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ABSTRACT 

 
Precisely identifying diseases 
from brain Magnetic Resonance 
Imaging (MRI) plays a pivotal 
role in both diagnosing medical 
conditions and formulating 
effective treatment plans 
although it faces challenges 
owing to the complexity of the 
brain.  Recent studies highlight 
CNNs' efficacy in disease classification. We propose a CNN model integrating wavelet decomposition and Residual blocks to classify Alzheimer's 
disease, brain tumors, and normal conditions from MRI scans. Four stages of wavelet decomposition extract features, aiding Residual blocks in 
efficient deep network training. Evaluation on MRI datasets show high accuracy, specificity, and sensitivity (0.945, 0.985, and 0.945 respectively), 
surpassing existing models. This model enhances diagnosis and treatment planning efficiency. Exploring various wavelet types, Daubechies-9 
(DB9) wavelet proves superior, emphasizing wavelet selection importance. The model excels in binary, three-way, and four-way classifications, 
showcasing its adaptability and potential in brain MRI analysis  
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INTRODUCTION 
Magnetic Resonance Imaging (MRI) plays a pivotal role in both 

diagnosing medical conditions and formulating effective treatment 
plans for cancer, Alzheimer's, and cardiovascular conditions. It 
offers a non-invasive means of capturing highly detailed images of 
internal organs and tissues, so it becomes essential tool for disease 
detection and diagnosis.1 However, manual interpretation of MRI 
images by radiologists for dealing with multiple diseases in a single 
patient becomes time-consuming, subjective, and porne to errors2, 
thus, the need arises to develop  automated methods for disease 
detection and diagnosis from MRI images. 

Deep learning, which is a part of artificial intelligence, is really 
promising in analyzing MRI scans, especially for finding and 
diagnosing diseases.3 Disease classification is performed by deep 
learning models that learn complex representations of MRI and 
automatically extract relevant features. Deep learning models 
detect single diseases in MRI images; research on detecting 
multiple diseases in MRI is limited.4 

Deep learning-based multiple brain disease detection from MRI 
is an important application of artificial intelligence in healthcare.5 
MRI is a helpful way to scan brain internal structure without 
surgery. It gives clear pictures of how the brain looks and works. 
This technology aids doctors in diagnosing various brain diseases, 
including Alzheimer's, multiple sclerosis, Parkinson's, stroke and 
brain tumors, facilitating timely and accurate treatment 
interventions.  

Deep learning algorithms trained on MRI datasets enhance 
multiple brain disease detection6, improving diagnosis and 
treatment outcomes. This approach overcomes challenges like 
inter-observer variability7, streamlining diagnosis and resource use. 
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It promises to revolutionize brain disease management, improving 
patient care, cutting costs, and advancing medical research.8 

Images produced from a 1.5 Tesla MRI scanner are often called 
"1.5T images”. A commonly employed field strength in clinical 
practice, this technique excels in producing high-quality brain 
images without any compromise on the accuracy of the results. 
These images show great potential for MRI processing for multiple 
brain disease detection due to several reasons:  

High Signal-to-Noise Ratio (SNR): The high SNR of 1.5T MRI 
images facilitates easy identification of subtle brain changes, which 
may indicate various brain diseases, owing to their strong contrast 
and detail.9 
Improved Spatial Resolution: 1.5T MRI images have improved 
spatial resolution compared to lower field strengths, allowing for 
better visualization of small anatomical structures and lesions in the 
brain.9 
Standardization: 1.5T MRI scanners are widely used in clinical 
practice, and there is a significant amount of data available in the 
form of large databases of MRI images.9 Large datasets enhance 
deep learning for accurate, reliable detection of multiple brain 
diseases. 

Non-invasive: MRI is non-invasive, meaning it doesn't involve 
cuts or injections, lowering the chances of complications linked 
with invasive methods. 

Overall, 1.5T MRI images show great potential for MRI 
processing for multiple brain disease detection due to their high 
SNR, improved spatial resolution, standardization, and non-
invasiveness. By employing deep learning algorithms trained on 
large sets of 1.5T MRI images, we can improve the accuracy and 
speed of detecting different brain diseases. so, MRI technology has 
the potential to significantly improve patient outcomes and 
contribute to a more efficient healthcare system.  

In brain MRI image analysis for multi disease classification task, 
disease based relevant features are important to be captured. The 
appearance of brain MRI as per diseases can be understood from 
the MRI images shown in Figure1. 

 
 
 
 
 
 

Figure 1: Brain MRI for different Diseases 
 
This paper has made significant strides in magnetic resonance 

imaging analysis for disease detection and diagnosis. Summary of 
the key contributions is as follows 
Innovative Model Fusion: We introduced a cutting-edge approach 
by fusing wavelet features with Residual Blocks in a Convolutional 
Neural Network (CNN). This novel fusion technique not only 
capitalizes on the strengths of both wavelet analysis and Residual 
Blocks but  it also enables the extraction of selective relevant 
features from MRI data, thereby enhancing the precision of the 
classification process. 
Comprehensive Performance Assessment:  In this study 
accuracy, sensitivity, specificity, and F1-score are the evaluation 

parameters, assessed to find out the effectiveness in disease 
detection. 

This paper enhances disease detection from MRI images with 
augmented datasets and a novel CNN architecture, surpassing state-
of-the-art models. It promises improved early diagnosis of Tumor 
and Alzheimer's diseases. 

RELATED WORK 
Tolosa et al.10 applied MRI image processing to detect 

Parkinson's disease, facing challenges from errors caused by other 
conditions. Specialized movement-disorder units improved 
diagnostic accuracy for parkinsonian syndromes. Danielyan et al.11 
highlighted neurological abnormalities, like dyskinesias and 
parkinsonian signs, in drug-naive individuals. Islam et al.12 
highlighted the importance of MRI in diagnosing Alzheimer's 
disease and introduced a deep neural network as a proposed 
solution. 

Fontana et al.13 utilized EEG signal processing for Alzheimer's 
disease diagnosis, correlating with disease traits. Shatte et al.14 
surveyed machine learning's roles in brain disease detection, 
prognosis, public health, and research. Salvatore et al.15  achieved 
detection of Progressive Supranuclear Palsy and Parkinson's 
disease using MRI data with accuracy over 90%. 

Sorour et al.16 classified MRI images into AD, MCI, or NC, 
comparing performance of neural networks. Mahmud et al.17 used 
EEG acquisition for brain disease identification, outlining future 
research directions. Poldrack18 studied Python's role in reproducible 
data analysis, leveraging software engineering advances. 
Mahmud19 surveyed DL and RL applications in biological data 
mining, comparing performances across datasets. Mahmud et al.20 
explored DL architectures' applications to biological data, 
investigating open-access sources and tools. Basher et al.21 
constructed a CNN model for hippocampal volume prediction from 
MRI scans, using preprocessing. Lin et al.22 processed MRI data for 
detection of Alzheimer’s with high accuracy and AUC. Zou et al.23 
suggested using 3-D Convolutional Neural Networks (CNNs) 
based on deep learning for diagnosing psychiatric disorders. Feng 
et al.24 derived deep features from MRI and PET, outperforming 
related algorithms in disease differentiation. 

Jena et al.25 investigated  brain tumour segmentation using Fuzzy 
C Means method  and various algorithms like SVM,  decision tree, 
random forest, and K-nearest Neighbor are used as classifiers. The 
hand written material based Alzheimer’s prediction approach is 
considered by Cilia et al.26. The method involves classification of 
images drawn by Alzheimer’s patient and use of transfer learning 
approach of CNN. Allioui et al.27 provided study of CNN based 
Alzheimer’s detection from Brain MRI. The comparative of UNET 
with particle swarm optimized Fuzzy C-Means segmentation is 
provided. Kaur et al.28 used different standard CNN models for 
retraining on Haravard clinical dataset. The Alzhemer detection 
AlexNet shown better performance among all. 

Given the reviewed studies' focus on neuroimaging for disease 
detection, the development of a method combining Discrete 
Wavelet Transform (DWT) with residual-block based 
Convolutional Neural Networks (CNNs) is warranted. These 
studies, such as those by Tolosa et al.10 and Danielyan et al.11, reveal 
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challenges in accurately detecting Parkinson's and neurological 
abnormalities. Islam et al.'s 12 emphasis on MRI's significance in 
Alzheimer's diagnosis supports the need for an improved approach. 
Additionally, Salvatore et al. 15 present a successful Parkinson's 
detection method, demonstrating the potential of advanced 
techniques. The DWT-residual CNN model we propose can 
overcome these challenges by combining wavelet transformation 
and deep learning. This approach improves accuracy in diagnosing 
neuroimaging-based diseases, in line with the latest advancements 
in the field. 

METHODOLOGY 
In this study, the methodology comprises four stages, illustrated 

in the Block Diagram Representation of Stages of Proposed Work 
depicted in Figure 2. 

The first stage involved dataset preparation, which included the 
collection and preprocessing of brain MRI images from standard 
public repositories. The collected datasets included Alzheimer's 
disease, brain tumor, and normal/healthy conditions MRI images.   
The second stage involved the composition of a customized CNN 
model using wavelet decomposition-based feature extraction and 
Residual blocks. The proposed model consists of four levels of 
wavelet decomposition and 17 Residual blocks. In the third stage, 
experimentation took place, which included selecting a suitable 
wavelet type for feature extraction. Additionally, the proposed 
model's performance was evaluated in binary, three-way, and four-
way classification tasks. An evaluation of the model's effectiveness 
was conducted against several cutting edge models, including 
VggNet-16 29,  ResNet-50 30,  ResNet-101 30,  DenseNet-121 31,  
Xception 32, and MobileNet-V2 33.  In the final stage, the 
experimental results were analyzed, showcasing the exceptional 
performance of the proposed CNN model in accurately classifying 
brain MRI images into multiple disease categories. 

 

 
Figure 2. Block Diagram Representation of Stages of Proposed Work 
Dataset Preparation 

In this study, the dataset was acquired from kaggle:A standard 
public repositorie, as specified in Table 1. These repositories 
provided labeled datasets for the research. The Alzheimer's dataset 
from Kaggle was utilized, which consists of MRI images 
distributed across four classes, allowing for a four-way 
classification task. The Brain Tumor dataset was also used, 
containing MRI images for binary classification. Additionally, 
images from both datasets that depict normal/healthy conditions 

were used for experimentation. To expand the dataset size, 
augmentation techniques were utilized, incorporating methods such 
as horizontal and vertical image flipping. 

 
Table 1: Dataset obtained from standard public repositories 

Dataset Total Number of 
Images 

Alzheimer Kaggle Dataset 34 6400 
Brain tumor dataset with Yes and No class  253 
Brain Tumor  dataset                       200 
Total 6853 

 
The DB9 wavelet transform, derived from the Daubechies 9/7 

wavelet function, is extensively utilized in signal processing, 
encompassing image and audio compression. Its popularity stems 
from its ability to localize frequencies effectively and preserve 
signal characteristics. It employs two filter pairs to split signals into 
scale-specific approximation and detail coefficients, achieved 
through convolutions and downsampling, recursively applied for 
desired decomposition levels.35 

 
h0 =  [0.03 -0.02 -0.08 0.27 0.60 0.27 -0.08 -0.02 0.03] 

h1 =  [-0.05 0.03 0.30 -0.56 0.30 0.03 -0.05 0.00 0.00] 

g0 =  [0.00 0.05 0.03 -0.30 -0.56 -0.30 0.03 0.05 0.00] 

g1 =  [0.00 0.00 -0.03 -0.02 0.08 0.27 -0.60 0.27 0.08] 

 
Where, "h0" represents a low-pass filter and "h1" represents 

high-pass filters for decomposition, whereas "g0" denotes a low-
pass filter and "g1" signifies high-pass filters for reconstruction.  

Mathematically expression for DB9 wavelet transform is as 
follows: 

Let, x[n] be the input signal, and let aj[n] and dj[n] be the 
approximation and detail coefficients at level j, respectively. The 
DB9 wavelet transform can be defined recursively as: 

aj+1[n] = (aj * h0)[2n] + (dj * h1)[2n] dj+1[n] = (aj * g0)[2n] + 
(dj * g1)[2n]                    ...(1) 

Where * denotes the convolution operation, [2n] denotes 
downsampling by a factor of two, and a0 = x. 

 
Residual Block: Residual blocks are pivotal in convolutional 

neural networks (CNNs), initially proposed by He et al. in 2016 30, 
The structure of a residual is shown in Figure 3. 
 

 
Figure 3: Residual Block 
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The Residual Block operates by first taking input data from the 
previous layer, then extracting key features through convolutional 
operations and applying activation functions to add non-linearity. 
Simultaneously, it retains a copy of the original input through a 
shortcut connection. The output of the convolutional layers is 
combined with this original input, creating a residual mapping that 
captures the difference between the input and output. Finally, the 
combined result is passed to the next layer. This approach enables 
more effective learning by facilitating gradient flow and aiding in 
the understanding of complex data patterns. When training highly 
complex networks, this technique is highly beneficial, as it can 
mitigate the vanishing gradient issue36 that often arises when 
backpropagating through multiple layers. The mathematically a 
residual block is expressed as, 

y = F(x) + x                                    ...(2) 
Given input x, residual function F is learned, yielding output y. 

Addition is element-wise, followed by activation for final output. 
The skip or shortcut connection, as described in residual blocks 37, 
allows the network to connect the input of a layer directly to its 
output. This bypasses one or more layers within the neural network, 
enabling information propagation between distant layers.  The 
connection is added to the output of a layer and then passes through 
an activation function, becoming the final output of the residual 
block. Skip connections help learn residual functions, which 
address input-output differences. Particularly effective for deep 
networks, they mitigate vanishing gradients during training. Also 
referred to as the identity connection, it enables the input to "skip" 
the residual block and directly connect to the output. 

Proposed CNN Model:The proposed CNN model architecture 
is depicted in Figure 4, which encompasses an input layer designed 
to process input images of dimensions 224 x 224. The image is 
simultaneously passed through Residual Block and Wavelet 
Decomposition. The wavelet decomposition provides LL0, LH0, 
HL0, HH0 images. These images are passed through residual 
blocks for feature extraction. The LL0 is further decomposed in the 
2nd stage to generate LL1, LH1, HL1 and HH1 decomposed 
features. The similar operation is repeated up to 4 stages of 
decomposition and outputs are concatenated at respective stages.  

Let's represent the wavelet transform of the original image X 
as W The wavelet transform of X can be represented as: 

W(X) = (ca4, cd4, cd3, cd2, cd1)                     ...(3) 
where W denotes the wavelet transform operator. 
Where ca4 is the approximation coefficient at fourth level, and 

cd4, cd3, cd2, cd1 are the detail coefficients at fourth, third, second 
and first level respectively. To pass these features through a 
residual block, we can represent the residual block as a function 
F(x) that takes an input tensor x and applies a series of 
convolutional layers, activation functions, and skip connections to 
produce an output tensor.  
Residual block output is given by: 

F(x) = x + H(x)                                 ...(4) 
Where H(x) represents the residual connection, which is the 

convolutional layer output applied to the input x. To apply the 
residual block to the wavelet coefficients, we can use the following 
equation: 

Y = F([ca4; cd4; cd3; cd2; cd1])                   ...(5) 

Where Y indicates ‘output tensor’ of the residual block. 
 [ca4; cd4; cd3; cd2; cd1] denotes concatenation of ca4 and all 

detail coefficients, and F is the function that applies the residual 
block to the concatenated coefficients. 

Note that this equation represents a single instance of passing the 
wavelet coefficients through a residual block. To conduct a four-
stage decomposition, this procedure should be iterated four times. 
The output of every residual block serves as input for the 
subsequent levels of the wavelet transform. Dense layer out put for 
input x can be represented as, 

h = ReLU(Wx + b)                          ...(6) 
In the equation,W is weight matrix, b indicates bias vector, and 

Rectified Linear Unit activation function is “ReLU”. The second 
dense layer acts as a classifier can be denoted as, 

y = softmax(Vh + c)                       ...(7) 
Where V represents the weight matrix, c stand for the bias vector. 

Softmax converts output to class probabilities. The final output 
predicts the class with the highest probability. Thus, 

y = softmax(V(ReLU(Wx + b)) + c)              ...(8) 
 

 
Figure 4: Proposed CNN model Architecture 

 RESULTS AND DISCUSSION 
Results of our study includes performance evaluation parameters 

which are listed in Table 2 and comparison of proposed module 
with existing different machine learning or deep learning 
techniques.  

Interpretation of our findings, potential applications and the 
limitations of current approaches are noted here.  
K-Fold Analysis 

Evaluation using Partitioning-based cross-validation 38 is a 
widely used technique in machine learning. In 10-fold cross-
validation, the dataset is divided into 10 equal parts. The model is 
then trained and tested 10 times, each time using a different fold as 
the test set and the remaining folds for training. This allows for 
thorough evaluation, ensuring that each data point serves both for 
training and testing exactly once. The performance metrics from 
each fold are averaged to provide a robust estimate of the model's 
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effectiveness. This technique helps assess how well the model 
generalizes to unseen data and provides a reliable indication of its 
overall performance. [40]. Figure 5 shows 10-Fold analysis results. 

 
Table 2: Performance Evaluation Parameters 

Accuracy TP+TN/(TP+TN+FP+FN) 
Specificity  TN/(TN+FP) 
Sensitivity or Recall TP/(TP+FN) 

 
Where TP = True Positive; TN = True Negative; FP = False 

Positive; FN = False Negative. 
 

 
Figure 5: 10-Fold Analysis on Dataset3 for Three Way 
Classification 

 
Results with Different Wavelet Types 

The study emphasizes the pivotal role of wavelet selection in 
medical image classification, notably for brain MRI. Different 
wavelets offer varied accuracy, with Daubechies-9 performing best 
due to its higher vanishing moments and superior frequency 
localization. This makes it particularly adept at detecting small 
features in medical images. Thus, our findings advocate for 
Daubechies-9 in such classification tasks. See Figure 6 for wavelet 
analysis. 

 
Figure 6: Analysis for different wavelet types 

 
Results of Class-wise classification Task 

The classification of brain MRI images was assessed across 
binary, three-way, and four-way categories, aiming to improve 
disease diagnosis and treatment planning. Utilizing various 
datasets, including Alzheimer's and brain tumor data, the proposed 
CNN model, leveraging wavelet decomposition and Residual 
blocks, exhibited exceptional accuracy, specificity, and sensitivity. 
This versatile approach promises enhanced patient care. See Figure 
7 for detailed performance analysis. 

 

 
Figure 7: Analysis for different Class-wise classification tasks 
 
 
Comparative Analysis with Existing edge cutting Models 

When proposed model results compared with results of existing 
models such as VggNet-16, ResNet-50, ResNet-101, DenseNet-
121, Xception, and MobileNet-V2, It is found that, proposed 
module is superior and effective 

Existing models were chosen based on their popularity and 
performance in medical image classification tasks. For instance, 
ResNet-50, ResNet-101, and DenseNet-121 are renowned for their 
capacity to manage deeper layers and effectively learn intricate 
features. Meanwhile, VggNet-16 is a classic architecture 
extensively employed in image classification tasks. Additionally, 
Xception and MobileNet-V2 are recognized for their efficiency and 
accuracy in image classification tasks. The comparative study is 
shown in Figure 8. 

 

Figure 8: Comparison of proposed module with existing edge 
cutting models 



J. L. Mudegaonkar et. al. 

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2025, 13(1), 1005             Pg  6 

The experimentation phase was conducted on a machine 
equipped with robust hardware specifications, featuring an Intel 
11th generation i5 processor, 32 GB of RAM, and a GTX1660 
graphics card with 6GB of memory. This setup provides sufficient 
computational power to manage the complex requirements of our 
model development and assessment processes. Required time for 
model Training is documented in Table 3. 
 
Table 3: Required Time for Model Training 

Model Training Time Average 
Inference Time 

VGGNet-16 8 Hours 4 seconds 
ResNet-50 6 Hours 5 seconds 
ResNet-101 9 Hours 5 seconds 
DenseNet-121 6.5 Hours 6 seconds 
Xception 7 Hours 2.5 seconds 
MobileNet-V2 5 Hours 2 seconds 
Proposed 7.5 Hours 3.5 seconds 

 
Several existing methods were reviewed for comparative 

analysis, each employing diverse techniques for multi-disease 
detection and multiclass classification. Kibriya et al. 39 utilized 
transfer learning with ResNet-18 and GoogleNet for feature 
extraction and SVM for classification. Nayak et al. 40 employed 
custom CNNs on MD1 and MD2 datasets, while Lampe et al. 41 
used SVM for seven-way classification. Tandel et al. 42 utilized 
transfer learning to classify brain MR Images while Geneedy et al. 
43 implemented classifier of Alzheimer's disease and healthy 
conditions using deep convolutional neural networks (CNNs) for 
the four-classes. Lin et al. 22 applied Linear Discriminant Analysis 
for AD detection and utilized an ensemble learning for tumor 
detection. Aurna et al. 44 utilized ensemble methods for four-class 
classification tasks, and Patil et al. utilized ensemble training for 
three-class brain tumor detection. Additionally, Khan et al. 45 
employed transfer learning on the ADNI dataset for four-class 
Alzheimer's disease classification. These studies demonstrate the 
diversity of approaches and methodologies utilized in leveraging 
machine learning techniques to analyze brain MRI and diagnosing 
neurological disorders. Siddiqui et al. 46 used conventional machine 
learning with DWT features and PCA on the OASIS and Harvard 
datasets for multi-disease classification. Irmak et al. 47 developed a 
custom CNN strategy for multiclass brain disease classification. 
Table 4 presents a comprehensive comparative analysis of these 
methods alongside the proposed approach. 
 
Table 4: Comparative Study 

Method 
Image 
Type 
Used 

Number 
of 

Classes 
Performance 

CNN-SVM (ResNet18 
and GoogleNet) 39 MRI 4 Accuracy of 98% 

Deep CNN method for 
MD1 and MD2 dataset [47] 

MRI 5 

accuracy 100.00% 
for MD 1 and 
97.50% For MD-2 
dataset 

SVM classification 41 MRI 7 

71 and 95 % The 
binary SVM 
yielded high 
prediction 
accuracies  

Transfer-learning-based 
CNN  model 42 MRI 5 

Accuracies 100, 
95.97, 96.65, 
87.14, and 
93.74%. 
 

CNN 43 MRI 4 Accuracy of 
99.68%. 

Linear Discriminant 
Analysis (LDA) and 
CNN 22 

Multi 
modal 
data  

4 

Accuracy 66.7% 
and 57.3% and 
F1-scores of 
64.9% and 55.7% 

Deep CNN 48 MRI 4 accuracy of 
99.13% 

Ensemble Deep 
Convolutional Neural 
Network model 
(EDCNN) 44 

MRI 3 Accuracy up to 
97.77%. 

Transfer learning base 
with tissue segmentation 
and pre-trained VGG 16, 
VGG 19 architecture 45 

MRI 4 accuracy of 
97.89% 

Several sub-models: like 
DWT, PCA, kNN, RF, 
LS-SVM 46. 
 

MRI 5 

RF based 
classifier a 96% of 
accuracy and the 
performance of 
other classifiers  
varies 80% to 
96% 

Three different CNN 
models 1) Brain tumor 
detection (13 weighted 
layers)2) brain tumor 
types (25 weighted 
layers) 3) brain tumors 
into three grades (16 
weighted layers) 47 

MRI 2,5,3 

Accuracy for 
model 1, model2, 
model3 is  
99.33%, 
92.66%and 
98.14% 
respectively 

Proposed Model 
(Wavelet + Residual 
Block Based Model) 

MRI 2,3,4 

 Accuracy of 
93%, 94% and 
93.8% for 2 
classes, 3 classes 
and 4 classes 
respectively. 

 
Clinical Validation: 

A groundbreaking study delved into the clinical validation of 
Alzheimer's disease detection, utilizing a dataset comprised of 25 
MRI images. The crux of this investigation lay in comparing the 
model's outcomes against evaluations conducted by seasoned 
medical experts. Upon meticulous analysis, the results spoke 
volumes. The model demonstrated an astonishing accuracy rate of 
96%, accompanied by a specificity of 100%. In essence, this means 
the model accurately identified instances of Alzheimer's without 
misclassifying healthy subjects, ensuring a pristine level of 
precision in its diagnoses. Furthermore, with a sensitivity of 96%, 
the model exhibited a remarkable capacity to detect Alzheimer's 
cases among the subjects under scrutiny. Such findings underscored 
the model's immense potential in the realm of Alzheimer's 
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detection. The high accuracy, specificity, and sensitivity rates not 
only validated the model's efficacy but also hinted at its viability as 
a supplementary tool for medical professionals in diagnosing 
Alzheimer's disease. By leveraging advanced technology and 
machine learning algorithms, this study heralded a new era in 
Alzheimer's detection, offering a glimmer of hope for early 
intervention and improved patient care. 
 
Table 5: Clinical Validation Results 

Image 
Number 

Medical Expert 
Opinion 

Model's 
Outcome 

1 Alzheimer's Alzheimer's 
2 Alzheimer's Alzheimer's 
3 Healthy Healthy 
4 Alzheimer's Alzheimer's 
5 Healthy Healthy 
6 Alzheimer's Alzheimer's 
7 Healthy Healthy 
8 Alzheimer's Alzheimer's 
9 Alzheimer's Alzheimer's 

10 Healthy Healthy 
11 Alzheimer's Alzheimer's 
12 Alzheimer's Alzheimer's 
13 Healthy Healthy 
14 Alzheimer's Alzheimer's 
15 Alzheimer's Alzheimer's 
16 Healthy Healthy 
17 Alzheimer's Healthy 
18 Healthy Healthy 
19 Healthy Healthy 
20 Alzheimer's Alzheimer's 
21 Alzheimer's Alzheimer's 
22 Healthy Healthy 
23 Alzheimer's Alzheimer's 
24 Alzheimer's Alzheimer's 
25 Healthy Healthy 

 
Discussions 

The potential contribution points of the proposed custom CNN 
model using residual block and 4 stage wavelet decomposition for 
analyzing Brain MRI images for multiple disease classification: 

Improved classification accuracy: The model merges wavelet 
decomposition and residuals, capturing MRI's low- and high-level 
traits. Enhanced classification potential over separate techniques or 
CNNs. Also, model shows its good sensnitivity for detection very 
mild conditions of AD. 

Reduced over fitting: The use of residual blocks and discrete 
wavelet transform in the proposed model facilitates more relevant 
feature extraction this minimizes the chances of over fitting. 
Residual connections in the model directly access earlier 
information, making it easier to learn and less likely to just 
remember specific examples from the training data.  

Ability to handle multi-class classification: The proposed model 
is designed, which handles multiple disease classification, which is 
a challenging problem in MRI image analysis. By incorporating 

both wavelet decomposition and residual blocks, the model can 
capture the subtle differences between different disease classes and 
improve the classification performance. 

Interpretable features: The use of wavelet decomposition can 
help extract interpretable features from the MRI images. The 
coefficients obtained from each level of the decomposition can give 
us an idea about the different spatial frequencies present in the 
images.  

This model demonstrates its capability in extracting relevant 
features related to AD and shows superior classification 
performance compared to existing models. However, further 
analysis is needed to evaluate the model's performance when other 
disease classes are considered and to assess its robustness in 
detecting very mild AD conditions. Additionally, changes in brain 
volume due to other diseases may significantly impact the model's 
accuracy, highlighting the need for further evaluation with mixed 
diseased MRI images in the training and validation datasets. 

 CONCLUSION 
This article introduces an innovative CNN model designed for 

the categorization of brain Magnetic Resonance images into three 
categories: Alzheimer's disease, brain tumor, and normal 
conditions. The model leverages wavelet decomposition-based 
feature extraction and Residual blocks to facilitate efficient feature 
learning and classification. Upon evaluation using a dataset of brain 
MRI images, our model surpasses existing edge cutting models, 
achieving notable accuracy, specificity, and sensitivity scores of 
0.945, 0.985, and 0.945 respectively. This work holds significant 
promise for enhancing an accuracy and efficiency of disease 
assessment and therapy strategizing based on brain MRI images. 
Accurate detection of multiple diseases from MRI images can 
prompt timely interventions, ultimately improving patient 
outcomes.  

The experimental study entails selecting an appropriate wavelet 
type for feature extraction and evaluating the model's performance 
across binary, three, and four-class classification tasks. Results 
demonstrate the proposed model's excellent performance across all 
three scenarios, with Daubechies-9 (DB9) wavelet yielding the best 
classification performance. This underscores the importance of 
wavelet type selection for feature extraction and underscores the 
potential of the suggested model for diverse disease categorization 
tasks. 

The suggested CNN model offers a robust approach for multi-
class disease identification from brain MRI, boasting exceptional 
accuracy and efficiency. The utilization of wavelet decomposition-
based feature extraction and Residual blocks facilitates efficient 
feature learning and disease classification. The implications of this 
model are substantial for improving disease diagnosis and treatment 
planning, ultimately leading to enhanced patient outcomes. Future 
research avenues may explore the model's applicability across other 
medical imaging modalities and disease categories, with further 
efforts focused on enhancing its performance. 
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