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The most common reason for 
blindness in working-age adults is 
diabetic retinopathy. The World 
Health Organization (WHO) estimates that diabetic retinopathy affects about one-third of adults with diabetes. According to the American 
Diabetes Association (ADA), 4.4 million Americans and 7.7 million Americans, respectively, have diabetic retinopathy that poses a threat to their 
vision. The development of vision loss brought on by diabetic retinopathy can be stopped or delayed with early detection and treatment. In order 
to increase performance for the early identification of microaneurysms and exudates, a hybrid neural network (HNN) is a sort of deep learning 
model that combines convolutional neural networks application on a complete image and an image segmented into 64 parts. In this instance, it 
is utilized to find exudates and microaneurysms in retinal pictures, both of which are symptoms of diabetic retinopathy. An accurate and effective 
diagnosis method for diabetic retinopathy (DR) detection is created by training a hybrid convolutional neural network on massive datasets of 
retinal pictures. Grading diabetic retinopathy is crucial since it aids in figuring out how serious the condition is, informs treatment choices, and 
tracks the disease's development. The severity of the condition is often determined by the grade of the diabetic retinopathy, which ranges from 
very mild to severe. HNNs outperformed weighted neural networks (WNN) and convolutional neural networks (CNN) in terms of performance 
sensitivity, specificity, precision, and accuracy, increasing to 91.91, 87.69, 94.74, and 90.68, respectively. 
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INTRODUCTION 
For the prevention and control of diabetic retinopathy, routine eye 

exams and appropriate diabetes management are crucial.1 The 
International Diabetes Federation estimates that diabetic retinopathy, 
which affects around one-third of patients with diabetes, is the main 
cause of new occurrences of blindness among working-age adults.1 

Depending on the population studied and the stage of the illness, 
diabetic retinopathy prevalence varies. Among persons with diabetes 
who have been diagnosed, about 28.5% have diabetic retinopathy and 
about 4.4% have advanced diabetic retinopathy, which could result in 
significant visual loss. For the prevention and control of diabetic 

retinopathy, routine eye exams and appropriate diabetes management 
are crucial.2 Exudates and microaneurysms are two typical symptoms 
of diabetic retinopathy, especially in the non-proliferative stage. 
Microaneurysms are tiny bulges that can form in the retina's blood 
vessel walls as a result of damage from high blood sugar levels. These 
lumps may weaken and start to bleed blood and fluid into the retina, 
which may enlarge and impair vision.2 

Exudates, often referred to as hard exudates, are white or yellow 
deposits that can develop in the retina as a result of fluid and lipid 
leaking from harmed blood vessels.3 They may indicate macular 
edoema, a diabetic retinopathy consequence that damages the center 
region of the retina that is responsible for clear, detailed vision. 
Exudates and microaneurysms can both be found during a thorough 
eye exam by an ophthalmologist or optometrist. Depending on the 
severity of the illness, better diabetes management, laser treatment, or 
pharmaceutical injections may be used to address these diabetic 
retinopathy symptoms.4 Early detection and timely treatment are 
essential for individuals with diabetic retinopathy to prevent vision 
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loss and preserve eye health. Figure 1 illustrates the presence of 
exudates and microaneurysms.5 

 

 
 
Figure 1. Appearance of Microaneurysm and Exudates 
 

Convolutional neural networks (CNNs) applied to both a full 
image and its segmented 64 parts represent two distinct neural 
network approaches that are integrated to enhance the accuracy and 
efficiency in detecting microaneurysms and exudates. This 
combination underscores the significance of hybrid neural networks 
in improving the detection of diabetic retinopathy.6 

CNNs are used to recognize and analyze image features, and they 
are efficient at identifying diabetic retinopathy from retinal pictures. 
However, CNNs are restricted by their incapacity to recognize very 
small Exudates and Microaneurysms.7HNNs, on the other hand, are 
effective at predicting the temporal changes in diabetic retinopathy 
across time since they are built to process sequences of picture 
fragments. It is possible to take advantage of the advantages of both 
strategies and boost the precision and effectiveness of diabetic 
retinopathy detection by integrating CNNs into a hybrid neural 
network.8 The features of big or medium-sized Microaneurysm and 
Exudates are extracted from retinal pictures using CNN, whereas the 
changes in these characteristics for small-sized Microaneurysm and 
Exudates are modelled using HNN on individual image pieces9.In 
general, hybrid neural networks have improved diabetic retinopathy 
detection and diagnosis, which is crucial for reducing vision loss and 
blindness in persons with diabetes through early identification.10 

RELATED WORK 
This section offers an extensive review of previous research 

endeavors aimed at detecting and classifying diabetic retinopathy 
through diverse machine learning methodologies.  

The methodology presented in the paper involves using feature 
maps generated by ResNet-50 in conjunction with a Random Forest 
classifier for classification tasks. The approach achieved accuracies 
of 96% and 75.09% on the respective datasets.11 

In the paper, the authors present a Convolutional Neural Network 
(CNN) methodology aimed at accurately evaluating the severity of 
diabetic retinopathy using digital fundus images. They emphasize that 
their CNN autonomously identifies intricate features essential for 
classification, providing diagnoses without requiring user 
intervention. Trained on the Kaggle dataset using high-performance 
GPU resources, this network achieves significant performance, 
particularly in rigorous classification evaluations, with a sensitivity 

of 95% and an accuracy of 75% on a validation set of 5,000 images 
selected from an 80,000-image dataset.12 

Authors in 13devise three Convolutional Networks (ConvNets) 
employing a proposed heatmap optimization strategy to detect 
referable diabetic retinopathy within the Kaggle-train dataset. 
Without necessitating retraining, these ConvNets undergo assessment 
for lesion detection using the DiaretDB1 dataset. They surpass 
previous algorithms that were specifically developed for lesion 
detection at the image level Particularly noteworthy is the proposed 
framework, notably "net B," which secures an impressive Az (area 
under the ROC curve) of 0.9542 in the Kaggle-test, thus evidencing 
superior performance. 

In Study, employing inclusive and exclusive criteria, the combined 
sensitivity, specificity, and area under the receiver operating 
characteristic curve (AUROC) for diabetic retinopathy were assessed 
to be 0.83 (95% CI: 0.83-0.83), 0.97 (95% CI: 0.95-0.98), and 0.92 
(95% CI: 0.92-0.92), respectively. Additionally, the positive and 
negative likelihood ratios were calculated at 14.11 (95% CI: 9.91-
20.07) and 0.10 (95% CI: 0.07-0.16), respectively. Remarkably, the 
diagnostic likelihood ratio for deep learning models was found to be 
136.83 (95% CI: 79.03-236.93).1 

Authors in 14innovate a technique geared towards minimizing 
training time expenses by employing the Extreme Learning Machine 
(ELM) algorithm as the classifier. In binary classification, this 
approach achieves accuracy and recall rates of 99.73% and 100%, 
respectively. Moreover, the proposed model demonstrates accuracy 
rates of 98.09% and 96.26% for the five stages of diabetic retinopathy 
classification on the APTOS-2019 and Messidor-2 datasets, 
respectively. 

A notable method leverages ResNet-50 for feature extraction, 
followed by a Random Forest classifier for final classification. This 
approach demonstrated impressive accuracies of 96% and 75.09% on 
two different datasets, effectively combining the deep feature 
representation capabilities of ResNet-50 with the robust classification 
power of ensemble methods such as Random Forests.15 

Another significant advancement involves a Convolutional Neural 
Network (CNN) model designed for the automatic detection of 
intricate features necessary for diagnosing diabetic retinopathy (DR) 
from fundus images. This network, trained on the publicly available 
Kaggle dataset using high-performance GPUs, achieved a sensitivity 
of 95% and an accuracy of 75% on a validation subset of 5,000 
images drawn from a larger dataset of 80,000 images. This work 
underscores the potential of CNNs in automating DR grading and 
highlights their capability to handle large-scale datasets efficiently.16 

Further advancements include the development of three ConvNets 
optimized using a heatmap-based method to identify referable DR. 
These ConvNets were evaluated without retraining on the DiaretDB1 
dataset and outperformed previous algorithms specifically trained for 
lesion detection, achieving an area under the curve (Az) of 0.9542 in 
the Kaggle-test dataset. The integration of heatmap optimization with 
ConvNets represents a significant leap in detecting lesions at the 
image level with high accuracy.17 

A two-stage deep CNN model has been introduced, with the first 
stage dedicated to extracting local features and the second stage 
utilizing these features for global classification into four stages of 
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diabetic retinopathy. This model achieved a Kappa score of 0.767 and 
an accuracy of 95.90%, showcasing its effectiveness in both detailed 
feature extraction and classification. The two-stage approach 
effectively captures both local and global context, enhancing the 
precision of DR classification. 18 

Attention mechanisms have been incorporated into diabetic 
retinopathy detection models to enhance feature extraction. Category 
Attention Blocks (CAB) and Global Attention Blocks (GAB) 
specifically target critical regions in the images, thereby significantly 
boosting the model's performance. The CABNet model, for instance, 
achieved an accuracy of 78.13%, highlighting the importance of 
attention mechanisms in improving the discrimination capabilities of 
deep learning models. 19 

Ensemble methods and transfer learning techniques have been 
investigated to enhance the performance of diabetic retinopathy 
detection. By combining several pre-trained models fine-tuned on DR 
datasets and utilizing transfer learning where features from pre-
trained CNN models are used for DR grading, these approaches have 
shown accuracies between 82.84% and 90.01%, varying with the 
specific architecture and dataset used. This showcases the versatility 
and robustness of ensemble and transfer learning techniques in 
medical image analysis. 20 

Innovative models like the Zoom-in Net and hierarchical coarse-
to-fine networks (CF-DRNet) have further advanced DR detection. 
The Zoom-in Net uses an M-Net for initial classification, an A-Net 
for generating attention maps, and a C-Net for focusing on high-
resolution patches, achieving high Kappa scores and accuracies. 
Similarly, the CF-DRNet employs a two-stage classification process, 
reflecting the hierarchical nature of DR and providing detailed 
attention to critical regions in the images 21 

The diagnostic performance metrics of various models, including 
sensitivity, specificity, and area under the receiver operating 
characteristic curve (AUROC), have been assessed. The combined 
values of 0.83 for sensitivity, 0.97 for specificity, and 0.92 for 
AUROC highlight the robustness and reliability of these models in 
clinical settings. Additionally, diagnostic likelihood ratios and 
positive and negative likelihood ratios provide further evidence of the 
models' effectiveness in distinguishing between different stages of 
DR.22 

METHODOLOGY 
A. Dataset 

This study utilizes three major datasets—IDRiD, DDR, and 
EyePACS—to develop and validate a deep learning model for 
grading diabetic retinopathy (DR). Each dataset is crucial in the 
training and evaluation stages, significantly enhancing the model's 
robustness and accuracy. 

The Indian Diabetic Retinopathy Image Dataset (IDRiD) contains 
508 fundus images representing different stages of diabetic 
retinopathy and diabetic macular edema. This dataset provides a 
diverse range of pathological features necessary for training a model 
to accurately detect and classify diabetic retinopathy. Despite its 
relatively smaller size, IDRiD is crucial for assessing the model's 
generalizability and effectiveness, providing a dataset that closely 
mirrors real-world clinical settings.22The Diabetic Retinopathy 
Detection Challenge (DDR) dataset includes a substantially larger 

collection of 9,747 images. These images exhibit varying quality and 
represent different stages of DR, thus providing a comprehensive 
training ground for the model. The diversity and scale of the DDR 
dataset are vital for evaluating the model's performance across a broad 
spectrum of real-world conditions, ensuring its capability to handle 
various image qualities and DR severities.1 

The EyePACS dataset is the largest utilized in this study, 
containing 76,889 images. Recognized extensively in the field of DR 
detection, EyePACS offers a rich resource for training deep learning 
models. Its extensive collection of images spanning various DR 
stages makes it ideal for large-scale model training and validation. 
The size and diversity of the EyePACS dataset ensure the model's 
robustness and effectiveness in practical applications, enhancing its 
ability to generalize across different populations and clinical 
settings.22 To improve the quality of the fundus images and ensure 
accurate feature extraction, the study utilizes Contrast Limited 
Adaptive Histogram Equalization (CLAHE). This preprocessing 
technique improves image contrast, making various retinal features 
more discernible and facilitating accurate DR detection. Furthermore, 
to address the inherent class imbalance within the datasets, the study 
utilizes oversampling. This method ensures equal representation of 
each DR grade category during training, thereby preventing the model 
from being biased towards majority classes and enhancing its ability 
to accurately classify images from minority classes.1 
B. Preprocessing 

In diabetic retinopathy, image preprocessing techniques are used 
to enhance image quality and improve the accuracy of detection and 
classification algorithms. Contrast enhancement, noise reduction, 
color normalization, and picture registration are the preprocessing 
methods. These methods make it simpler to identify and diagnose 
diabetic retinopathy by removing artefacts and enhancing the clarity 
of retinal characteristics. 
i. Normalization 

With the help of color normalization techniques, images are 
converted to a common color space or have their color and brightness 
adjusted to match those of a reference image or dataset. By relying on 
consistent image attributes for accurate analysis, this helps to lessen 
the effect of color and illumination fluctuations on the accuracy of 
automated detection and diagnostic algorithms. For a more precise 
diagnosis of diabetic retinopathy, color normalization is combined 
with other image processing techniques. 
ii. Adaptive histogram equalization 

AHE divides the image into small, overlapping parts and carries 
out histogram equalization on each region independently. This is in 
contrast to classical histogram equalization, which applies a global 
change to the entire image. This enables AHE to maintain the overall 
characteristics of the image while enhancing the contrast of local 
details. To make subtle retinal features more visible and to help with 
the detection of retinal illnesses, AHE is utilized in medical image 
analysis, particularly the study of images of diabetic retinopathy. In 
figure 2 AHE results of red, green, blue and color images is shown 
with comparison to conventional histogram equalization.1 
C. Hybrid Convolutional neural network  

In order to extract features from photos or other input data, a hybrid 
convolutional network is a sort of neural network architecture that 
incorporates various convolutional layer types.22 Hybrid 
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convolutional networks combine depth-wise separable convolutional 
layers, which are intended to be more computationally efficient than 
standard convolutions and require fewer parameters, with the 
traditional convolutional layers seen in figure 3.It has been 
demonstrated that employing hybrid convolutional networks rather 
than solely conventional convolutional layers improves the accuracy 
of image classification and object detection tasks. This is due to the 
fact that combining various convolutional layer types enables a more 
varied set of characteristics to be recovered from the input data, 
improving the ability to distinguish between various classes of objects 
or features. Figure 4 illustrates in detail how hybrid convolutional 
networks and figure 3 shown the overall training and testing phase. 

 

 
Figure 2.a. Adaptive Histogram Equalization of red and green 
component. 

 
Figure 2.b. Adaptive Histogram Equalization of blue and color 
image. 

 
Figure 2.c. The difference between adaptive and conventional 
histogram equalization. 
 

i. Convolutional layer:  
Convolutional layers in neural networks are described by the 

equation: 

yi,j,k =f�∑ l = 1C ∑ ∑ xiKw
n=1

Kh
m=1 + m − 1, j + n − 1, l. wn, n, l, k +

bk�(1) 

where x is the input tensor of size N× H × W × C,w is the set of 
learnable convolutional kernels of size Kh × Kw × C × K,bk is the 
bias term for the k-th output channel, and f is the activation function. 
The output of the convolutional layer is a feature map f{y} of size 
N× H′ × W′ × C, Where  is the set of learnable convolutional 
kernels of size Kh × Kw × C × K, bk is the bias term for the kth 
output channel, and f is the activation function.  is the input tensor 
with size N× H × W × C. A feature map  of size N× H′ × W′ × C is 
what the convolutional layer produces, whereH' and W'are the 
output's spatial dimensions.23 

H' = H - Kh+ 1 AndW' = W - Khw+ 1                  (2) 
During the convolution operation, the kernel is slid over the input 

tensor, the dot product between the kernel and each local input patch 
is calculated, and the activation function is then applied to the total. 
A series of feature maps that capture various facets of the input data 
serve as the convolutional layer's output and are sent into the 
network's subsequent layers. 
ii. Pooling layer:  

The following is a representation of the equation for an image 
processing pooling layer: 

yi, j, k = pool({x(i + m − 1) × s, (j + n − 1) × s, k: 1 ≤ m ≤
Kh, 1 ≤ n ≤ Kw})(3) 

where pool is the pooling function, which is either maximum or 
average pooling, and x is the input tensor of size × H × W × C. Kh 
and Kw are the spatial dimensions of the pooling kernel.23By 
performing the pooling operation on specific local patches of the 
input tensor, the pooling layer lowers the spatial dimension of the 
input tensor.A feature map y of sizeN × H′ × W′ × C is the pooling 
layer's output, where 

H′ = ⌊(H − Kh)/s⌋ + 1,W′ = ⌊(W − Kw)/s⌋ + 1 (4) 

 
Figure 3.Convolutional Neural Network block diagram 
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are the output's spatial dimensions. By reducing the spatial 
dimension of the input tensor, the pooling procedure aids in lowering 
the computational cost of following layers. Additionally, average 
pooling serves to make the input more resistant to tiny variations in 
the input while max pooling helps to extract prominent features from 
the input. 
iii. Normalization layer:  

The following equation is used to represent a normalization layer: 
 
yi, j, k = xi,j,k

�ϵ+ 1
KhKw

∑ ∑ �xi+m−1,j+n−1,k�
2Kw

n=1
Kh
m=1 �

α     (5) 

 
 

where Khand Kware the spatial dimensions of the normalization 
kernel, α is a positive constant, and x is the input tensor of size N ×
H × W × C. ϵ is a small positive constant to prevent division by zero. 

By normalizing each element by a factor proportionate to the sum 
of the squares of elements in that element's immediate local 
neighborhood, the normalization layer performs local response 
normalization to the input tensor. A tensor with the same shape as the 
input tensor is the normalization layer's output.Convolutional neural 
networks employ normalization layers to strengthen the 
network'scapacity for generalization and lessen the effect of covariate 
shift. By offering a sort of lateral inhibition where only the most 
intensely activated features are kept, normalization aids in improving 
the distinguishability of features.23 
iv. Fully connected layer:  
The equation for a fully connected layer in image processing is 
represented as: 

yi = f�∑ j = 1Mwi,j ⋅ xj + bi� (6) 

where f is the activation function, which is normally applied 
element-wise to the output vector, and  is the input feature vector of 
size ,  is the output feature vector of size ,  is the weight matrix 
of size N × M, and  is the bias vector of size .23 

The fully connected layer performs a linear transformation of the 
input feature vector by calculating a weighted sum of the input 
features and adding a bias term. 

The network's nonlinearity is then added by passing the resulting 
vector through an activation function. The output of the completely 
linked layer is utilized as the network's input for layers below it.Deep 
neural networks, particularly those for image processing, frequently 
employ fully connected layers to teach high-level representations of 
the input data. These layers are frequently positioned at the bottom of 
the network, combining the information retrieved by preceding layers 
into a condensed representation that may be applied to classification 
or regression. 

 
v. Image Splitting: 

The Python programming language and image processing library 
are used to divide an image into 64 parts of similar size. Utilizing the 
"split" function found in image processing libraries is a typical 
strategy.24 

The supplied image is divided into an identically sized 8x8 grid of 
sub-images by this code. The subsequent saving of the sub-images 
into distinct files with the names "sub image 0.jpg," "sub image 
1.jpg," and so on, up to "sub image 63.jpg," is done. 
vi. Edge Enhancement:  

The Laplacian filter is a method for edge enhancement in image 
processing and is represented by the equation below: 
y(i, j) = ∑ ∑ h(k, l)1

l=−1
1
k=−1 ⋅ x(i + k, j + l)(7) 

 
If h(k, l) is the Laplacian kernel and  is the input image,  is the 
output image, and  is provided by: 

0 1 0
1 −4 1
0 1 0

 

The Laplacian filter is a second-order differential operator that 
emphasizes areas of an image's edge or other rapid intensity shift. The 
Laplacian filter reduces noise in an image and sharpens edges to 
enhance them.24 

 
 

Figure 4. Hybrid Convolutional Neural Network block diagram 
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 RESULT AND DISCUSSION 
Common performance indicators used to assess the effectiveness 

of an HNN (Hybrid Neural Network) model include sensitivity, 
specificity, precision, and accuracy. These metrics are calculated by 
comparing a collection of predictions to a set of ground truth labels. 

Performance metrics are utilized to assess the accuracy of an HNN 
model in image classification and to identify areas for improvement. 
Figure 5 illustrates the percentages for sensitivity, specificity, 
precision, and accuracy achieved by the hybrid convolutional neural 
network. Figures 6, 7, 8, and 9 compare the HNN's sensitivity, 
specificity, precision, and accuracy to those of CNN and WNN. 
Figure 10 displays a comparison of training and testing accuracy. 
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Figure 5. Percentages of sensitivity, specificity, accuracy, and 
precision for a hybrid convolutional neural network 
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Figure 6. HNN Sensitivity by class compared to CNN and WNN. 
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Figure 7. HNN Specificity by class compared to CNN and WNN. 
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Figure 8. HNN Precision by class compared to CNN and WNN. 
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Figure 9. HNN Accuracy by class compared to CNN and WNN. 
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Figure 10. Training Accuracy Vs Testing Accuracy for Hybrid 
convolutional Neural Network 
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Figure 11. Percentage prediction in other classes for Hybrid  
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Figure 12. Actuallybelongs to the mild class, whereas Hybrid 
convolutional neural networks predict % in other classes. 
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Figure 13. Actually, for Hybrid Convolutional Neural Network 
belongs to moderate class and% forecast in other classes. 
 

Convolutional Neural Network and Actually belongs to relatively 
very mild class. Samples which truly belongs to classes Very mild, 
mild and moderate, but classified into different classes, for such 
samples analysis is carried out to get more focus on true negative 
samples and percentage false prediction in different classes as shown 
in figure 11,12 and 13 respectively. 

True positive (TP) error and false positive (FP) error are two forms 
of prediction mistakes that might arise when evaluating an HNN 
(Hybrid Neural Network) model. 
True Positive (TP) error:  

A true positive mistake happens when the model predicts an 
inaccurately positive label for a falsely negative image. In other 
words, a feature or object that is not visible in the image is mistakenly 
identified by the model.25 
False Positive (FP) error:  

This error happens when the model predicts erroneously that a 
label that should be positive for a negative image. In other words, a 
feature or object that is not visible in the image is mistakenly 
identified by the model.25 

When assessing an HNN model's performance, TP and FP errors 
are crucial metrics to take into account because they show where the 
model can be improved. High TP error means the model is too 
sensitive and picking up unimportant information, whereas high FP 
error means the model is too general and picking up features that 
aren't truly there. 
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Figure 14. HNN TP Error % vs. CNN& WNN TP Error % by classes 
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Figure 15. HNN FP Error % vs. CNN& WNN % FP Error by class 
 

Techniques including changing the model architecture, 
maximizing hyperparameters, or expanding the size or diversity of 
the training dataset have all been used to reduce TP and FP errors. 
The results of HNN's TP Error & FP Error compared to CNN and 
WNN are presented in Figures 14 and 15, respectively. Another 
analysis employs Cohen's kappa, a statistical measure of inter-rater 
agreement, to evaluate the effectiveness of a Convolutional Neural 
Network (CNN) model. Kappa gauges the level of agreement 
between the model's predictions and the actual labels in real-world 
data, while adjusting for the agreement that could occur by chance.25 

The range of kappa values is -1 to 1, with values closer to 1 
suggesting a higher level of agreement between the model's 
predictions and the actual labels on the ground, and values closer to 0 
or negative values indicating less or even no agreement. 

By contrasting the predicted labels for a collection of images with 
the actual labels, the kappa value for a CNN model is determined. 

In situations where the data is unbalanced or the classes are not 
equally represented, the kappa value offers further understanding of 
the model's properties. Figure 16 depicts the class-wise Kappa value 
for the hybrid convolutional neural network (HNN), which is 
contrasted with the CNN and WNN techniques in Figure 18. Finally, 
all the HNN parameters of the very mild and mild classes are 
compared with the CNN and WNN approaches utilized and found to 
be superior as shown in figures 17 and 18, respectively, with regard 
to the early diagnosis of diabetic retinopathy. 
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Figure 16. Class wise Kappa Value for Hybrid convolutional Neural 
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Figure 17. HNN parameter comparison with very mild grading class 
compared to CNN and WNN. 
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Figure 18. HNN parameter comparison with Mild grading class 
compared to CNN and WNN. 
 

The proposed model synergistically integrates Hybrid 
convolutional neural network with a Convolutional Neural Network 
(CNN). This innovative combination harnesses the advantages of 
both methodologies, culminating in superior performance across all 
three datasets. The model demonstrates remarkable classification 
accuracies, achieving 91.06% on the IDRiD dataset, 95.34% on the 
DDR dataset, and 92.69% on the EyePACS dataset. These results 
significantly surpass the performance metrics of existing models, 
highlighting the efficacy of this integrated approach. 

LIMITATIONS 
The research study delves into the practical implementation of a 

deep learning model designed to detect diabetic retinopathy (DR). 
Throughout this process, several noteworthy limitations and 
challenges emerged, shedding light on areas that warrant further 
investigation to enhance the model’s performance and real-world 
applicability. 

The first significant challenge lies in cross-dataset testing and 
generalization. When evaluating the model’s performance across 
different datasets, a notable drop in accuracy was observed during 
cross-dataset testing compared to within-dataset testing. Above 
results suggest that the model’s ability to generalize across diverse 
datasets is limited, potentially due to overfitting to specific training 
data characteristics. 

The second challenge pertains to computational efficiency and 
variability. The time required for processing and training varied 
significantly across datasets. Specifically, the processing time per 
image was 5.13 seconds for IDRiD, 6.7 seconds for DDR, and 5.4 
seconds for EyePACS. Training times per image were even longer: 
3.97 seconds for IDRiD, 8.56 seconds for DDR, and 4.89 seconds for 
EyePACS. Managing this variability poses challenges when scaling 
the model to larger datasets or deploying it in resource-constrained 
environments. 

Lastly, the impact of preprocessing steps cannot be overlooked. 
While essential for enhancing model accuracy, preprocessing steps 
(such as normalization, augmentation, and sampling) introduce 
complexity and variability into the preprocessing pipeline. Balancing 
the need for accuracy improvement with maintaining consistency and 
robustness during training and evaluation is essential. 

FUTURE SCOPE 
The future of diabetic retinopathy grading is quite bright, and 

developments in science and technology are probably going to have 
a big influence on how this condition is identified and treated.  

With the help of cutting-edge imaging techniques like optical 
coherence tomography (OCT) and adaptive optics imaging, diabetic 
retinopathy can be detected earlier and graded with more 
accuracy.There is also ongoing research to create new treatments for 
diabetic retinopathy, such as gene therapy, stem cell therapy, and 
novel medication delivery methods that can address the 
pathophysiology of the condition. 

The creation of more potent treatments for diabetic retinopathy is 
another area that needs progress. The outcome of ongoing clinical 
studies for novel drugs, gene therapies, and cell therapies could have 
a substantial impact on lowering the prevalence and severity of 
diabetic retinopathy. 

The grading of diabetic retinopathy may also be improved with 
improved healthcare policies and access to care. This entails raising 
awareness among the general population regarding the value of 
routine eye exams, enhancing accessibility to screening and 
diagnostic equipment, and ensuring that patients have access to 
prompt and efficient treatments. A multidisciplinary strategy that 
incorporates improvements in technology, research, and healthcare 
policies is required to improve diabetic retinopathy grading. Working 
together to address these issues will help to increase the precision and 
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efficacy of diabetic retinopathy grading and, in the end, lessen the toll 
that this condition has on both people and society as a whole.25 

The proposed strategy for the early diagnosis and management of 
diabetic retinopathy signifies a notable advancement in addressing 
this prevalent complication of diabetes. Through the integration of 
innovative technologies such as telemedicine-enabled retinal imaging 
and AI-driven diagnostic algorithms into healthcare infrastructures, 
the approach aims to expedite detection, augment accessibility to 
screening modalities, optimize clinical throughput, and enhance 
patient outcomes. Early recognition of diabetic retinopathy facilitates 
expeditious intervention, thereby attenuating the incidence of vision 
impairment and mitigating the socioeconomic ramifications on 
affected individuals and societal sectors. The collaborative 
engagement of multidisciplinary healthcare cohorts is imperative for 
the seamless assimilation of these methodologies into extant 
frameworks, thereby ensuring comprehensive and coordinated care 
provision for diabetic retinopathy patients. 

CONCLUSION 
In summary, the Hybrid Neural Network (HNN) model exhibits 

enhanced efficacy in the detection and grading of diabetic retinopathy 
compared to conventional weighted neural networks (WNN) and 
convolutional neural networks (CNN). The HNN's elevated 
sensitivity, specificity, precision, and accuracy render it a robust tool 
for the early detection of diabetic retinopathy indicators, such as 
microaneurysms and exudates. This early detection is critical for 
preventing or delaying vision loss in diabetic patients. The superior 
performance of the HNN highlights its potential as an advanced 
diagnostic tool for evaluating the severity of diabetic retinopathy and 
informing appropriate therapeutic interventions. 
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