 9.8601 82 12.0907 
5 9.9887 31 9.546 57 7.8675 83 13.0977 
6 10.1962 32 9.6197 58 10.5757 84 13.368 
7 11.6399 33 10.3852 59 10.2994 85 12.7206 
8 11.6275 34 10.6301 60 10.6604 86 14.192 
9 6.4912 35 8.3333 61 12.4972 87 11.3704 
10 7.901 36 11.315 62 11.3745 88 12.2021 
11 10.2679 37 9.4871 63 11.9158 89 12.2793 
12 7.6839 38 8.1391 64 9.575 90 11.3667 
13 8.8905 39 8.6713 65 10.4504 91 11.3923 
14 9.2933 40 6.4615 66 10.5866 92 14.4113 
15 8.3499 41 6.4615 67 12.7201 93 8.3333 
16 9.0431 42 7.6955 68 12.5982 94 8.0709 
17 9.6027 43 4.7005 69 12.0859 95 12.2021 
18 9.3736 44 10.0024 70 12.2766 96 12.7831 
19 8.5869 45 11.0129 71 11.9602 97 13.1585 
20 8.7877 46 10.8621 72 12.0246 98 12.753 
21 8.7794 47 9.4372 73 9.2873 99 10.3533 
22 8.0469 48 6.6644 74 12.495 100 12.4897 
23 10.8459 49 9.2294 75 14.5569     
24 8.7416 50 8.6971 76 13.3279     
25 7.5443 51 10.3534 77 8.9446     

 
For classification, NASA (http://mdp.ivv.nasa.gov) dataset is 

used. The data set consists of 22 static metrics of the software. The 
details of the feature are presented in Table 4. 

 

Table 4: The NASA dataset details 
R.no Metrics Explanation 
1 loc  McCabe's  code of line count   
2 v(g)  McCabe "cyclomatic complexity"  
3 ev(g)  McCabe "essential complexity"  
4 iv(g)  McCabe "design complexity"  
5 n  Halstead over-all  operands+ operators 
6 v  Halstead "volume"  
7 l  Halstead "program length"  
8 d  Halstead "difficulty"  
9 i  Halstead "intelligence"  
10 e  Halstead "effort"  
11 b  Halstead “value”  
12 t Halstead's time estimator  
13 lOCode Halstead's line count  
14 lOComment:      Halstead's count of lines of comments  
15 lOBlank: Halstead's count of blank lines  
16 lOCodeAndCo

mment 
IO lines  

17 uniq_Op:   unique operators  
18 uniq_Opnd:   unique operands 
19 total_Op:   total operators    
20 total_Opnd:   total operands  
21 branchCount:   of the flow graph  
22 prediction : {false, true} module has one or more reported defects 

or not  

Organize the input and generated dataset into 10k fold which 
require for practicing and checking model. 

Employ methods for train the framework by applying 10k 
fold data 

Verified the framework by applying 10k fold data 

Document the result and evaluate the efficiency standard  

Carry out as experimental evaluation of the selected ML 
methods 

Input value: week as evaluation period.  
Generated data: a collective number of failure 



G. M. Habtemariam et. al. 

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2025, 13(2), 1026    Pg  5 

Bagging  
The prediction models or the regression methods those are used 

in this research are Linear Regression, Decision Tree regression, 
Ridge regression, Lasso regression, ElasticNet regression, Random 
Forest regression, Support vector regression and others. After 
predicting the dataset and finding the error; the error value is very 
less in each model. We can also say that the error is tends to zero.  

For each of the regression method the error rate is very less and 
for some regression like the logistic regression and support vector 
regression the error rate is bit high. The comparison between 
actualfailure interval values versus various regression model and 
the bagging model is shown in Figures 3, 4 & 5. 

 
Figure 3. Regression model comparison between Ridge regression, 
lasso regression, Decision Tree regressor and the Actual time interval. 

 
Figure 4. Regression model comparison between Random Forest 
regression, linear regression, Bayesian Ridge regressor, LassorLars 
Regressor and the Actual time interval. 

Figure 5. Actual failure time interval and Bagging model failure time 
interval comparison. 

Similarly, in the bagging approach for the classification 7 
different models or machine learning classifiers are used to classify 
the sample with replaced dataset and then the original dataset is 
used to get the output class and then finding the final output voting 
approach is used to find the final output value. While displaying the 
output in the bagging approach accuracy of the model is printed 
also the confusion matrix and maximum value, minimum value, 
mean value and final bagging accuracy is printed which gives a 
clear idea about the classification of each model. The visualization 
of the accuracy of each model while where the iterator range is 7 is 
visualized below in Figure 6.  

Similarly, while we print the confusion matrix of each model 
there are four possible values where 2 out of 4 options are correct 
and others are incorrect. The accuracy value of each model depends 
upon the confusion matrix of each model and the accuracy can be 
calculated by using the confusion matrix. If there is a plot between 
each value of the confusion matrix in each model, then the line 
graph is shown as in Figure 7.  

 
Figure 6. Accuracy of the different machine learning classification 
model

 
Figure 7. Confusion matrix visualization of different machine learning 
models 
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Boosting:  
Adaboost algorithm is used to implement boosting over software 

reliability prediction to enhance the accuracy of a dataset where for 
each model we are creating multiple instances of the boosting 
where each instance will act as a neuron; the weight will be 
initialized in very small amount and then output will be predicted 
and again the weight will be adjusted and similar thing continues. 
At last the model gives us the individual accurateness of every 
model as well as aboosted accuracy of each model for each 
iteration. And we can also observe the following graph to observe 
the individual accuracy of each model for each iteration and 
boosting accuracy of each model for each iteration in the Figures 7, 
8, 9 & 10.  

 
Figure 8. Comparison between boosting accuracy and individual 
accuracy of 3 models for iterative range k=9 

 
Figure 9. Comparison between boosting accuracy and individual 
accuracy of 3 models for iterative range k=11 

 
Figure 9. Comparison between boosting accuracy and individual 
accuracy of 3 models for iterative range k=13 

 
Figure 10. Comparison between boosting accuracy and individual 
accuracy of 3 models for iterative range k=15 

As we can see from the above graph that for different value of K 
the result is different and for some k the accuracy is higher in 
increasing k.  

Stacking:  
In stacking, to learn a machine learning techniques over a 

working out dataset, afterwards the current dataset is produced 
through these models. The current dataset is utilized as an input for 
the combiner machine learning techniques.  

In stacking, sub-models produce different predictions. All these 
sub model’s prediction is combined to generate a new dataset and 
then that is used for the combiner model. For different iteration of 
stacking different models are used in stacking and the accuracy 
value of the stacking is represented in the Figure 11.  
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Figure 11. Comparison between stacking accuracy of different 
machine learning model for different iterative range 

 
Thus, from the above graph we conclude that for different value 

of k in different model different model gives different accuracy. 
And from the above graph we can clearly see the variance of the 
accuracy for different models for different k. 

CONCLUSION  
Various machine learning prediction and classification 

techniques are applied in ensemble learning methods for software 
reliability prediction. As we have realized that in bagging approach 
of the classification the output is classified in different class and 
then voting method is used to get the final output. In prediction 
problem we are getting very less error rate for prediction. In 
boosting model, we have taken weak machine learning model and 
then by using AdaBoost algorithm the accuracy of the model is 
improved. In stacking we are combining different base learner 
algorithm and then predicting the dataset and finally we are using 
combiner algorithm to predict the output.  In bagging method of 
classification, we can see that for k=7 the decision tree gives a 
highest performance among all other machine learning model. In 
boosting method, for different value of k the output of KNN model 
is improved and the accuracy value is increased by maximum 1%. 
For stacking for different value of k i.e. 7,9 or 11 KNN model gives 
the highest accuracy among all.The ununiform result with a varying 
value of K is a challenge of this model. The researcher planning to 
do more study on the result and to derive a consistent lag value(k), 
which uniformly impacting on the classification result. The model 
is trained and tested using a benchmark dataset i.e. Musa, NASA, 
but it needs to be tested using the real dataset from the industry. The 
researcher also planned to apply this model in a software company 
and observe the prediction and actual output. 
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