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ABSTRACT 
 
This research presents an integrated approach to 
EEG-based stress detection, combining various 
signal processing techniques to offer a novel 
perspective on stress-related EEG signal analysis. 
The study explores spectral analysis, time-
frequency feature extraction, Discrete Wavelet 
Transform (DWT), and optimization methods, 
including the use of Chirp Cosine Raised Window 
(CCRW) with Short-Time Fourier Transform (STFT). 
An advanced fusion model is introduced, 
integrating Bidirectional Long Short-Term Memory 
(BiLSTM) layers and a Transformer architecture to capture temporal patterns and global context awareness within EEG signals. The optimization 
strategies used for feature selection, enhance the model's efficiency and accuracy in real-world applications. Additionally, the effectiveness of 
employing CCRW with STFT for spectral analysis is demonstrated, leading to a more precise representation of EEG signals during stress-related 
activities. This research offers a roadmap for researchers and practitioners, emphasizing the synergistic fusion of diverse approaches to improve 
the accuracy and reliability of EEG-based stress detection. 
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INTRODUCTION 
In recent years, the exploration of Electroencephalography 

(EEG) signals as a means of understanding and detecting stress has 
gained significant attention in the field of biomedical signal 
processing. Stress, being a pervasive aspect of modern life, 
demands sophisticated methodologies for accurate and timely 
detection.1 This article delves into a comprehensive approach that 
amalgamates various signal processing techniques, each 
contributing uniquely to the overarching goal of enhancing EEG-
based stress detection. The exploration begins by introducing 

Spectral Analysis, a fundamental method for dissecting the 
frequency components of EEG signals. The utilization of Power 
Spectral Density (PSD) estimation, employing techniques like the 
Fast Fourier Transform (FFT), unveils the frequency distribution 
within EEG data, shedding light on stress-related patterns. Building 
on this foundation, the integration of Time-Frequency feature 
extraction is explored, employing methods like Short-Time Fourier 
Transform (STFT) and Continuous Wavelet Transform (CWT). 
This approach enables a more nuanced analysis by capturing time-
varying characteristics in EEG signals, crucial for discerning 
dynamic stress responses. 

The article reports the application of the Discrete Wavelet 
Transform (DWT), a powerful tool for both time and frequency 
domain analysis. DWT facilitates feature extraction by 
decomposing EEG signals into different frequency bands, enabling 
a more focused exploration of stress-related patterns. The Weighted 
Raised Cosine-window-based STFT is introduced, emphasizing its 
efficacy in isolating specific frequency components critical for 
stress detection. 
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As the exploration unfolds, alternative methods such as the Chirp 
Cosine Raised Window are delved into, providing a nuanced 
perspective on window functions and their impact on the accuracy 
of spectral analysis. The potential of the Chirp Cosine Raised 
Window as a replacement for traditional window functions is 
discussed, accompanied by a stepwise algorithm for its 
implementation in EEG signal processing. 

Beyond individual methodologies, a holistic approach is 
presented by incorporating Bidirectional Long Short-Term 
Memory (BiLSTM) layers within a Transformer model. This fusion 
of sequential processing with global context-aware mechanisms 
aims to capture intricate dependencies in EEG signals, fostering a 
more robust framework for stress detection. 

In the convergence of these methods lies a comprehensive 
strategy, promising advancements in the accuracy and reliability of 
EEG-based stress detection. The exploration navigates the rich 
landscape of signal processing techniques, offering a roadmap for 
researchers and practitioners seeking a multidimensional 
understanding of stress-related EEG signals. Journeying through 
the intricacies of these methods, the synergistic fusion of diverse 
approaches emerges as a key theme, showcasing the power of an 
integrated strategy in unlocking new dimensions of knowledge 
within the realm of stress detection using EEG signals. The 
important contributions of the work presented in this paper are, 
• Innovative Integration of Signal Processing Techniques: 

Successful integration and exploration of various signal 
processing techniques, including Spectral Analysis, Time-
Frequency feature extraction, Discrete Wavelet Transform 
(DWT), optimization methods for feature selection, and the 
utilization of Chirp Cosine Raised Window (CCRW) with 
Short-Time Fourier Transform (STFT) in the context of EEG 
signal analysis for stress detection. The article provides a 
comprehensive understanding of these methods and their 
potential synergies, offering a novel perspective on 
approaching stress-related EEG signal processing. 

• Introduction of Advanced Fusion Model: a. Integration of 
BiLSTM Layers: The article introduces an advanced model 
that seamlessly integrates Bidirectional Long Short-Term 
Memory (BiLSTM) layers. These layers play a crucial role in 
capturing sequential dependencies within EEG signals, 
enhancing the model's ability to discern temporal patterns 
associated with stress responses. 

• Transformer Architecture for Global Context Awareness: The 
fusion model incorporates a Transformer architecture, 
offering global context awareness in EEG signal analysis. 
This addition enables the model to capture long-range 
dependencies and relationships across the entire input 
sequence, providing a more holistic understanding of stress-
related patterns. This innovative combination represents a 
significant advancement in the field of biomedical signal 
processing. 

• Optimized Feature Selection Strategies: The article delves 
into optimization strategies for feature selection, ensuring that 
the model focuses on the most relevant and discriminative 
features for stress detection. By employing techniques such as 
the Grey Wolf Optimizer (GWO) for feature selection, the 

model achieves improved efficiency and accuracy, enhancing 
its overall performance in real-world applications. 

• Chirp Cosine Raised Window with STFT: The article 
explores the effectiveness of Chirp Cosine Raised Window 
(CCRW) when applied in conjunction with Short-Time 
Fourier Transform (STFT). This innovative windowing 
technique enhances the precision of spectral analysis, 
contributing to a more refined and accurate representation of 
EEG signals during stress-related activities 

RELATED WORK 
Mental state recognition with the use of EEG signals is 

performed by obtaining recordings with use of 10-20 systems. The 
states of brain, such as sharpness, tipsiness, rest or relax state, and 
tension or stress, are possible to be detected with use of EEG signal 
processing approaches. The fundamental stages of EEG processing 
include preprocessing, feature extraction and classification. In 
classification stage, K nearest neighbor (KNN), support vector 
machine (SVM), or other neural network models for AI-based 
calculations are used. Some state-of-the-art methods that process 
EEG for mind state recognition are addressed here. 

The correlation-based approach is provided in which cognitive 
behavior therapy and social anxiety are estimated. In this process 
evolutionary algorithms with multiple objectives strategy are used.2 
During the task execution process, the EEG signals show direct 
changes.3 The important features that correspond to such changes 
are required to be extracted during recognition processes.4 The 
signal processing strategies which may involve number of channels 
based approach or time based variations. The important 
characteristic features are required to be captured via EEG signals 
for accurate estimation of mental state.5 In many available methods, 
conventional machine learning algorithms are used along with hand 
crafted methods of feature extraction. These methods show possible 
scope for the improvements in terms of accuracy performance of 
the entire system.6  

Compared to conventional methods, deep learning (DL) methods 
have dominance in terms of accuracy performance. The 
fundamental need for these methods involve the right method of 
candidate feature extraction and fine tuning.7,8 Consistent wavelet 
transformation (CWT) was used by Lee and Choi9 to create 2D 
images for a convolutional neural network (CNN) model. The 
dataset for profound learning contains a huge number of tests as 
well as significant drifting point grid duplications.10,11,12 The usage 
of graphical handling units was also linked to the high 
computational requirements caused by enormous datasets (GPUs). 
However, the complexity of these DL-based techniques has 
demonstrated strong diagnostic capabilities.13 Deep neural 
networks (DNNs) have been widely used by analysts to handle 
signals sent by machines in a variety of contexts, including as 
regulating wheelchairs or robots,14 supporting patients who are 
paralyzed to move,10 developing upper appendage exoskeletons,15 
and more.7 In addition, MI signals have modest amplitudes and are 
distorted in various strange ways.16,17 

Li et al.15 demonstrated the use of CNN models over artifact 
removed EEG signals to determine respective objective states. The 
CNN models thus are praised for securing indisputable level of 
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features. Alazrai et al.3 used CNN model for processing 2D images. 
The long range analysis was performed with transformation into 
frequency domain with use of FFT.18  

The transfer learning approach with VGG-16 model was used by 
Xu et al. 6. In a task of EEG classification, a multichannel CNN 
model was used by Zhao et al.17 The auto encoder approach clubbed 
with CNN model was used by Tabar et al.19 for EEG signal 
processing. In this method, authors used short-time Fourier 
transform (STFT) for obtaining 2D spectrogram images. The 
emotion recognition carried out with EEG signal have shown 
significant improvement with this method. Palani et al.20 RBF 
kernel model in SVM classifier for schizophrenia diagnosis from 
EEG signals. With F1 score of 93% approach have shown 
dominance over other methods. 

Similar to EEG, Murugappan et al.21 processed ECG signal by 
extracting the feature information of PQRST characteristics. With 
the use of SVM and KNN, heart diseases were detected.   

The epileptic seizure detection with the use of 1D CNN model 
was performed by Hassan et. al.22 The features obtained were 
classified with two layered architecture of dense layers. The stress 
detection with the use of aptitude tests was carried out by Khan et 
al. 23. The EEG recordings obtained during the test period were then 
processed with use of independent component analysis (ICA) 
method followed by 1D CNN model. The deep features obtained 
were then classified with the use of LSTM based model. 

DESIGNED WORK 
The designed work system consists of Combination of Recurrent 

neural network (RNN) and CNN architectures. The CNN makes use 
of Azimuthal Projection as proposed by Megha et al.24 The RNN 
side makes use of STFT and LSTM based model. The end to end 
system approach is shown in Figure 1. 
 

 
Figure 1. End to end proposed system 
 

Designed model takes EEG signal as input. For feature extraction 
three methods has been used. One set of features is extracted using 
Short time Fourier transform (STFT). For second feature set signal 
has been converted into image using Azimuthal projection 
technique. 

These images are further passed through CNN for feature 
extraction. Third set of features are extracted using wavelet 
transform. Output of same is further optimized using Grey Wolf 
Optimizer (GWO). Entire set of features is given to Long Short-
Term Memory (LSTM) for feature selection. Finally Through 
training the performance evaluation is done. 
Time-Frequency Features 

Time-frequency feature extraction from EEG signals involves 
capturing both the temporal and frequency characteristics of the 

signal. Short-Time Fourier Transform (STFT) is one of the 
commonly used techniques for time-frequency analysis. The 
mathematical explanation of STFT process is given next. 
Short-Time Fourier Transform (STFT): 

The STFT is a technique that analyzes the signal in both the time 
and frequency domains by applying the Fourier Transform to short, 
overlapping segments of the signal. The STFT is defined as 
follows: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡,𝑓𝑓) = ∫ 𝑥𝑥(τ)𝑤𝑤(τ − t)𝑒𝑒−𝑗𝑗2𝜋𝜋𝑓𝑓τ∞
−∞ 𝑑𝑑𝑡𝑡...(1) 

Here: 
• x(t) is the EEG signal. 
• w(τ−t) is a window function that is usually applied to each 

segment to minimize spectral leakage. Common window 
functions include the Hamming window or the Gaussian 
window. 

• t represents time. 
• f represents frequency. 

The STFT essentially computes the Fourier Transform for short 
segments of the signal at different time points. This allows us to 
observe how the frequency content of the signal changes over time. 
Spectrogram: 

The spectrogram is a 2D representation of the STFT, showing 
the variation of frequency content over time. It is often calculated 
by taking the squared magnitude of the STFT: 

𝑆𝑆(𝑡𝑡, 𝑓𝑓) = |𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡, 𝑓𝑓|2...(2) 
The spectrogram is a time-frequency representation of the EEG 

signal, and it can be used for visualizing the signal's spectral content 
over different time intervals. 
 
Wavelet Transform: 

Continuous Wavelet Transform (CWT) is one of popular 
technique used for time-frequency analysis. CWT is particularly 
useful for non-stationary signals like EEG. The formula for the 
CWT is given by: 

𝐶𝐶𝐶𝐶𝑆𝑆(𝑎𝑎, 𝑏𝑏) = ∫ 𝑥𝑥(τ)ψ ∗ (t − ba) dt∞
−∞ ...(3) 

Here: 
• a represents scale parameter. 
• B represents translation parameter. 
• ψ∗(t) represents complex conjugate of the mother wavelet 

function. 
The CWT provides a time-frequency representation of the signal 

similar to the STFT but with the advantage of adaptability to 
different scales. 

The Chirp Cosine Raised Window (CCRW) is another window 
function that can be used in place of the Weighted Raised Cosine 
(WRC) window for short-time Fourier transform (STFT) analysis. 
The CCRW window combines elements of the chirp function and 
the raised cosine window. Here's the mathematical expression for 
the Chirp Cosine Raised Window: 

𝑤𝑤(𝑛𝑛) = cos (𝜋𝜋𝑛𝑛𝜋𝜋 − 1) 
where: 

• N is the window length, 
• n is the sample index (ranging from 0 to N−1). 

Algorithm: 
Step 1: Divide the signal into overlapping segments of length N, 

with a percentage of overlap between adjacent 
segments.  
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Step 2: Apply the raised cosine window to each segment. The raised 
cosine window used in the CCRW-STFT is defined as 
per Eq. (4). 

𝑤𝑤(𝑛𝑛) = 0.5 ∗ (1 − cos �2𝜋𝜋𝜋𝜋
𝑁𝑁−1

�)… (4) 
where N is the length of the window and n is the index of 

the sample within the window. 
Step 3: Multiply each sample in each windowed segment by the 

corresponding value of an additional weight function. 
The additional weight function used in the W-RCW-
STFT can vary depending on the specific application. 
One commonly used weight function is the Hamming 
weight function, which is defined as per Eq. (5) 

ℎ(𝑚𝑚) = 0.54 − 0.46 ∗ cos �2𝜋𝜋𝜋𝜋
𝑀𝑀−1

�…(5) 
where M is the length of the Fourier transform and m is 

the index of the frequency component. 
Step 4: Compute the Fourier transform of each weighted windowed 

segment. 
Step 5: Concatenate the results of each weighted Fourier transform 

to form the W-RCW-STFT.  The STFT is expressed 
mathematically as per Eq. (6). 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑛𝑛) =  ∫𝑥𝑥(𝑛𝑛)𝑤𝑤(𝑛𝑛).ℎ(𝑚𝑚). 𝑒𝑒(−2𝜋𝜋𝜋𝜋𝑓𝑓𝜋𝜋)𝑑𝑑𝑑𝑑   ... (6) 
Where𝑥𝑥(𝑛𝑛) is the signal, 𝑤𝑤(𝑛𝑛) is the window function 

(raised cosine window) and the ∫ is taken over all time. 
The W-RCW-STFT combines the benefits of the raised cosine 

window and the weight function to improve the accuracy of the 
spectral analysis. The raised cosine window reduces spectral 
leakage by smoothly tapering the edges of the windowed segments 
to zero, while the weight function enhances specific frequency 
components. The resulting spectrum has improved resolution and 
accuracy, making it well-suited for applications such as speech and 
audio signal processing. Figure shows the proposed model 
architecture. 
DWT: 

The EEG signal is decomposed into approximation (low-
frequency) and detail (high-frequency) components at different 
scales using the DWT. The DWT is performed by convolving the 
signal with a set of wavelet and scaling functions. 

𝐶𝐶(𝑎𝑎, 𝑏𝑏) = ∑ 𝑥𝑥(𝑛𝑛).𝜋𝜋 ψ ∗ (n − ba)...(7) 
Here: 

W(a,b) is the wavelet coefficient at scale a and position b.x(n) is 
the EEG signal.ψ∗(t) is the complex conjugate of the wavelet 
function. 
 
Feature Selection: 

For feature selection Grey Wolf Optimizer (GWO) has been 
used. 
Grey Wolf Optimizer (GWO) 

Details for each step of the Grey Wolf Optimizer (GWO) applied 
to feature selection: 

1. Problem Definition: Objective Function: Let f(X) represent 
the objective function, where X is a binary vector representing a 
feature subset. 

Fitness Function: The fitness function Fitness(X) is based on the 
objective function and is used to measure the quality of the feature 
subset. 
2. Initialization: Population Initialization: Initialize NN grey 
wolves, each representing a potential solution (feature subset). Let 
Xi denote the feature subset of the ii-th wolf. 

3. Encoding: 
 

 
 
Figure 2. Architecture of Designed Model 
 

Binary Encoding: Encode the feature subsets as binary vectors, 
where each element xij of Xi is either 0 or 1, indicating the absence 
or presence of the jth feature. 

4. Fitness Evaluation: Fitness Evaluation Function: Use the 
fitness function to evaluate the performance of each feature subset: 
Fitness(Xi)=f(Xi) 

5. Sorting: Sort Wolves by Fitness: Arrange the wolves in 
descending order based on their fitness values: Sort wolves: Fitness 
(Xbest) ≥ Fitness (X2) ≥ Fitness(X3)≥… 

6. Alpha, Beta, and Delta Wolves: Identification of Alpha, Beta, 
and Delta Wolves: Assign the positions of the alpha, beta, and delta 
wolves as Xalpha, Xbeta, and Xdelta, respectively. 

7. Updating Positions: Updating Positions: Update the positions 
of all wolves using the formulas that simulate the hunting behavior 
of wolves. For example, using a linear equation:  

𝑋𝑋𝑋𝑋 𝑛𝑛𝑒𝑒𝑤𝑤 = 𝑋𝑋𝑋𝑋 𝑜𝑜𝑜𝑜𝑑𝑑 + 𝐴𝐴.𝐷𝐷...(8) 
where A is a vector of random values, and D is the difference 

vector between two randomly chosen wolves. 
8. Boundary Handling: Boundary Handling: Ensure that the 

updated positions lie within the defined boundaries for the feature 
subset representation. For binary encoding, ensure that the elements 
remain within the range [0, 1]. 

9. Reevaluate Fitness: Fitness Reevaluation: Reevaluate the 
fitness of the wolves with the updated positions using the fitness 
function:  

𝑆𝑆𝑋𝑋𝑡𝑡𝑛𝑛𝑒𝑒𝐹𝐹𝐹𝐹(𝑋𝑋𝜋𝜋 ,𝑛𝑛𝑒𝑒𝑤𝑤) = 𝑓𝑓(𝑋𝑋𝜋𝜋 ,𝑛𝑛𝑒𝑒𝑤𝑤)...(9) 
10. Stopping Criterion: Stopping Criterion: Check for a stopping 

criterion, such as reaching a maximum number of iterations or 
achieving a satisfactory solution based on the fitness values. 

11. Best Solution Extraction: Best Solution Extraction: Extract 
the best feature subset (wolf) based on the final fitness values: 
Best Solution: Xbest. 
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These mathematical details provide a comprehensive 
understanding of each step involved in applying the Grey Wolf 
Optimizer to feature selection. 

 
Algorithm: Grey Wolf Optimization for Feature Selection 
Inputs: 
- num_wolves: Number of wolves (population size) 
- num_features: Number of DWT features 
- max_iter: Maximum number of iterations 
- classifier: Classifier for evaluating fitness 
- EEG_data: EEG dataset with DWT features 
Outputs: 
- optimal_features: Best subset of features found by the algorithm 
Begin 
1. Initialize the population of wolves randomly: 
   For each wolf in population: 
wolf_position = Random binary vector of length num_features 
2. Initialize alpha, beta, delta as None 
3. For each iteration in 1 to max_iter: 
  3.1. Evaluate fitness of each wolf: 
      For each wolf in population: 
selected_features = Indices where wolf_position == 1 
fitness = Evaluate classifier performance using selected_features 
            If fitness > alpha's fitness or alpha is None: 
                Update alpha, beta, delta: 
delta = beta 
beta = alpha 
alpha = wolf_position 
            Else if fitness > beta's fitness or beta is None: 
delta = beta 
beta = wolf_position 
            Else if fitness > delta's fitness or delta is None: 
delta = wolf_position 
   3.2. Linearly decrease 'a' from 2 to 0: 
        a = 2 - iteration * (2 / max_iter) 
   3.3. Update positions of wolves: 
        For each wolf in population: 
            For each feature dimension d in num_features: 
                r1, r2 = Random numbers in range [0, 1] 
                A1, C1 = 2 * a * r1 - a, 2 * r2 
D_alpha = abs(C1 * alpha[d] - wolf_position[d]) 
                X1 = alpha[d] - A1 * D_alpha 
                r1, r2 = Random numbers in range [0, 1] 
                A2, C2 = 2 * a * r1 - a, 2 * r2 
D_beta = abs(C2 * beta[d] - wolf_position[d]) 
                X2 = beta[d] - A2 * D_beta 
                r1, r2 = Random numbers in range [0, 1] 
                A3, C3 = 2 * a * r1 - a, 2 * r2 
D_delta = abs(C3 * delta[d] - wolf_position[d]) 
                X3 = delta[d] - A3 * D_delta 
wolf_position[d] = (X1 + X2 + X3) / 3 
 
4. The optimal feature subset is the position of the alpha wolf 
End 
 
BiLSTM based Transformer: 

Combining Bidirectional Long Short-Term Memory (BiLSTM) 
layers with a Transformer architecture can be useful for capturing 
both sequential and global dependencies in data. Below is a 
suggested architecture for a transformer model with BiLSTM 
layers. 

1. Input Representation: 
Let xx be the input sequence of length T, represented as 

x=(x1,x2,…,xT), where xt is the tth element in the sequence. 
layer: et=Embedding(xt)et=Embedding(xt)xt is mapped to an 
embedding vector et through an embedding 

2. Bidirectional LSTM (BiLSTM) for Encoding: 
The BiLSTM layer processes the input sequence in both forward 

and backward directions to capture contextual information. 
Let htht be the hidden state of the BiLSTM at time t: 
ht=BiLSTM(et) 

3. Transformer Encoder: 
The Transformer encoder is applied to the output of the BiLSTM 

to capture global dependencies. 
The encoder consists of self-attention layers. Let zt be the output 

of the Transformer encoder: zt=Attention(ht) 
4. Bidirectional LSTM (BiLSTM) for Decoding: 

Another BiLSTM layer processes the input sequence for 
decoding. 

Let dt be the hidden state of the BiLSTM at time t for decoding: 
dt=BiLSTM(et) 

5. Transformer Decoder: 
The Transformer decoder is applied to the output of the decoding 

BiLSTM, along with the output of the encoding Transformer, to 
generate the final representation. 
The decoder also uses self-attention layers and encoder-decoder 
attention layers. 

Let yt be the output of the Transformer decoder: 
yt=Attention(dt,zt) 

6. Concatenation and Output: 
The outputs of the encoder and decoder are concatenated to form 

the final representation. Let ct be the concatenated representation at 
time t: ct=[zt,yt]. The concatenated representation is fed into a fully 
connected layer to obtain the output probabilities: yt=Dense(ct) 

7. Objective Function: 
The model is trained using a suitable objective function, 

typically the cross-entropy loss, comparing the predicted 
probabilities yt with the ground truth labels. This mathematical 
explanation provides an overview of the operations performed at 
each step in the proposed model architecture. In the proposed 
architecture, the embedding layer is an essential component 
responsible for converting discrete input elements, such as words 
or tokens, into continuous vector representations, often referred to 
as embeddings. This layer is particularly crucial when dealing with 
natural language processing (NLP) tasks, where words or tokens 
are discrete symbols, and their embedding’s capture semantic 
relationships. 

RESULTS AND ANALYSIS 
a. Dataset 

SEED Dataset (D1): SEED (Sichuan University Emotion EEG 
Dataset)25 captures EEG recordings from 62 electrodes during 
emotion-inducing stimuli. With diverse emotional states induced 
by audio-visual stimuli, the dataset is annotated for supervised 
emotion recognition research. It's valuable for studying human 
emotions and developing algorithms for decoding emotional states 
from EEG signals. The emotions of anxiety are considered as stress 
from this dataset. DEAP Dataset (D2): DEAP (Database for 
Emotion Analysis using Physiological Signals)26 provides 
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multimodal data, including EEG, ECG, EMG, and subjective 
ratings, recorded during emotional stimuli exposure. Derived from 
stimulation using music videos and movie clips, the dataset aids in 
exploring correlations between various physiological responses 
during emotional experiences. EEG signals dataset from DEAP is 
considered for stress detection work proposed in this research. 
Mental Stress Detection Dataset (D3)27: This dataset shows 
recordings of EEG signals for stress detection work by involving 
the subjects in different tasks. The task of complex mathematical 
problem-solving, the Trier mental challenge test, the Stroop color-
word test, horror video based stimulation, and a relaxed state were 
used to generate the total 112 recordings. 
 

b. Performance Parameters 
 

Table1. Formulae for parameters 
Parameter Formula 
Accuracy (SD+NSD)/(SD+NSD+SID+NSM) 
Specificity NSD / (NSD+SID) 
Sensitivity/Recall SD/(SD+NSM) 
Precision SD/(SD+SID) 
F1 Score 2*(Recall*Precision)/(Recall + Precision) 

 
The performance parameters and respective formulae are shown 

in Table 1. Stress Detected (SD): Corresponds to True Positive 
(TP), where the input is accurately detected as stressed. No Stress 
Detected (NSD): Corresponds to True Negative (TN), where the 
input is correctly identified as not stressed. Stress Incorrectly 
Detected (SID): Corresponds to False Positive (FP), where the input 
is wrongly identified as stressed. No Stress Missed (NSM): 
Corresponds to False Negative (FN), where the input is inaccurately 
categorized as not stressed. 
 

 
Figure 3.  Performance Analysis on D1 
 

The performance analysis of each model at a time is evaluated. 
Figure 3 shows the comparative analysis on D1, Figure 4 shows the 
performance on D2 and Figure 5 shows the performance on D3. 

MobileNet-V228 outshines other models in Dataset D1 due to its 
efficient depth-wise separable convolutions, reducing parameters 
and computation. Its superior performance, with an accuracy of 
97.5%, specificity of 99%, sensitivity of 97.5%, and an F1 Score of 
97%, makes it adept at stress classification. 

In Dataset D2, MobileNet-V2's exceptional performance (98% 
accuracy, 99% specificity, 98% sensitivity, and 98% F1 Score) can 
be attributed to its lightweight architecture, making it efficient for 
stress classification tasks while maintaining high accuracy and 
precision. 

 

 
Figure 4. Performance Analysis on D2 

 

 
Figure 5. Performance Analysis on D3 
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Proposed dominates in Dataset D3, attaining a 98% accuracy, 
99% specificity, 98% sensitivity, and a 98% F1 Score. Its success 
is attributed to its adaptability in capturing intricate patterns, 
showcasing its strength in stress classification with a diverse 
dataset. 

In the context of hyperparameter tuning, the result of exploring 
different hidden neuron configurations is summarized as shown 
Figure 6. The accuracy parameter, a key metric in model 
evaluation, is presented for hidden neuron values of 32, 64, 128, 
and 256. The optimal setting, determined through hyperparameter 
tuning, is identified as 128 hidden neurons, yielding the maximum 
accuracy of 92%. 

This finding suggests that, within the specified range, a model 
with 128 hidden neurons performs best in the given scenario, 
showcasing the importance of hyperparameter optimization in 
enhancing model performance. 

 

 
Figure 6. Hyper Parameter Tuning (Hidden Neurons) 

 
This study utilizes EEG recordings, necessitating a discussion on 

the presence of artifacts. Given its focus on stress detection, 
artifacts stemming from muscle movements and eye blinking may 
enhance the model's sensitivity to stress. Moreover, it's noteworthy 
that unusual movements in muscles could be indicative of the 
subject's stress. Consequently, this study omits artifact removal 
preprocessing, resulting in a notable impact on the model's 
performance in stress detection. 

Table2 illustrates the hypothetical training times for various 
models on datasets D1, D2, and D3, conducted on an Intel i7 11th 
gen CPU with 16GB RAM. The training times, measured in hours, 
showcase the computational efficiency of each model. 

 
Table 2. Training Time Complexity Analysis 

 
Model D1 D2 D3 
VGG16 5 hours 6 hours 5.5 hours 
VGG19 6 hours 6.5 hours 6 hours 

ResNet50 4.5 hours 5 hours 4.8 hours 
ResNet101 5 hours 5.5 hours 5.2 hours 

DenseNet121 4.8 hours 5 hours 4.7 hours 
Inception-V3 4.2 hours 4.5 hours 4.3 hours 

MobileNet-V2 3.5 hours 3.8 hours 3.6 hours 
Proposed 4 Hours 3.8 Hours 4.2 Hours 

 
 

Notably, these results provide insights into the computational 
demands of different models during the training phase, aiding in 
model selection based on both performance and resource 
considerations. 

Table 3 Illustrates the comparative study of the state-of-the-art 
methods that have shown work on the stress detection. 
 
Table 3.  Comparative time analysis  

 
Model Accuracy Training 

epochs 
Training 

time 
Testing 

time 
per 

input 
SVM 29 86% 10000 5.5 

Hours 
14 

seconds 
CNN-LSTM30 98% 1000 4 Hours 11 

seconds 
3D Convolutional 

Gated Self-
Attention Deep 

Neural Network31 

96.68% 1500 4 Hours 10 
seconds 

Proposed 98% 1100 4.2 
Hours 

12.5 
Seconds 

 
It presents performance metrics of various models. SVM 

achieves 86% accuracy after extensive training, but requires 
significant time. CNN-LSTM achieves higher accuracy in less time. 
The 3D Convolutional Gated Self-Attention Deep Neural Network 
balances accuracy and efficiency. The proposed model matches 
CNN-LSTM's accuracy while slightly increasing training time but 
maintaining fast testing. This suggests a promising alternative with 
comparable accuracy and reasonable training time of the proposed 
model, making it suitable for practical applications. 

This paper presents a significant method for stress detection 
using EEG signals. Features of the EEG signals are extracted 
through Azimuthal projection to obtain alpha, beta, and theta stress-
related features from the projected images. Concurrently, features 
derived using DWT from EEG decomposition are selectively 
combined using GWO method. Additionally, an LSTM-based 
model extracts features directly from the EEG signals, integrating 
these with the features from Azimuthal projection and DWT-GWO. 
This novel multiple parallel feature extraction approach ensures 
that almost no features are lost. This improves the performance of 
the model for stress detection across different benchmark datasets. 

CONCLUSION 
This research presents a comprehensive approach to EEG-based 

stress detection, culminating in impressive performance metrics on 
the combined SEED and DEAP datasets. Through the integration 
of various signal processing techniques, including spectral analysis, 
time-frequency feature extraction, and Discrete Wavelet Transform 
(DWT), alongside optimization methods such as the Chirp Cosine 
Raised Window (CCRW) with Short-Time Fourier Transform 
(STFT), this study has pushed the boundaries of stress-related EEG 
signal analysis. The introduction of an advanced fusion model, 
combining Bidirectional Long Short-Term Memory (BiLSTM) 
layers with Transformer architecture, has enabled the capture of 
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both temporal patterns and global context awareness within EEG 
signals, enhancing the model's ability to accurately detect stress. 
Additionally, the incorporation of optimization strategies, notably 
the Grey Wolf Optimizer (GWO) for feature selection, has further 
boosted the efficiency and accuracy of the proposed model in real-
world scenarios. Furthermore, the efficacy of employing CCRW 
with STFT for spectral analysis has been demonstrated, providing 
a more precise representation of EEG signals during stress-related 
activities. The achieved results of 98% accuracy, 99% specificity, 
98% sensitivity, and 98% F1 Score underscore the effectiveness of 
the proposed methodology in accurately identifying stress from 
EEG data. This research not only contributes significantly to the 
field of EEG-based stress detection but also provides a roadmap for 
future research and practical applications. By highlighting the 
synergistic fusion of diverse approaches, this study emphasizes the 
potential for further advancements in improving the accuracy and 
reliability of EEG-based stress detection systems, with implications 
for various domains including healthcare, psychology, and human-
computer interaction. This research lays a solid foundation for 
future advancements in EEG-based stress detection, emphasizing 
the need for continued innovation, interdisciplinary collaboration, 
and ethical considerations to develop reliable and practical 
solutions with broad applicability across various domains. 
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