
Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(3), 517 Pg 1

J. Integr. Sci. Technol. 2023, 11(3), 517 . Article .

Journal of Integrated

SCIENCE & TECHNOLOGY

An analytical study on testing metrics for software applications
Kamal Kant Sharma1,2*, Amit Sinha3, Arun Sharma4

1KIET Group of Institutions, Ghaziabad, India. 2Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India. 3ABES
Engineering College, Ghaziabad, India. 4Indira Gandhi Delhi Technical University for Women (IGDTUW), Delhi, India

Submitted on: 08-Oct-2022; Accepted and Published on: 20-Jan-2023

ABSTRACT
In day-to-day life, software
applications have acquired an
important part. Some of these
applications are open source and
some are paid ones. Majority of Users
mainly search for free, error-free apps
that can meet their requirements. So,
to make error free applications,
proper testing is required which
requires more time and efforts. Similar
to desktop applications, black box or white box testing can be applied to mobile applications too. The main objective of this paper is to review
on different testing methods used for testing mobile applications, web applications or artificial intelligence applications. The paper reviewed and
analyzed the recent contributions of researchers using machine learning approach for testing software applications and identified the limitations
and future research scope in this field.

Keywords: Testing, Machine Learning, Mobile Applications, Software.

INTRODUCTION
The phrase "software metrics" is a somewhat deceptive

aggregate word used to cover a variety of operations associated
with evaluation in software engineering. These activities vary from
creating figures that describe software code characteristics (the
basic software metric) to algorithms that assist to anticipate
software material requirements and system functionality.1 The
topic also encompasses the quantifiable components of quality
management that include tasks such as flaw tracking and reporting
throughout design and testing. Given the repercussions of software
faults in terms of life, money, and time delays, the importance of
quality software is no longer a bonus, but rather a requirement.
Without any doubt, the quality of software can make or break a
company. Unfortunately, most firms not only fail to provide their
customers with a high-quality item, but also struggle to recognize
the qualities of a great product.2

Traditional software metrics often used to assess product
qualities including size, intricacy, and efficiency, however, these
are being replaced by various features implicit in object-
orientation, like encapsulation, derivation, and flexibility.3 This
transition resulted in the development of several metrics offered
by various scholars and practitioners to quantify object-oriented
characteristics. The majority of metrics accessible for object-
oriented software analysis is often employed in the later stages of
the implementation phase and collects the information collected
from software implementation process. Such measurements offer
an indicator of quality too late to enhance the object before it is
completed. It is therefore relevant that a combination of object-
orientated metrics may be employed to assess all elements of
object-oriented programming. The signaling and forecasting of
performance as soon as feasible in the System Development Life
Cycle (SDLC) is required since the cost effect of change and
enhancement increases considerably with each repetition of
SDLC.4-11

The potential to protect all elements of quality variables and key
strategies, to reflect various elements of the program under
assessment, to get the identical significance for the same system
for different people at different times, to use the least variety of
measurements, to have empirical evidence, and to operate without
malfunction are recognized as central characteristics of the object-

*Corresponding author: Kamal Kant Sharma, KIET Group of
Institutions, Ghaziabad, India
Email: kantkkiet@gmail.com

Cite as: J. Integr. Sci. Technol., 2023, 11(3), 517.
URN:NBN:sciencein.jist.2023.v11.517

©Authors, ScienceIN ISSN: 2321-4635
http://pubs.thesciencein.org/jist

K.K. Sharma et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(3), 517 Pg 2

oriented metrics. In addition to these key features, it is believed
that the intended metrics should have the ability to calculate
different features of reutilization, to decrease re - work after
execution, to minimize testing and maintenance costs, and to
guarantee that design process have favorable internal
characteristics that will contribute to the development of quality.
These metrics give methods for evaluation of software quality, and
their usage in earlier stages of software development can assist
businesses in swiftly reviewing a big software development at a
minimal cost.12-15

But how do we determine which indicators are appropriate for
tracking essential quality traits like error propensity, effort,
efficiency, or the number of maintenance adjustments? An
extensive analysis of real-world systems only yields meaningful
results. In subsequent papers, the authors offer a more
comprehensive treatment of their candidate metrics. Prior to
beginning any measuring activity, we must first determine the
characteristic to be assessed. Such a characteristic must be
meaningful to someone associated with developing, such as an
architect, developer, administrator, user, and so on.16,17

The characteristic may not be noteworthy in and of itself, but it
may function as a predictor variables in the indirect assessment of
the other characteristic or in a particular prediction model. The
“satisfactory” empirical relationship systems, that is, an empirical
connection system that captures all widely recognized instinctive
concepts about the characteristic under discussion, must be
created. In what follows, we use a specific coupling metric to show
the implications of not rigorously following to this criterion.18
Coupling is a well-known internal product feature that has been
researched since the emergence of structured programming and,
more subsequently, in the scope of object-orientation. The concept
of coupling varies slightly from the traditional one under the
object-oriented model, but the essential principles stay same.
Software metrics are the deciding elements for measuring quality
of software in terms of complexity, performance, etc.19-30 Metrics
are critical in developing acceptable techniques to evaluate the
technology.28 Further we discuss about the related research in the
field of testing metrics, the theory acquired by several researches
in the recent years. And how that will be helpful in upcoming
researches and experiments.

RELATED WORK
In this paper, software testing of different software applications

are presented using machine learning approach. For this a
systematic critical analysis is presented, as presented in figure 1.

Testing for Mobile Applications
Bokingkito Jr et al.28 identified how individuals, or fisher-folk,

react to a mobile water quality assessment application in respect
of its efficacy, efficiency, and contentment, which all add up to its
usefulness. The outcomes were acquired by conducting feasibility
analysis using a modified Goal Question Metric approach, which
included tests and questionnaires. According to the assessment
outcomes, the Real-Time Water Quality Monitoring app attains
higher degree of success in respect of efficacy and efficiency, and
consumers are happy with it. There have been, yet, a few issues
that required to be solved.

Figure 1. Approach for Systematic Meta-Analysis

Liu et al.29 described an unique approach for evaluating the

reaction duration of mobile applications on various smart phones
by integrating network protocol analysis with data fusion. They
invited several individuals to gather information on their smart
phones to make the information acquired through the smartphone
application more dependable and authentic. The network protocol
evaluation approach was then utilised to determine the respond
duration of the smartphone application on a cell phone. Following
that, researchers used data fusion technique with the rank-score
characteristic function to assess the reaction speed of mobile
applications on various smart phones. Tests were carried out to
assess the method on three different kinds of mobile applications.
The findings demonstrated that the suggested technique is capable
of evaluating the reaction duration of mobile applications with
minimal price.

Zhauniarovich et al.30 created BBOXTESTER, a technology
that can provide code coverage information and consistent
coverage metrics in assessment without requiring the source code.
Security professionals may autonomously run apps using current
state-of-the-art techniques and utilise the findings of their
framework to determine whether or not the security-critical code
was included by the testing. Researchers reported on the designing
and execution of BBOXTESTER in this study and evaluate its
reliability and efficacy.

Testing of Web Software Applications
Gao et al.31 provided a simple, but efficient, model-based

automation testing strategy for achieving high code coverage
while staying under a time constraint by testing with extended
activity patterns. They implemented this method as an open-source
framework called LJS, and they run thorough trials on 21
publically accessible standards. LJS can reach 86.5 percent line
coverage in 10 minutes on average. On real-world big Web apps,
LJS's coverage is 11–19% greater than that of JSDEP, a cutting-
edge breadth-first search-based autonomous screening technique
augmented with partial order reductions. The empirical outcomes
support the notion that prolonged testing periods can provide more
code coverage in JavaScript Web app assessment.

Identify Current limitations and future research directions

Perform Critical Analysis

Software Testing using Machine learning

Retrieve Article from journals

Testing of mobile
applications

Testing of Web-based
applications Testing of AI applications

Keyword Selection

Software Testing

K.K. Sharma et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(3), 517 Pg 3

Suguna Mallika et al.32 presented mutation operators, a general
set for testing web applications. The entire set of the operators is
provided in this research as an extensive regression testing process
to mitigate web app vulnerabilities. Small and medium-sized
businesses can rely on the regression testing process provided for
consumer acquisition while reducing money on screening costs.
The testing team guarantees a strong web application that is
resistant to unauthorized access.
Testing of AI Software Applications

Wan et al.33 proposed a novel assessment technique for
applications that employs cognitive ML APIs, as described in this
article. Keeper creates a pseudo-inverse function for every ML
API that empirically overturns the associated task effectively (e.g.,
a photograph search tool pseudo-reverses the image-classification
API), and then encompasses all such pseudo-inverse operations
into a representational application server to start generating
appropriate photograph inputs and judge output accurateness.
Keeper tries to improve how ML APIs are utilized in applications
to reduce misbehaviour after it has been uncovered. Keeper
dramatically increases branch coverage while detecting numerous
earlier undisclosed problems, according to their testing on a
number of open-source apps.

Haldar et al.34 made the first step by developing AITEST, an
assessment platform for transformational qualities including
impartiality and durability in tabulated, time-series, and text
categorization framewResearchers extended the AITEST tool's
capabilities in this study to incorporate assessment approaches for
Photograph and Speech-to-text models, as well as assessment of
abality to understand for tabular models. AITEST is now a
complete tool for evaluating Artificial intelligence systems
because of these new features.

With the extensive use of Ai techniques for critical decision-
making, assuring their dependability remains a significant
concern. Aggarwal et al.35 provided an end-to-end modular
approach for evaluating Artificial Intelligence systems in this
study, which generates autonomous tests for numerous paradigms
which including textual, tabulated, and time-series information, as
well as for several attributes like as precision, impartiality, and
durability. This technology has also been utilized to assess
commercial Artificial intelligence systems and has shown to be
quite successful in revealing flaws in those methods.

Deep learning (DL) has made incredible development over the
last decades and is now extensively used in a variety of
commercial areas. Nonetheless, the resilience of DL algorithms
has lately become a major challenge, with small variations on the
input causing the DL to fail. These resilience difficulties may have
serious impacts when a DL framework is implemented into safety-
critical implementations, and they may impede the real-world
implementation of DL frameworks. Assessment approaches allow
for the analysis of a DL system's durability and the identifying of
susceptible issues at a beginning period. The major constraint in
evaluating a DL framework is due to the great dimensionality of
its inputs and the huge internal latent characteristic area, which
renders evaluating every phase almost unfeasible. Combinatorial
testing (CT) is an excellent screening approach for conventional
software to optimize screening exploratory efforts with problem

identification capability. Critical analysis of these works is
presented in table 1.

Table 1. Critical Analysis of Approaches Used

 Technique Advantages Disadvantages
[30] BBOXTESTER BBOXTESTER

enables a tester to
choose when to begin
and end the gathering
of coverage data. It has
an unusual logging
mechanism and may
thus be utilized to find
problems. They
provided BBOXTEST
ER open source3 in
order to stimulate more
study in this field.

BBOXTESTER only
analyzes code
coverage of Dalvik
code; it does not
compute coverage of
native code.
The practice of
converting from
Dalvik bytecode to
Java bytecode and
then compiling it
backward to Dalvik
might generate extra
faults, prohibiting
apps from being
correctly
instrumented.

[29] SRBM On most databases,
SRBM outperforms
other approaches in
respect of clustering
evaluations metrics,
specifically in the
context of zeroday
malware identification.

RBM's functioning
can be improved by
SRBM, although on
some databases, it
still fails miserably.

[8] reinforcement
learning

Lower the amount of
time it takes to
examine the particular
app under
examination.
Over most sets of data,
the suggested
technique beats the
existing techniques.

Excessive reinforce
ment training might
result in an
overabundance of
situations, lowering
the quality of the
findings.
For basic tasks, this
technique is not the
best option.

[34] Keeper It detects errors that
cause software to
malfunction, reduce
inference
effectiveness, or result
in useless code.

Keeper's efforts to
identify and resolve
problems are
uncertain by nature.

[35] AITEST Contains a wide range
of examination
methods over many
disciplines.
Speech-to-text systems
now have new features
like as
understandability and
impartial evaluation, as
well as the execution of
several well-known
attributes.

This only enables
black-box
assessment; videos,
multi-modal inputs,
and model
configurations are
not supported.

SOFTWARE TESTING USING MACHINE LEARNING
Yao et al.1 proposed a methodology based on genetic algorithm

for improvement of quality of software before its usage. The
algorithm was based on randomness of parameters for software
testing. The usage of genetic algorithm is time consuming. In that
work, author applied genetic algorithm for testing software with
randomness. The proposed method was tested on 12 test programs
with genetic algorithm. The result accuracy was performed on
three stating criteria’s such as statement coverage, branch

K.K. Sharma et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(3), 517 Pg 4

coverage and path coverage testing and achieved accuracy of 95%,
94% and 93% respectively.

Yan et al.2 proposed a feature-based euclidean distance (FED)
to evaluated the failure and non-failure of software for this deep
learning was used. Random testing was adopted to evaluate the
performance. The detection rate was evaluated as 62.74%.

Samet3 applied machine learning approach for testing failure
and success of mobile applications. The algorithm covered data
security of application as a major concern. Continuous Proof of
Presence was used for testing purpose. But this model was not
adaptable for web/desktop applications.

Yan et al.4 proposed a toolkit for usability testing of mobile apps
that automatically collects information from user interface (UI)
events. The model accurately analyzed the usability of applications
and are only dedicated towards usability testing, other aspects of
testing was not covered. The model is not adaptable for
web/desktop applications.

Costa et al.5 proposed a pattern Based GUI testing for mobile
applications that iincreases the systematization, reusability of the
model. The author presented a study on mobile test application but
are not adaptable for web/desktop applications.

Salihu et al.6 proposed a hybrid model termed as AMOGA for
testing of mobile application. Event list were with crawling
technique that finds the association among them. Rosenfeld et al.7
proposed a model for functional testing of mobile applications
using machine learning. The approach identified the common
behaviour among software UI screen and also distinguished
general scripts that has been instantiated and reused. Brito e Abreu
& Melo8 described the findings of a study that looked at the impact
of the Object-Oriented paradigm on software dependability
attributes. To track the implementation of OO design
methodologies, MOOD, a set of OO design metrics, was
implemented. The findings of a comprehensive study of software
maintainability prediction and metrics are presented by Riaz et al.9
Their research focused on the software qualitative attribute of
manageability rather than the software management procedure.
Their findings imply that there is minimal evidence that software
maintainability prediction approaches and frameworks are useful.
For verifying maintainability prediction models, the usage of
prediction methodologies and models, reliability measures, and
cross-validation procedures was found to be uncommon; and the
most widely used maintainability metric used an ordinal scale and
was dependent on specialist judgement.

Barkmann et al.10 developed instruments for metrics analysis of
a huge quantity of software programs to aid in the solution.
Furthermore, software quality metric validation should emphasize
on meaningful measures, rather than linked metrics, which do not
require to be evaluated separately. Challagulla et al.11 reported 4
distinct real-time software defect data sets to examine several
predictive models. Their findings also reveal that "size" and
"complexity" metrics aren't enough to effectively forecast real-
time software faults. In comparison to other models, the outcomes
suggest that combining 1R and Instance-based Learning with the
Consistency based Subset Assessment methodology delivers a
considerably superior coherence in accuracy forecasting.

Burton-Jones et al.12 recommended a set of metrices to evaluate
the reliability of an ontology. The metrics, which are based on
semiotic theory. The metrics are operationalized and implemented
in a prototype instrument called the Ontology Auditor. The study
makes a theoretical influence by providing a mechanism that
developers can use to create high-quality ontologies and
applications may use to select relevant ontologies for a given
assignment. The findings demonstrated that there are a lot of
places where developers ‘ontologies might be improved.

El-Emam13 looked at current object-oriented metrics, their
theory, and the empirical evidence that backs them up. The
findings thus far can be used to develop concrete performance
assurance criteria for object-oriented programmes. The metrics
that measure the various types of export and import couplings
appear to be the most relevant to collect. The majority of these
metrics have the benefit of being able to be gathered early in the
design process, allowing for early performance measurement.
Assign your most capable employees to courses with high
coupling metrics. This entails building a logistic regression system
employing the coupling measures mentioned above (and a
measure of size). This framework would forecast the likelihood of
a mistake in every session.

Software metrics have a long history, almost as long as software
engineering itself. However, despite substantial studies and
writing on the subject, industrial practise has remained largely
unchanged. This is concerning, considering that the primary
motivation for utilising metrics is to better the managerial and
technical aspects of software engineering decision-making. The
main issue is that such measurements are often used in isolation.
We propose that by taking a less isolationist perspective, it is
possible to deliver genuinely enhanced management decision
support systems based on such basic criteria. In regards of
industrial penetration, the vast majority of academic metrics
research has failed. Given the subject's fundamentally "adapted"
nature, this is an especially damning criticism.14

Fenton & Neil15 performed a comprehensive analysis of existing
software failure forecasting studies, focusing on metrics,
techniques, and datasets. Since 2005, the use of public datasets has
expanded dramatically, while the use of machine learning methods
has increased little, according to the review findings. Furthermore,
method-level measures remain the most prevalent metrics in the
defect detection research field, while machine learning algorithms
remain the most common fault prediction methods. To improve
fault predictors, researchers working in the field of software failure
prediction should continue to employ machine learning methods.

Catal and Diri16 presented the review on fault prediction of
software and proved that machine learning algorithms is better
solution for fault prediction. Khan et al.17 introduced Weighted
Class Complexity (WCC) as an object-oriented design measure in
this work. It is discussed from an assessment theory perspective
that takes the known object oriented functionalities that the metrics
was designed to evaluate, such as encapsulation, inheritance and
coupling anpolymorphism, and the quality elements effectiveness,
ambiguity and understandability, as well as the quality variables
effectiveness, complexity, understandable, reusability and
manageability into consideration. The WCC metric is used to

K.K. Sharma et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(3), 517 Pg 5

examine real data from eight different application fields to support
this theoretical validity. According to the findings, the
recommended metric can be used early in the development process
to evaluate the overall effectiveness of an object-oriented software
system. The developer can use this in the early stages of
implementation to resolve faults, decrease irregularities and non-
conformance to standards, and avoid unnecessary complexity. If
this metric is used early in the process, it can help ensure that the
assessment and design have favourable internal aspects, leading to
the creation of an excellent product.

Dalcher & Raffo18 As software measurement becomes more
important, innovative measurement technologies are being
developed. The concept of OOPS were used in this work. The goal
of this paper was to look into the connections among established
design metrics and the likelihood of detecting faults in classes. The
research presented here is a replication of a similar research. The
goal is to produce empirical evidence so that strong findings can
be drawn from multiple investigations. The findings of this study
reveal that multiple measurements in a metric set capture the
identical characteristics, implying that they are relied on similar
principles and provide duplicate information. It is demonstrated
that by combining a selection of measurements, prediction models
for identifying incorrect classes may be created. The anticipated
model demonstrates that import coupling and size metrics are
substantially connected to fault proneness, correlating with earlier
research. Clevenger & Haymaker19 have characterized design
process in their study using three dimensions: challenge, strategy,
and exploration. The study reported a paradigm for defining the
elements, spaces of performance-based design with precision and
created a set of metrics that may be used to track all aspects of the
design procedure. Ultimately, the study illustrated the framework's
and metrics' use by using them to compare two different tactics on
a task. Authors reported that the structure and metrics make it
easier to compare and contrast design procedures. The metrics'
strengths comprise the capacity to evaluate variations in issues that
were previously impossible to quantify employing traditional
point-based design approaches. The most essential and contentious
indicator is Alternative Space Flexibility (ASF). The measure
demonstrates that extensive analysis is the least creative method in
the research papers. The conflict among creativity and systematic
search, as well as the link among creativity and breakthrough
achievement, has long been recognized by experts.

Shatnawi20 With scarce resources, software engineers want
metrics analysis instruments to analyze programme performance,
such as module fault-proneness. There are numerous software
measures that can be used to assess performance. Not all
measurements, although, are significantly linked to defects. The
employment of ROC to establish thresholds for four indicators was
validated in this study (WMC, CBO, RFC and LCOM). After
sampling the data, the ROC outcomes are not significantly varied
from before sampling. In most datasets, the ROC analysis uses the
same measures (WMC, CBO, and RFC), whereas other
methodologies select metrics differently.

 Saxena et al.21 utilised testing metrices for prognostics in a
range of sectors, which include medicine, nuclear, automotive,
aerospace, and electronics, are reviewed in this work. Other fields

that require prediction-related projects, such as weather and
banking, are also considered. The distinctions and commonalities
between these domains and health maintenance were examined in
order to determine which quality assessment techniques could be
borrowed and which could not. Furthermore, these indicators have
been classified in a variety of ways that can help you choose the
right subset for your needs. Certain key prognostic notions have
been described employing a notational paradigm that allows for a
consistent interpretation of various measures. Finally, a set of
criteria has been proposed for evaluating essential aspects of RUL
forecasts before they are used in real-world applications.

Hitz & Montazeri22 employed the object coupling measure
(CBO) as an approach to establish relationship among software
metrices and identified the defects. Suresh et al.23 estimated the
quantitative metrices of the extent to which an organization, a
component, or a method demonstrates a given trait, are the best
approach to convey assessment in software engineering. Analysts,
designers, programmers, and testers all want software metrics to
help them better understand and plan their work. Traditional and
object-oriented methodologies will be used in this study to
evaluate ATM software using a subset of metrics. Classical
measures such as cyclomatic complexity, size, and comment
percent are used to calculate the program's complexity. An object-
oriented metric suite, such as the metric suite, is used to compute
system dependability. The ATM software's complexity and
dependability can be determined by analyzing the metric values in
a real-world application. Abaei & Selamat24 proposed a machine
learning model with feature selection strategies to forecast the
failure of applications. The result was evaluated on probability of
detection, probability of failure, and AUC. The author identified
the important features and metrices that are suitable for
enhancement of forecasting outcomes. Lanus et al.25 addressed
metrics that can be used to describe classify results and define the
domain (operational envelope) in which machine learning
algorithms can be anticipated to perform well. Future research is
intended to investigate the utility of these metrics across a variety
of ML domains, to experiment the hypothesis that models trained
on source sets with smaller SDCCMt distances to the target will
function effectively in the target environment, to investigate the
effect of label centrism, and to determine how to choose a “good”
interaction size t. Antsaklis26 reported a fundamental concept of
autonomous systems, which obviously proceeds to the
construction of metrics to assess a system's level of autonomy.
This definition is predicated on a system's capability to accomplish
objectives in the face of uncertainty, and it excludes the means by
which the targets are attained, such as sensing and responses.
Avazpour et al.27 looked at a variety of assessment metrics and
measures, as well as several methodologies for assessing
recommendation systems. The metrics described in this article are
organized into sixteen categories, such as correctness, novelty, and
coverage. They looked at these measures in terms of the
dimensions they belong to. The following is a quick summary of
ways to thorough assessment considering sets of recommendation
system aspects and associated metrics. In addition, authors made
recommendations for important upcoming studies and practise
areas.

K.K. Sharma et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(3), 517 Pg 6

Table 2. Noteworthy Contributions of Researchers
Methods Discussions
Genetic
Algorithm
[1]

Dedicated for improvement of quality of software
before its usage.
Based on randomness of parameters for software
testing.
Usage of genetic algorithm is time consuming.

Random
Method [2]

Feature-based Euclidean Distance (FED) as the
distance metric that can be used to measure the
difference between failure-causing inputs and
non-failure-causing inputs.
This approach was only dedicated for deep
learning programs.

Touch
Metric [3]

Covered data security of application as major
concern.
Continuous Proof of Presence was used for testing
purpose.
Not adaptable for web/desktop applications.

Usability
Testing [4]

Automatically collects information from user
interface (UI) events.
Accurately analyzed the usability of applications.
Only dedicated towards usability testing, other
aspects of testing was not covered.
Not adaptable for web/desktop applications

User
Interface
Test Patterns
[5]

Increases the systematization, reusability of the
model.
Presented a study on mobile test application.
Not adaptable for web/desktop applications.

TYPES OF TESTING
Combinatorial Testing

Combinatorial testing is a type of evaluation in which several
permutations of input variables are employed to measure a
software product. The goal is to verify that the products is bug-free
and it can control multiple input configuration pairings or
situations. The pairwise system testing, that also includes defining
all pairs of input variable values, is among the most frequently
used combinatorial methodologies. The essential discovery of
combinatorial testing (CT) is whether or not a variable allocation
causes a problem, but rather it is the connections among various
variables that cause software defects.12 A CT test suite, also known
as a t-way coverage arrays, is intended to evaluate variable effects
up to “strength’ by only exploring possibilities among a specific
amount of t variables. The variable interactions in CT may be
described as a t-way mixture, that is, a combo of t parameter
values.
Random Testing

Random testing, often called as monkey testing, is a type of
operational black box testing being used when there is insufficient
time to develop and execute tests. Random testing (RT)
establishes test inputs at unexpected times rather than purposefully
taking samples test scenarios to target specific types of errors. This
method is pretty straightforward and quick to set up, but it has
proved useful, and this is one of the very few test methods whose
fault diagnosis capabilities has indeed been theoretically
investigated. Random testing is used when faults are not found at
regular intervals. The system's dependability and efficiency are
tested using random input. This method saves a lot of time in
comparison to genuine testing efforts. Random inputs are found
for comparison with the system. Testing input are processed

separately of the test area. These randomized inputs are used to
execute tests. Keep track of the results and compare them to the
predicted outcomes. Reproduce the problem and report any flaws,
then repair and recheck.
Adaptive Random Testing

The goal of adaptive random testing is to disperse test cases
more equally throughout the feature space. It is founded on the
premise that for non-point failing scenarios, an equal distribution
of test scenarios is more likely to recognize errors with less test
cases than standard random testing. Considering the fact that fault-
causing inputs are frequently grouped into part of the regional,
adaptive random testing (ART) was suggested to enhance random
testing by distributing randomly chosen test scenarios as equally
as feasible across the entire state space. Divergence test is
performed in ART.
The fault detection capabilities and computational cost of CT, RT,
and ART when tested under varying proportions of accessible
parameters and restrictions in the model, as well as fault failure
rates. CT is strongly recommended for use since it performed no
worse than the other two approaches in 98% of test situations
evaluated, and it improves when the defect is difficult to identify
and all limitations are accurately recognized in the models.

RESEARCH CHALLENGES, LIMITATIONS, AND FUTURE
SCOPE

Following problems are identified:
• From the literature review presented above, it is observed

that significant work has been done in the area of testing
mobile application. There is a scope of research in metrics
like security and performance in order to understand the
complexity of testing mobile application. Following
problems are identified in this research:

• Many applications cannot handle high concurrent pressure
and perform stable operation.

• Concurrency, fault tolerance, stability, time, cost, etc. are
important factors that needed to be determined.

A cost-effective mobile application testing method can be
achieved by careful consideration of the target devices,
connectivity possibilities, and testing technologies that maximise
automation. Automating as much of the testing as possible is a
great strategy to speed up the process and save money in the long
run. When selecting automation tools, consideration should be
given to factors such as mobile platform support, script reusability,
and total cost of ownership. The efficiency of mobile application
development can be improved by using a specific type of measure.
More people will be able to use the application effectively as a
result.

Software testing will increasingly rely on machine learning,36
according to current trends. One of the key drivers of change in the
future is machine learning. It has already begun implementing
some striking improvements in the creation and utilization of apps.
The market for artificial intelligence is rapidly expanding, which
suggests that machine learning is becoming more and more
prevalent in the IT sector. However, this trend won't make
programming languages and their frameworks obsolete. The
following may be checked and tested using machine learning, such
as the optimization of the test suite to identify excessive or the

K.K. Sharma et. al.

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(3), 517 Pg 7

opposite. i.e., certain code checks. based on prior inspections,
prediction of the essential test configurations. After that,
automated identification checks should be able to be performed.
logging analytics, Along with determining the high risk
application state for the regression test ranking and Analytics for
defects predictions.

CONCLUSION
With careful consideration of target devices, connectivity

choices, and testing technologies that maximise automation, a
cost-effective mobile application testing procedure can be
achieved. Automating as much of the testing as possible not only
speeds up the process but also lowers overall testing costs. In this
work, a variety of machine learning algorithms are examined, and
potential future research problems are indicated.

CONFLICT OF INTEREST
Authors do not have any conflict of interest for this work.

REFERENCES
1. X. Yao, D. Gong, B. Li, X. Dang, G. Zhang. Testing Method for

Software with Randomness Using Genetic Algorithm. IEEE Access
2020, 8, 61999–62010.

2. M. Yan, L. Wang, A. Fei. ARTDL: Adaptive Random Testing for Deep
Learning Systems. IEEE Access 2020, 8, 3055–3064.

3. S. Samet, M.T. Ishraque, M. Ghadamyari, et al. TouchMetric: a
machine learning based continuous authentication feature testing mobile
application. Int. J. Inf. Technol. 2019 114 2019, 11 (4), 625–631.

4. X. Ma, B. Yan, G. Chen, et al. Design and implementation of a toolkit for
usability testing of mobile apps. Mob. Networks Appl. 2013, 18 (1), 81–
97.

5. P. Costa, A.C.R. Paiva, M. Nabuco. Pattern based GUI testing for mobile
applications. Proc. - 2014 9th Int. Conf. Qual. Inf. Commun. Technol.
QUATIC 2014 2014, 66–74.

6. I.A, R. Ibrahim, B.S. Ahmed, K.Z. Zamli, A. Usman. AMOGA: A Static-
Dynamic Model Generation Strategy for Mobile Apps Testing. IEEE
Access 2019, 7, 17158–17173.

7. A. Rosenfeld, O. Kardashov, O. Zang. Automation of android
applications functional testing using machine learning activities
classification. In Proceedings of the 5th International Conference on
Mobile Software Engineering and Systems, 2018, pp. 122-132.

8. F. Brito e Abreu, W. Melo. Evaluating the impact of object-oriented
design on software quality. Int. Softw. Metrics Symp. Proc. 1996, 90–99.

9. M. Riaz, E. Mendes, E. Tempero. A systematic review of software
maintainability prediction and metrics. 2009 3rd Int. Symp. Empir. Softw.
Eng. Meas. ESEM 2009 2009, 367–377.

10. H. Barkmann, R. Lincke, W. Löwe. Quantitative evaluation of software
quality metrics in open-source projects. Proc. - Int. Conf. Adv. Inf. Netw.
Appl. AINA 2009, 1067–1072.

11. V.U.B. Challagulla, F.B. Bastani, I.L. Yen, R.A. Paul. Empirical
assessment of machine learning based software defect prediction
techniques. Proc. - Int. Work. Object-Oriented Real-Time Dependable
Syst. WORDS 2005, 263–270.

12. A. Burton-Jones, V.C. Storey, V. Sugumaran, P. Ahluwalia. A semiotic
metrics suite for assessing the quality of ontologies. Data Knowl. Eng.
2005, 55 (1), 84–102.

13. K. El-Emam. Object-Oriented Metrics: A Review of Theory and Practice.
Adv. Softw. Eng. 2002, 23–50.

14. V. Côté, P. Bourque, S. Oligny, N. Rivard. Software metrics: An
overview of recent results. J. Syst. Softw. 1988, 8 (2), 121–131.

15. N.E. Fenton, M. Neil. Software metrics. J. Syst. Softw. 1999, 47 (2), 149–
157.

16. C. Catal, B. Diri. A systematic review of software fault prediction studies.
Expert Syst. Appl. 2009, 36 (4), 7346–7354.

17. R.A. Khan, K. Mustafa, S.I. Ahson. An empirical validation of object-
oriented design quality metrics. J. King Saud Univ. - Comput. Inf. Sci.
2007, 19, 1–16.

18. D. Dalcher, D. Raffo. Software process: The end of an Era. Softw.
Process Improv. Pract. 2009, 14 (6), 303–304.

19. C.M. Clevenger, J. Haymaker. Metrics to assess design guidance. Des.
Stud. 2011, 32 (5), 431–456.

20. R. Shatnawi. The application of ROC analysis in threshold identification,
data imbalance and metrics selection for software fault prediction. Innov.
Syst. Softw. Eng. 2017 132 2017, 13 (2), 201–217.

21. A. Saxena, J. Celaya, E. Balaban, et al. Metrics for evaluating
performance of prognostic techniques. 2008 Int. Conf. Progn. Heal.
Manag. PHM 2008 2008.

22. M. Hitz, B. Montazeri. Chidamber and kemerer’s metrics suite: A
measurement theory perspective. IEEE Trans. Softw. Eng. 1996, 22 (4),
267–271.

23. Y. Suresh, J. Pati, S.K. Rath. Effectiveness of Software Metrics for
Object-oriented System. Procedia Technol. 2012, 6, 420–427.

24. G. Abaei, A. Selamat, G. Abaei. A Selamat. A survey on software fault
detection based on different prediction approaches. Vietnam J. Comput.
Sci. 2013 12 2013, 1 (2), 79–95.

25. E. Lanus, L.J. Freeman, D. Richard Kuhn, R.N. Kacker. Combinatorial
testing metrics for machine learning. Proc. - 2021 IEEE 14th Int. Conf.
Softw. Testing, Verif. Valid. Work. ICSTW 2021 2021, 81–84.

26. P. Antsaklis. Autonomy and metrics of autonomy. Annu. Rev. Control
2020, 49, 15–26.

27. I. Avazpour, T. Pitakrat, L. Grunske, J. Grundy. Dimensions and metrics
for evaluating recommendation systems. Recomm. Syst. Softw. Eng.
2014, 245–273.

28. P.B. Bokingkito, L.T. Caparida. Usability evaluation of a real-time water
quality monitoring mobile application. Procedia Comput. Sci. 2022, 197,
642–649.

29. Y. Li, Y. Feng, R. Hao, et al. Classifying crowdsourced mobile test
reports with image features: An empirical study. J. Syst. Softw. 2022, 184.

30. Y. Zhauniarovich, A. Philippov, O. Gadyatskaya, B. Crispo, F. Massacci.
Towards black box testing of android apps. Proc. - 10th Int. Conf.
Availability, Reliab. Secur. ARES 2015 2015, 501–510.

31. P. Gao, Y. Xu, F. Song, T. Chen. Model-based automated testing of
JavaScript Web applications via longer test sequences. Front. Comput.
Sci. 2022 163 2021, 16 (3), 1–14.

32. S. Suguna Mallika, D. Rajya Lakshmi. Mutation testing and web
applications—a test driven development approach for web applications
built with java script. Intell. Syst. Ref. Libr. 2022, 210, 243–259.

33. C. Wan, S. Liu, S. Xie, et al. Automated testing of software that uses
machine learning APIs. Proc. - Int. Conf. Softw. Eng. 2022, 2022-May,
212–224.

34. S. Haldar, D. Vijaykeerthy, D. Saha. Automated Testing of AI Models.
2021, arXiv preprint arXiv:2110.03320.

35. A. Aggarwal, P. Lohia, S. Nagar, K. Dey, D. Saha. Black box fairness
testing of machine learning models. ESEC/FSE 2019 - Proc. 2019 27th
ACM Jt. Meet. Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng. 2019,
625–635.

36. N. Yadav, V. Yadav. Software reliability prediction and optimization
using machine learning algorithms: A review. J. Integr. Sci. Technol.
2023, 11 (1), 457.

	Submitted on: 08-Oct-2022; Accepted and Published on: 20-Jan-2023
	ABSTRACT
	Introduction
	Related Work
	Software Testing Using Machine Learning
	Types of Testing
	Research Challenges, Limitations, and Future Scope
	Conclusion
	Conflict of Interest
	References

